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Introduction and Preliminaries

Many successful non-convex applications of the Douglas–Rachford
(‘splitting’) method can be considered as matrix completion problems. In
this talk we discuss recent successful applications of the
Douglas–Rachford algorithm to a variety of (real) matrix reconstruction
problems, both convex and non-convex.

In particular we shall consider matrix completion in the context of:

1 Positive semi-definite matrices.

2 Stochastic matrices.

3 Euclidean distance matrices arising in protein reconstruction.

4 Hadamard matrices together with their specializations.

5 Nonograms – a Japanese number painting game.

6 Sudoku – a Japanese number game.

The framework is flexible, and there are many other actual and potential
applications!
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Matt is now visiting Goettingen (Oct-Mar)

– ‘A mathematical theory is not to be considered complete until you have it so clear that you can explain it to the first man whom

you meet on the street.’ – David Hilbert

F.J. Aragón Artacho · J.M. Borwein · M.K. Tam Douglas–Rachford Feasibility Methods for Matrix Completion Problems



Fran is now working in Luxembourg
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Introduction and Preliminaries

Consider the Hilbert space Rm×n equipped with inner product and
induced (Frobenius) norm

〈A,B〉 := tr(ATB), ‖A‖F :=
√

tr(ATA) =

√√√√ n∑
i=1

m∑
j=1

a2
ij .

A partial matrix is an m × n array for which only entries in certain
locations are known.

A completion of the partial matrix A = (aij) ∈ Rm×n, is a matrix
B = (bij) ∈ Rm×n such that if aij is specified then bij = aij .

The problem of matrix completion is the following:

Given a partial matrix, A, find a completion having certain
properties of interest.
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Introduction and Preliminaries

It is natural to formulate the problem of matrix completion as a feasibility
problem.

Find X ∈
N⋂
i=1

Ci ⊆ Rm×n.

Let A be the partial matrix to be completed. We (mostly) take

C1 to be the set of all completions of A,

C2, . . . ,CN such that their intersection has the properties of interest.

Throughout, let Ω denote the set of indices for which the ijth entry
of A is known. Thus

C1 := {X ∈ Rm×n|Xij = Aij for all (i , j) ∈ Ω}.
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A Variational Toolkit

Let S ⊆ Rm×n. The (nearest point) projection onto S is the (set-valued)
mapping,

PSx := argmin
s∈S

‖s − x‖.

The reflection w.r.t. S is the (set-valued) mapping,

RS := 2PS − I .

x x

p1

p2

r1

r2
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The Douglas–Rachford Algorithm (1956–1979–)

Theorem (Douglas–Rachford in finite dimensions)

Suppose A,B ⊆ Rm×n are closed and convex. For any x0 ∈ Rm×n define

xn+1 := TA,Bxn where TA,B :=
I + RBRA

2
.

Then if:

(a) A ∩ B 6= ∅, (xn) converges to a point x such that PAx ∈ A ∩ B.

(b) A ∩ B = ∅, ‖xn‖ → +∞.

xn

RAxn

RBRAxn

xn+1 = TA,Bxn

A

B

A := {x ∈ Rm×n : ‖x‖ ≤ 1}, B := {x ∈ Rm×n : 〈a, x〉 = b}. (Phase retrieval)
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Douglas and Rachford (and Hadamard)

Jim Douglas Jr (1927– ) H.H. Rachford Jr (192x– ) Hadamard (1865–1963)

Some pictures (dates) are easier to find than others
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Product Space Reformulation ‘Divide & Concur’

For constraint sets C1,C2, . . . ,CN define1

D := {(x , x , . . . , x) ∈ EN |x ∈ E}, C :=
N∏
i=1

Ci .

We now have an equivalent feasibility problem with

x ∈
N⋂
i=1

Ci ⇐⇒ (x , x , . . . , x) ∈ D ∩ C .

Moreover, TD,C can be readily computed whenever PC1 ,PC2 , . . . ,PCN
can

be since

PDx =

(
1

N

N∑
i=1

xi

)N

, PCx =
N∏
i=1

PCi xi .

