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Introduction and Preliminaries

Proteins are large biomolecules comprising of multiple amino acid chains.

Generic amino acid Myoglobin

Proteins perform a vast range of functions and participate in virtually
every cellular process!
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Introduction and Preliminaries

If the structure of a protein is known, it can be used to predict how it
performs its functions. Using NMR spectroscopy, the Nuclear Overhauser
effect can be used to determine a subset of the interatomic distances (i.e.
less than 6Å).

We say D = (dij) ∈ Rn×n is a Euclidean distance matrix (EDM) if there
exists points p1, . . . , pn ∈ Rr such that

dij = ‖pi − pj‖2.

If this holds for a set of points in Rr then D is said to be embeddable in
Rr . If D is embeddable in Rr , but not in Rr−1, then D is said to be
irreducibly embeddable in Rr .

We formulate protein reconstruction as a matrix completion problem:

Find a matrix having certain properties of interest,
knowing only a subset of its entries.
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Feasibility formulation

Let D denote the partial EDM, and Ω ⊂ N× N the set of indices for
known entries. We have the following constraints:

C1 := {X ∈ Rn×n|Xii = 0,Xij ≥ 0,Xij = Xji = Dij for all (i , j) ∈ Ω},
C2 := {X ∈ Rn×n|X is embeddable in R3}.

The reconstructed EDM is the solution to the feasibility problem

Find X ∈ C1 ∩ C2.

Now,

C1 is a convex set (intersection of cone and affine subspace).

C2 is convex iff n ≤ 2 (in which case C2 = Rn×n).

For interesting problems, C2 is never convex.
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A Variational Toolkit

Let S ⊆ H. The (nearest point) projection onto S is the (set-valued)
mapping,

PSx := argmin
s∈S

‖s − x‖.

The reflection w.r.t. S is the (set-valued) mapping,

RS := 2PS − I .
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Computing Projections and Reflections

The projection onto C1 is given (point-wise) by

PC1 (X )ij =

{
Dij if (i , j) ∈ Ω,
Xij otherwise.

Theorem (Hayden–Wells)

Let Q be the Householder matrix defined by

Q := I − 2vvT

vT v
, where v =

[
1, 1, . . . , 1, 1 +

√
n
]T ∈ Rn.

Then a distance matrix, X , is a EDM iff the (n − 1)× (n − 1) block, X̂ ,
in

Q(−X )Q =

[
X̂ d
dT δ

]
is positive semidefinite. In this case, X is irreducibly embeddable in Rr

where r = rank(X̂ ) ≤ n − 1.
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Computing Projections and Reflections

The projection onto C1 is given (point-wise) by

PC1 (X )ij =

{
Dij if (i , j) ∈ Ω,
Xij otherwise.

A projection onto C2 is given by

PC2 (X ) = −Q

[
UΛ+UT d

dT δ

]
Q,

where X = UΛUT is a spectral decomposition with

Λ := diag(λ1, λ2, . . . , λn−1) for λ1 ≤ λ2 ≤ · · · ≤ λn−1,

Λ+ := diag(0, . . . , 0,max{0, λn−3},max{0, λn−2},max{0, λn−1}).

Recall that a spectral decomposition of real symmetric matrix, A, is given by

A = UΛUT

where U is an orthogonal matrix, and Λ a diagonal matrix whose entries are

eigenvalues of A.
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The Douglas–Rachford Algorithm

Theorem (Douglas–Rachford, Lions–Mercier)

Suppose C1,C2 ⊆ H are closed and convex with C1 ∩ C2 6= ∅. For any
x0 ∈ H define

xn+1 := Txn where T :=
I + RC2 RC1

2
.

Then (xn) converges (weakly) to a point x such that PC1 x ∈ C1 ∩ C2.

xn

RAxn

RBRAxn

xn+1 = Txn

A

B

A = {x ∈ H : ‖x‖ ≤ 1}, B = {x ∈ H : 〈a, x〉 = b}.

Matthew K. Tam Molecular Reconstruction via Douglas–Rachford



The Douglas–Rachford Algorithm

Theorem (Douglas–Rachford, Lions–Mercier)

Suppose C1,C2 ⊆ H are closed and convex with C1 ∩ C2 6= ∅. For any
x0 ∈ H define

xn+1 := Txn where T :=
I + RC2 RC1

2
.

Then (xn) converges (weakly) to a point x such that PC1 x ∈ C1 ∩ C2.

xn

RAxn

RBRAxn

xn+1 = Txn

A

B

A = {x ∈ H : ‖x‖ ≤ 1}, B = {x ∈ H : 〈a, x〉 = b}.

