ConvexiTy

-1. The course presents the fundamentals of convex analysis (in finite
dimensional spaces) under four headings:

1. Convex Sets

2. Separation Theorems

3. Extreme points and the representation of convex sets

4. Convex Functions.
The material is basic to the mathematical theory of optimization. TIts
importance can be appreciated fully only through a consideration of the
many applications: Convex programming, of which linear programming is a
special case; Control Theory etc. Unfortunately we can do little more than
hint at these applications. Some are taken up in other courses, for example:
Linear programming; Calculus of variations and optimization theory;
Approximation theory.

There is no single book suitable as a text for the course. The following
books are, however, valuable reference sources.

Valentine, Frederick, "Convex Sets", Krieger, 1976.

Rockafellar, R. Tyrell, "Convex Analysis", Princeton University

Press, 1972.
Holmes, Richard B., “"Geometric Functional Analysis', {(Chapter I
only), Springer, 1975.
Eggleston, H.G., "Convexity", Cambridge University Press, 1969.
Bazaraa, M.8. and Shetty, C.M., "Foundations of Optimization",

Springer, 1976.
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0. Preliminaries (which may be assumed throughout the coursej

Everything will take place in, or on, n-dimensional Euclidean space (for
*
some n) . That is, the space En of ordered n-tupples of real numbers (typical

element x = (xl,x ...,xn)) regarded as a linear (or vector) space over the

2"
scalar field of real numbers # with addition and scalar multiplication defined

component-wise:

x+y= (xl,...,xn) + (yl,...,yn) = (x1+y1,...,xn+yn)

and Ax = A(xl,...,xn) = (hxl,...,kxn);

and equipped with the natural inner-product

I
(x,¥) = x.y = I X, ¥,.
- - . ii
i=1
We say ¥ is orthogonal to y and write xly if (x,y) = 0.
While no familiarity with either metric spaces or Approximation Theory is

assumed the following notions are basic.

The "length"” of x « E' is Il = Vix,x) =

i

EXERCISE: Show that, for x, vy, z € E and A € R

(1) (x,y) = (¥,x)
(11)  (x,y) = Ax,y)

(11i) (xty,z) = (x,2) + (y,2).

Blso show that, HA§H = lAIHgH and Hg“ 2 0 with [lzll = 0 if and only if x = 0.

T n .,
The "distance between any two vectors" xand y € E is

dlx,y) = llx-yll =

By the ball of radius r centre x in E" we mean

B (x) = {ye E -yl < £},

* This leads to no loss of generality. Every n-dimensional normed linear space
is "topologically isomorphic" to n-dimensional Euclidean space (see the proof
of Theorem 2 of Approximation Theory, pp.l3-14), so all our results apply in
any finite dimensional space. Some remain true in infinite dimensional spaces.
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. . . . o, .
¥ 1s an interior point of A ¢ E if there exists r > 0 such that Br(g) £ A.

— . n . .
A sequence (gn) = El'Ez""'ﬁn""' of vectors in E is said to converge to
no,
x e E IFf “§n~§” + 0 as n =+ =,

A subset A of B is closed if whenever (gn) is a seguence of elements of A

. n
which converges to x ¢ E we have x ¢ A,

For A & E' the smallest closed set containing A is known as the closure of A
and is denoted by A (not to be confused with the complement of A which will
be written as ET\a),

Clearly A is closed if and only if A = &,

EXERCISE (optional at this stage): For A € E', show that
2
E

a= N[a+z5 ()]
>0 E

N
NI

[Note: Here and elsewhere, for A, B EE

o

A + B_(Q)

A+B={xeE: x-= a +b for some a € A and some b e B}.]

The "norm" in E" satisfies the following parallelogram law

lix - gl + llx + gll2 = 212 + 2liyll2.

Xy X

. xty

&,
x;b/j
iyl 4
x-y)
= {&x) - xy) - ¥.x) + (y,7)

= lldl® - 20x,y) + lyll2.
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similarly Bg+yll? = a2 + 200,30 + liyll2.
2dding these two identities yields the result. [

We will also have occasion to use the triangle inequality:

n
For x, y e E, llx + vl <[« + lly

Il yll
X =§+¥

(See either, Analysis in
Metric spaces, p.10,
or Approximation Theory, p.25,

for a proof.)

Most of elementary linear algebra is important for our analysis. (Use your
second year notes as a reference whenever necessary.) The following are of

most immediate use.

M E,En is a subspace of E' (written M < g") if and only if
Aa + b € M whenever a, beMand A ¢ 1 (that is, whenever M is a linear space
in its own right with the operations of vector addition and scalar

multiplication inherited from En). A

1O

A sometimes useful result is that every subspace M of E' is closed. (You
might like to try and prove this.) Tt is also therefore complete, since En

is itself complete. That is, if (gn) ¢ M is a Cauchy sequence:

”@n - @kﬂ + 0 as n,k + »; then (@h) converges to some element of M.
n . . .
{For the completeness of E see either, Analysis in Metric Spaces, p.18, or

Approximation Theory, Corcllary 2 on p.14.)