1The set D is sometimes called the diagonal.
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Positive semi-definite matrices

Denote the set of n × n real symmetric matrices by Sn, and the real
positive semi-definite matrices by S+

n . Set

C2 := S+
n := {X ∈ Rn×n : X = XT , yTXy ≥ 0 for all y ∈ Rn}.

Theorem (Higham 1986)

Let X ∈ Rn×n. Define Y = (A + AT )/2 and let Y = UP be a polar
decomposition. Then

PC2 (X ) =
Y + P

2
.

(Note if X is symmetric then Y = X .)

Then X is a positive semi-definite matrix that completes A if and only if
A ∈ C1 ∩ C2.

An important class of positive semi-definite matrices is the correlation
matrices.
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Correlation Matrices

If X1,X2, . . . ,Xn are random variables, the ijth entry of the corresponding
correlation matrices contains the correlation between Xi and Xj . Clearly,

(i , i) ∈ Ω with Aii = 1 for i = 1, 2, . . . , n. (1)

Moreover, the entries of any matrices satisfying (1) can be shown to be
contained in [−1, 1].

X0 := Y . X0 := 1
2 (Y + Y T ) ∈ S5. X0 := YY T ∈ S5.

Figure. Distribution of entries for correlation matrices generated by
choosing different initial points. Y is a random matrix in [−1, 1]5×5.
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Stochastic matrices

Recall that a matrix A = (Aij) ∈ Rm×n is said to be doubly stochastic if

m∑
i=1

Aij =
n∑

j=1

Aij = 1,Aij ≥ 0. (2)

Such matrices describe the transitions of a Markov chain (in this case,
m = n), amongst other things. The set of all doubly stochastic matrices
can be represented as the intersection of

C2 :=

{
X ∈ Rm×n|

m∑
i=1

Xij = 1 for j = 1, . . . , n

}
,

C3 :=

X ∈ Rm×n|
n∑

j=1

Xij = 1 for i = 1, . . . ,m

 ,

C4 := {X ∈ Rm×n|Xij ≥ 0 for i = 1, . . . ,m and j = 1, . . . , n}.

Then X is a double stochastic matrix that completes A if and only if
X ∈ C1 ∩ C2 ∩ C3 ∩ C4.
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Euclidean Distance Matrices

Recall that D = (dij) ∈ Rn×n is a Euclidean distance matrix (EDM) if
there exists points p1, . . . , pn ∈ Rr such that

dij = ‖pi − pj‖2.

Consider the problem of reconstructing an EDM, A, from a subset of its
entries (Aij for (i , j) ∈ Ω). Of course, we may assume Aij = Aji and
Aii = 0. We define

C2 := {X ∈ Rn×n : X is a EDM}.

Then X is an EDM that completes A if and only if X ∈ C1 ∩ C2.

How do we compute PC2 X ?
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Euclidean Distances Matrices

Use the following characterisation:

Theorem (Hayden–Wells 1988)

Let Q be the Householder matrix defined by

Q := I −
2vvT

vT v
, where v =

[
1, 1, . . . , 1, 1 +

√
n
]T ∈ Rn.

Then a distance matrix, X , is an EDM iff the (n − 1)× (n − 1) block, X̂ , in

Q(−X )Q =

[
X̂ d
dT δ

]
is positive semidefinite. In this case, X is irreducibly embeddable in Rr where
r = rank(X̂ ) ≤ n − 1.

Main point: Use X̂ rather than X directly.

C2 := {X ∈ Rn×n : X is a EDM} = {X ∈ Rn×n : X̂ ∈ S+
n }.

Problem: Usually we know that the points defining our EDM lie in a
space of given dimension (eg. R2,R3.).
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Low-Rank Euclidean Distance Matrices

From a few slides ago:

Recall that D = (dij) ∈ Rn×n is a Euclidean distance matrix (EDM)
if there exists points p1, . . . , pn ∈ Rr such that

dij = ‖pi − pj‖2.

Furthermore, if this holds for a set of points in Rr then D is said to be
embeddable in Rr . If D is embeddable in Rr , but not in Rr−1, then D is
said to be irreducibly embeddable in Rr .