Matthew K. Tam Molecular Reconstruction via Douglas–Rachford



The Douglas–Rachford Algorithm

Theorem (Douglas–Rachford, Lions–Mercier)

Suppose C1,C2 ⊆ H are closed and convex with C1 ∩ C2 6= ∅. For any
x0 ∈ H define

xn+1 := Txn where T :=
I + RC2 RC1

2
.

Then (xn) converges (weakly) to a point x such that PC1 x ∈ C1 ∩ C2.

xn

RAxn

RBRAxn

xn+1 = Txn

A

B

A = {x ∈ H : ‖x‖ ≤ 1}, B = {x ∈ H : 〈a, x〉 = b}.

Matthew K. Tam Molecular Reconstruction via Douglas–Rachford



The Douglas–Rachford Algorithm

Theorem (Douglas–Rachford, Lions–Mercier)

Suppose C1,C2 ⊆ H are closed and convex with C1 ∩ C2 6= ∅. For any
x0 ∈ H define

xn+1 := Txn where T :=
I + RC2 RC1

2
.

Then (xn) converges (weakly) to a point x such that PC1 x ∈ C1 ∩ C2.

xn

RAxn

RBRAxn

xn+1 = Txn

A

B

A = {x ∈ H : ‖x‖ ≤ 1}, B = {x ∈ H : 〈a, x〉 = b}.

Matthew K. Tam Molecular Reconstruction via Douglas–Rachford



The Douglas–Rachford Algorithm

Theorem (Douglas–Rachford, Lions–Mercier)

Suppose C1,C2 ⊆ H are closed and convex with C1 ∩ C2 6= ∅. For any
x0 ∈ H define

xn+1 := Txn where T :=
I + RC2 RC1

2
.

Then (xn) converges (weakly) to a point x such that PC1 x ∈ C1 ∩ C2.

xn

RAxn

RBRAxn

xn+1 = Txn

A

B

A = {x ∈ H : ‖x‖ ≤ 1}, B = {x ∈ H : 〈a, x〉 = b}.

Matthew K. Tam Molecular Reconstruction via Douglas–Rachford



Results: Six Proteins

Interatomic distances below 6Å typically constitute less than 8% of the
total nonzero entries of the distance matrix.

Table 1. Six Proteins: average (maximum) errors from five replications.
Protein # Atoms Rel. Error (dB) RMSE Max Error

1PTQ 404 -83.6 (-83.7) 0.0200 (0.0219) 0.0802 (0.0923)
1HOE 581 -72.7 (-69.3) 0.191 (0.257) 2.88 (5.49)
1LFB 641 -47.6 (-45.3) 3.24 (3.53) 21.7 (24.0)
1PHT 988 -60.5 (-58.1) 1.03 (1.18) 12.7 (13.8)
1POA 1067 -49.3 (-48.1) 34.1 (34.3) 81.9 (87.6)
1AX8 1074 -46.7 (-43.5) 9.69 (10.36) 58.6 (62.6)

Rel. error := 10 log10

(
‖PC2

PC1
XN − PC1

XN‖2

‖PC1
XN‖2

)
,

RMSE :=

√∑m
i=1 ‖p̂i − ptrue

i ‖
2
2

# of atoms
, Max := max

1≤i≤m
‖p̂i − ptrue

i ‖2.

The points p̂1, p̂2, . . . , p̂n denote the best fitting of p1, p2, . . . , pn if rotation, translation
and reflections are allowed.
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What do the reconstructions look like?

1PTQ (actual) 5,000 steps, -83.6dB

1POA (actual) 5,000 steps, -49.3dB
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What do reconstructions look like?

First 3,000 steps of the 1PTQ reconstruction
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What do reconstructions look like?

There are many projection methods, so why Douglas-Rachford?

Douglas–Rachford reconstruction:

500 steps, -25 dB. 1,000 steps, -30 dB. 2,000 steps, -51 dB. 5,000 steps, -84 dB.

Alternating projections reconstruction:

500 steps, -22 dB. 1,000 steps, -24 dB. 2,000 steps, -25 dB. 5,000 steps, -28 dB.
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Concluding Remarks and Future Work

We presented with a feasibility problem, it is well worth see if
Douglas–Rachford can deal with it – it is conceptually simple and
easy to implement.

More efficient implementation (including computation of PC2 ).

Refine the method applied to large molecules.

Reasonable upper bounds from bond lengths.
Splitting approach.

Other non-convex applications

Hadamard matrices, Sudoku, Nonograms, ILs.

Extensions to non-convex convergence theory á la
Aragón–Borwein–Sims, Hesse–Luke?

Can these unjustifiably good results be explained in CAT(0) spaces?

Douglas–Rachford feasibility methods for matrix completion problems
with F.J. Aragón Artacho & J.M. Borwein. Soon to be submitted, 2013.

Many resources can be found at the companion website:

http://carma.newcastle.edu.au/DRmethods/
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