Low-rank constraints arise, for example, in the setting of compressed
sensing.
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Protein Confirmation Determination

Proteins are large biomolecules comprising of multiple amino acid chains.2

Generic amino acid RuBisCO

Proteins participate in virtually every cellular process!

Protein structure → predicts how functions are performed.

NMR spectroscopy (Nuclear Overhauser effect3) can be used to
determine a subset of the interatomic distances (i.e. < 6Å without
cellular damage).

A low-rank Euclidean distance matrix completion problem!

2RuBisCO (responsible for photosynthesis) has 550 amino acids (smallish).
3A coupling which occurs through space, rather than chemical bonds.
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Protein Confirmation Determination

Let D denote the partial EDM, and Ω ⊂ N× N the set of indices for
known entries. We have the following constraints:

C1 := {X ∈ Rn×n|Xii = 0,Xij ≥ 0,Xij = Xji = Dij for all (i , j) ∈ Ω}4,

C2 := {X ∈ Rn×n|X is embeddable in R3}.

The reconstructed EDM is the solution to the feasibility problem

Find X ∈ C1 ∩ C2.

Now,

C1 is a convex set (intersection of cone and affine subspace).

C2 is convex iff n ≤ 2 (in which case C2 = Rn×n).

For interesting problems, C2 is never convex.

4Uncertainty can be incorporated by instead requiring |Xij − Dij | ≤ ε, ∀(i , j) ∈ Ω.
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Computing Projections and Reflections

The projection onto C1 is given (point-wise) by

PC1 (X )ij =

{
Dij if (i , j) ∈ Ω,
Xij otherwise.

Theorem (Hayden–Wells)

Let Q be the Householder matrix defined by

Q := I − 2vvT

vT v
, where v =

[
1, 1, . . . , 1, 1 +

√
n
]T ∈ Rn.

Then a distance matrix, X , is a EDM iff the (n − 1)× (n − 1) block, X̂ ,
in

Q(−X )Q =

[
X̂ d
dT δ

]
is positive semidefinite. In this case, X is irreducibly embeddable in Rr

where r = rank(X̂ ) ≤ n − 1.
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Computing Projections and Reflections

A projection onto C2 is given by

PC2 (X ) = −Q

[
UΛ+UT d

dT δ

]
Q,

where X = UΛUT is a spectral decomposition with

Λ := diag(λ1, λ2, . . . , λn−1) for λ1 ≤ λ2 ≤ · · · ≤ λn−1,

Λ+ := diag(0, . . . , 0,max{0, λn−3},max{0, λn−2},max{0, λn−1}).

i.e. Compute PC2 from the rank 3 approximation to X̂ (UΛ+UT ).

Recall that a spectral decomposition of a real symmetric matrix, A, is given by

A = UΛUT , where U is an orthogonal matrix, and Λ a diagonal matrix whose

entries are eigenvalues of A.
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Results: Six Proteins

Interatomic distances below 6Å typically constitute less than 8% of the
total nonzero entries of the distance matrix.

Table. Six Proteins: average (maximum) errors from five replications.
Protein # Atoms Rel. Error (dB) RMSE Max Error

1PTQ 404 -83.6 (-83.7) 0.0200 (0.0219) 0.0802 (0.0923)
1HOE 581 -72.7 (-69.3) 0.191 (0.257) 2.88 (5.49)
1LFB 641 -47.6 (-45.3) 3.24 (3.53) 21.7 (24.0)
1PHT 988 -60.5 (-58.1) 1.03 (1.18) 12.7 (13.8)
1POA 1067 -49.3 (-48.1) 34.1 (34.3) 81.9 (87.6)
1AX8 1074 -46.7 (-43.5) 9.69 (10.36) 58.6 (62.6)

Rel. error := 10 log10

(
‖PC2

PC1
XN − PC1

XN‖2

‖PC1
XN‖2

)
,

RMSE :=

√∑m
i=1 ‖p̂i − ptrue

i ‖
2
2

# of atoms
, Max := max

1≤i≤m
‖p̂i − ptrue

i ‖2.

The points p̂1, p̂2, . . . , p̂n denote the best fitting of p1, p2, . . . , pn if rotation, translation

and reflections are allowed.
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What do the reconstructions look like?

1PTQ (actual) 5,000 steps, -83.6dB (perfect)

1POA (actual) 5,000 steps, -49.3dB (mainly good!)
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What do reconstructions look like?

Video: First 3,000 steps of the 1PTQ reconstruction.

http://carma.newcastle.edu.au/DRmethods/1PTQ.html
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What do reconstructions look like?

There are many projection methods, so why use Douglas-Rachford?

Douglas–Rachford method reconstruction:

500 steps, -25 dB. 1,000 steps, -30 dB. 2,000 steps, -51 dB. 5,000 steps, -84 dB.

Alternating projection method reconstruction:

500 steps, -22 dB. 1,000 steps, -24 dB. 2,000 steps, -25 dB. 5,000 steps, -28 dB.

Yet MAP works very well for optical abberation correction (Hubble,
amateur telescopes). Why?
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Hadamard Matrices

A matrix H = (Hij) ∈ {−1, 1}n×n is said to be a Hadamard matrix of
order n if 5

HTH = nI .

A classical result of Hadamard asserts that Hadamard matrices exist only
if n = 1, 2 or a multiple of 4. For orders 1 and 2, such matrices are easy
to find. For example, [

1
]
,

[
1 −1
1 1

]
.

The Hadamard conjecture is concerned with the converse:

There is a Hadamard matrix of order 4n for all n?

5There are many equivalent characterizations and many local experts.
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Hadamard Matrices

Consider now the problem of finding a Hadamard matrix of a given order
– an important completion problem with structure restriction but no fixed
entries. Define:

C1 := {X ∈ Rn×n|Xij = ±1 for i , j = 1, . . . , n},
C2 := {X ∈ Rn×n|XTX = nI}.

Then X is a Hadamard matrix if and only if X ∈ C1 ∩ C2.

Proposition

Let X = USV T be a singular value decomposition. Then

√
nUV T ∈ PC2 (X ).
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Hadamard Matrices

Let H1 and H2 be Hadamard matrices. We say H1 are H2 are distinct if
H1 6= H2. We say H1 and H2 are equivalent if H2 can be obtained from
H1 by performing a sequence of row/column permutations, and/or
multiplying row/columns by −1.

For order 4n:

Number of Distinct Hadamard matrices is OEIS A206712:

768, 4954521600, 20251509535014912000, ...

Number of Inequivalent Hadamard matrices is OEIS A00729:

1, 1, 1, 1, 5, 3, 60, 487, 13710027, ...

With increasing order, the number of Hadamard matrices is a faster than
exponentially decreasing proportion of total number of {+1,−1}
-matrices (there are 2n2

for order n).
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Hadamard Matrices

Table : Number of Hadamard matrices found from 1000 instances

Order
C1 ∩ C2 Formulation

Ave Time (s) Solved Distinct Inequivalent
2 1.1371 534 8 1
4 1.0791 627 422 1
8 0.7368 996 996 1

12 7.1298 0 0 0
16 9.4228 0 0 0
20 20.6674 0 0 0

Checking if two Hadamard matrices are equivalent can be cast as a
problem of graph isomorphism (McKay ’79).

In Sage use is isomorphic(graph1,graph2).
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Hadamard Matrices

We give an alternative formulation. Define:

C1 := {X ∈ Rn×n|Xij = ±1 for i , j = 1, . . . , n},
C3 := {X ∈ Rn×n|XTX = ‖X‖F I}.

Then X is a Hadamard matrix if and only if X ∈ C1 ∩ C2 = C1 ∩ C3.

Proposition

Let X = USV T be a singular value decomposition. Then√
‖X‖FUV T ∈ PC3 (X ).
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Hadamard Matrices

Table : Number of Hadamard matrices found from 1000 instances

Order
C1 ∩ C2 Formulation

Ave Time (s) Solved Distinct Inequivalent
2 1.1371 534 8 1
4 1.0791 627 422 1
8 0.7368 996 996 1

12 7.1298 0 0 0
16 9.4228 0 0 0
20 20.6674 0 0 0

Order
C1 ∩ C3 Formulation

Ave Time (s) Solved Distinct Inequivalent
2 1.1970 505 8 1
4 0.2647 921 541 1
8 0.0117 1000 1000 1

12 0.8337 1000 1000 1
16 11.7096 16 16 4
20 22.6034 0 0 0
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Skew-Hadamard Matrices

Recall that a matrix X ∈ Rn×n is skew-symmetric if XT = −X . A
skew-Hadamard matrix is a Hadamard matrix H such that (I − H) is
skew-symmetric. That is,

H + HT = 2I .

Skew-Hadamard matrices are of interest, for example, in the construction
of various combinatorial designs.

The number of inequivalent skew-Hadamard matrices of order 4n is
OEIS A001119 (for n = 2, 3, . . . ):

1, 1, 2, 2, 16, 54, . . .
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Skew-Hadamard Matrices

Table : Number of skew-Hadamard matrices found from 1000 instances

Order
C1 ∩ C2 Formulation

Ave Time (s) Solved Distinct Inequivalent
2 0.0003 1000 2 1
4 1.1095 719 16 1
8 0.7039 902 889 1

12 14.1835 43 43 1
16 19.3462 0 0 0
20 29.0383 0 0 0

Order
C1 ∩ C3 Formulation

Ave Time (s) Solved Distinct Inequivalent
2 0.0004 1000 2 1
4 1.6381 634 16 1
8 0.0991 986 968 1

12 0.0497 999 999 1
16 0.2298 1000 1000 2
20 20.0296 495 495 2
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Nonograms

A nonogram puzzle consists of a blank m × n gride of pixels together
with (m + n) cluster-size sequences (i.e. for each row and each column).
The goal is to paint the canvas with a picture subject to:

1 Each pixel must be either black or white.

2 If a row (resp. column) has a cluster-size sequences s1, . . . , sk then
it must contain k cluster of black pixels, each separated by at least
one white pixel. The ith leftmost (resp. uppermost) cluster contains
si black pixels.

1

2 4 1 2 2

2 3 1 1 5 4 1 5 2 1

1 2

2

1

1

2

2 4

2 6

8

1 1

2 2

F.J. Aragón Artacho · J.M. Borwein · M.K. Tam Douglas–Rachford Feasibility Methods for Matrix Completion Problems



Nonograms

We model nonograms as a binary feasibility problem. The m × n grid is
represented as a matrix A ∈ Rm×n. We define

A[i , j ] =

{
0 if the (i , j)-th entry of the grid is white,
1 if the (i , j)-th entry of the grid is black.

Let Ri ⊂ Rm (resp. Cj ⊂ Rn) denote the set of vectors having cluster-size
sequences matching row i (resp. column j). The constraints are:

C1 = {A : A[i , :] ∈ Ri for i = 1, . . . ,m},
C2 = {A : A[:, j ] ∈ Cj for j = 1, . . . , n}.

Given an incomplete nonogram puzzle, A is a solution if and only if

A ∈ C1 ∩ C2.
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Nonograms

From 1000 random replication, the following nonograms were solved in
every instance.

0 2 4 6 8

0

2

4

6

8

0 5 10 15
0

5

10

15

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

A spaceman. A dragonfly. A moose.

0 5 10 15
0

5

10

15

20

25
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0
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15

0 5 10 15 20
0

5

10

15

20

A parrot. The number π. “Hello from CARMA”.
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Nonograms

Computing the projections onto C1 and C2 is not easy.

We do not know an efficient way to do so.

Approach: Pre-compute all legal cluster size sequences (slow).

Only a few Douglas–Rachford iterations are required to solve (fast).

Other problems, have simple projections but require many more
iterations.

Trade-off between simplicity of projection operators and the number
of iterations required.
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Nonograms: An example

Iteration: 1
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Nonograms: An example

Iteration: 2
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Nonograms: An example

Iteration: 3
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Nonograms: An example

Iteration: 4
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Nonograms: An example

Iteration: 5
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Nonograms: An example

Iteration: 6 (solved)
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Sudoku Puzzles

In Sudoku the player fills entries of an incomplete Latin square subject to
the constraints:

Each row contains the numbers 1 through 9 exactly once.

Each column contains the numbers 1 through 9 exactly once.

Each 3× 3 sub-block contains the numbers 1 through 9 exactly once.

Figure. An incomplete Sudoku (left) and its unique solution (right).

The Douglas–Rachford algorithm applied to the natural integer
feasibility problem fails (exception: n2 × n2 Sudokus where n = 1, 2).
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Sudoku Puzzles: A Binary Model5

Let E = {ej}9
j=1 ⊂ R9 be the standard basis. Define X ∈ R9×9×9 by

Xijk =

{
1 if ijth entry of the Sudoku is k,
0 otherwise.

The idea: Reformulate integer entries as binary vectors.

The constraints are:

C1 = {X : Xij ∈ E}
C2 = {X : Xik ∈ E}
C3 = {X : Xjk ∈ E}
C4 = {X : vec(3× 3 submatrix) ∈ E}
C5 = {X : X matches original puzzle}

A solution is any X ∈
⋂5

i=1 Ci .

5Veit Elser was the first to realise the usefulness of this binary formulation for
solving Sudoku via Douglas–Rachford methods.
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Sudoku Puzzles: Computing projections

Proposition (projections onto permutation sets)

Denote by C ⊂ Rm the set of all vector whose entries are permutations of
c1, c2, . . . , cm ∈ R. Then for any x ∈ Rm,

PCx = [C]x ,

where [C]x is the set of vectors y ∈ C such that ith largest index of y has
the same index in y as the ith largest entry of x , for all indices i .

[C]x be computed efficiently using sorting algorithms.

Choosing c1 = 1 and c2 = · · · = cm = 0 gives6

PEx = {ei : xi = max{x1, . . . , xm}}.

Formulae for PC1 ,PC2 ,PC3 and PC4 easily follow.

PC5 is given by setting the entries corresponding to those in the
incomplete puzzle to 1, and leaving the remaining untouched.

6A direct proof of this special case appears in Jason Schaad’s Masters thesis.
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Sudoku Puzzles: The Algorithm

1 Initialize: x0 := (y , y , y , y , y) ∈ D for some random y ∈ [0, 1]9×9×9.

2 Iteration: By setting

xn+1 := TD,Cxn =
xn + RCRDxn

2
.

3 Termination: Either if a solution is found, or 10000 iteration have
been performed. More precisely, round(PDxn) (PDxn pointwise
rounded to the nearest integer) is a solution if

round(PDxn) ∈ C ∩ D.

Taking round(·) is valid since the solution is binary.
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Sudoku Puzzles: An Experiment

We consider the following test libraries frequently used by programmers
to test their solvers.

1 Dukuso’s top95 and top1465.

2 First 1000 puzzles from Gordan Royle’s minimum Sudoku – puzzles
with 17 entries (the best known lower bound on the entries required
for a unique solution).

3 reglib-1.3 – 1000 test puzzle suited to particular human style
techniques.

4 ksudoku16 and ksudoku25 – a collection around 30 instances
(various difficulties) generated with KSudoku. Contains larger
16× 16 and 25× 25 puzzles.7

7Generating “hard” instances is a difficult problem.
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Computational Results: Success Rate

From 10 random replications of each puzzle:

Table. % Solved by the Douglas–Rachford method
top95 top1465 reglib-1.3 minimal1000 ksudoku16 ksudoku25
86.53 93.69 99.35 99.59 92 100

If a instance was solved, the solution was usually found within the
first 2000 iterations.
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Computational Example: A ‘Nasty’ Sudoku

This ‘nasty’ Sudoku8 cannot be solved reliably (20.2% success rate) by
the Douglas–Rachford method.

7 9 5

1 3

2 3 7

4 5 7

8 2

6 4

9 1

8 6

5 4 7

Other “difficult” Sudoku puzzles do
not cause the Douglas–Rachford
method any trouble.

AI escargot = 98.5% success
rate.

Figure. Distance to the solution by iterations

8This is a modified version of an example due to Veit Elser.
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Computational Example: A ‘Nasty’ Sudoku

We considered solving the puzzles obtained by removing any single entry
from the ‘Nasty’ Sudoku.

7 9 5

1 3

2 3 7

4 5 7

8 2

6 4

9 1

8 6

5 4 7

Success rate when any single entry
is removed:

Top left 7 = 24%

Any other entry = 99%

Number of solutions when any single
entry is removed:

Top left 7 = 5

Any other entry = 200–3800

Is the Douglas–Rachford method hindered by
an abundance of ‘near’ solutions?

F.J. Aragón Artacho · J.M. Borwein · M.K. Tam Douglas–Rachford Feasibility Methods for Matrix Completion Problems



Computational Example: A ‘Nasty’ Sudoku

We considered solving the puzzles obtained by removing any single entry
from the ‘Nasty’ Sudoku.

7 9 5

1 3

2 3 7

4 5 7

8 2

6 4

9 1

8 6

5 4 7

Success rate when any single entry
is removed:

Top left 7 = 24%

Any other entry = 99%

Number of solutions when any single
entry is removed:

Top left 7 = 5

Any other entry = 200–3800

Is the Douglas–Rachford method hindered by
an abundance of ‘near’ solutions?

F.J. Aragón Artacho · J.M. Borwein · M.K. Tam Douglas–Rachford Feasibility Methods for Matrix Completion Problems



Computational Example: A ‘Nasty’ Sudoku

We considered solving the puzzles obtained by removing any single entry
from the ‘Nasty’ Sudoku.

7 9 5

1 3

2 3 7

4 5 7

8 2

6 4

9 1

8 6

5 4 7

Success rate when any single entry
is removed:

Top left 7 = 24%

Any other entry = 99%

Number of solutions when any single
entry is removed:

Top left 7 = 5

Any other entry = 200–3800

Is the Douglas–Rachford method hindered by
an abundance of ‘near’ solutions?

F.J. Aragón Artacho · J.M. Borwein · M.K. Tam Douglas–Rachford Feasibility Methods for Matrix Completion Problems



Computational Results: Performance Comparison

We compared the Douglas–Rachford method to the following solvers:

1 Gurobi binary program – Solves the same binary model using integer
programming techniques.

2 YASS (Yet another Sudoku solver) – First applies a reasoning
algorithm to determine possible candidates for each empty square. If
this does not completely solve the puzzle, a deterministic recursive
algorithm is used.

3 DLX – Solves an exact cover formulation using the Dancing Links
implementation of Knuth’s Algorithm X (non-deterministic,
depth-first, back-tracking).

Table. Average Runtime (seconds).9

top95 reglib-1.3 minimal1000 ksudoku16 ksudoku25
DR 1.432 0.279 0.509 5.064 4.011

Gurobi 0.063 0.059 0.063 0.168 0.401
YASS 2.256 0.039 0.654 - -
DLX 1.386 0.105 3.871 - -

9Some solvers are only designed to handle 9× 9 puzzles.
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Concluding Remarks

We presented with a feasibility problem, it is well worth seeing if
Douglas–Rachford can deal with it – it is conceptually simple and
easy to implement.

Optimised implementations of the algorithm. For instance, in the
protein reconstruction

Update projection with heuristics (keeping Q fixed) or infrequently.
Impose more constraints on protein distances.
Exploit symmetry better.
‘profile’ the successful and unsuccessful cases.

1 Douglas–Rachford feasibility methods for matrix completion problems. F.J.
Aragón Artacho, J.M. Borwein & M.K. Tam. Submitted (2013).
http://arxiv.org/abs/1308.4243.

2 Recent Results on Douglas-Rachford methods for combinatorial optimization
problems. F.J. Aragón Artacho, J.M. Borwein & M.K. Tam. Submitted (2013).
http://arxiv.org/abs/1305.2657.

Many resources can be found at the companion website:

http://carma.newcastle.edu.au/DRmethods/
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