The span of A ¢ E

m
<A> = {x e B : x = .Z Aiéi for some m € N, Al,hz,...,lm e R
i=1
and a,,a_,...,a_ € A} the set of all finite linear
2173 %

combinations of elements of A.

<A> is the smallest subspace of B containing A, that is,

if M<E" and & c M then <a> < M.

For latter purposes it will be counvenient to re-christen the span of 24 as
the linear hull of A.

1f M < E" is the linear hull {(span) of B = {91, @2,...,§m} and B is a
linearly independent set of vectors, then B is a basis for M. Further the
dimension of M, dim M = m the number of vectors in B.

If B =.{b1,bz,...,§m} is a basis for M SEEn, then it is possible to extend
B to a bhasis for En. That is, there exists n-m vectors b b

0 “m+l'bm+2"""n
such that {?1'?2"'-'Pm'?m+l'°'"?n} is a basis for E .

Using the Gram-Schmidt orthogonalization procedure (refer to approximation
theory notes, p.27 and exercise 32, or to linear algebra), if

B = {yl,yz,...,gn} is a basis for E' we can construct a basis

D={d4,,d4,,...,d_} such that D is orthonormal, that is
~17=2 n e e

(d.,d.) = {l %f * ; % ,and, for any k ¢ {1,2,...,n},

20 BT T <pedyre gy



CHaPTER 1 - CONVEX SETS

§81. Affine Sets (otherwise known as: "Affine Manifolds", "Linear Varieties" or
"Flats™)

DEFINITION: An affine subset of En is a translate of a subspace of En. That

is, A is an affine subset of En if and only if A = x + M for =some x € B and

subspace M E_En. We say M is a subspace parallel to A.

A

2

v

Theorem 1: If A is an affine set, then there exists a unique subspace of E"
parallel to B.

. . . n
Proof. Since A is affine A = x + M for some x ¢ A and M < E .

‘Now, assume A = x' + M', then

x+M=x'"+M
or M= (x'"-x) + M.
In particular, given any m € M there exists m' ¢ M' such that m = (x' - x) + m'.
Since 0 € M, there exists m' € M' such that 0= (x' -x) +m'. Thus
(x'" - x) =-m' e M' (as M' is a subspace) and so M = (x' - x) + M" c M',
Similarly M' = M, and M = M', . O

EXERCISES: {1) Describe the affine subsets of E? and EJ.
(2) Let A be an affine subset of E" and let g be any element of A.
Show that the subspace M parallel to A is given by M = A - a.
(3) Let A = X + M be an affine subset of B where M is the sub-
space parallel to A. Show that A = x' + M if and only if

x'" = x + n for some element m of M.

Structure of Affine Sets.
If %, y ¢ E" we denote by £(x,y) the line through x and y.



Thus,

2
¥
=
l
—
N
m
=)
N
I

y+Alx=-y),re )

It
—
1N
m
2]
[=}
N
Il

Ax + (1-M)y, A e ®).

(See, first year work on vector geometry.)

v

We now collect together a number of useful characterizations for affine sets,

Theorem 2: For a non-empty subset A of E- the following ave equivalent.

(i) A is an affine set.

(i1) If x, Y € A, then £(§,g) C A,

(1ii) If %, ye Band X ¢ &, then rx + (1-\)y € A,

(iv) If x, ye dand o, B e & are such that « + B = 1, then
ox + Bg € A.

(v) If Xy sXgrens Xy € A and Oy Oy yeen sy € 6 are such that

m n

z o, =1, then Z B,X%X., € A,
. 1 . 1~1
i=1 i=1

. . In
(vi) For any a € A, A - a i3 a subspace of E .

REMARK: You should compare (iv) with the characterization of a subspace:
M is a subspace if and only if ax + By € M whenever X, y € M and

¢, B e ",

QUESTION: Which of the following two statements is correct:
(i) Every subspace is an affine set?;

{ii) Ewvexry affine set is a subspace?
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Proof (of Theorem 2)}. (iii) and (iv) are simply restatements of (ii) using
the definition of ﬁ(g,g), we therefore have (ii) < (iii) & (iv). It is
also clear that (v) = (iv). [(iv) is the special case of (v) for m = 2.]
It is therefore sufficient to show (i) =+ (ii), (iv) = (v) and

(iv) = (vi) = (1).

(L) = (ii).

Let A = X, + M, where M is the subspace parallel to A, then
X =%, + 1
and Y =%, + m,

for some m; and m, € M.

Now, let g ¢ £(§,¥), then

z = Ax + {1 - Ay, for some A € &
= }\(1{0 + I-I-I}_) + (1 -~ A) (?50 + 1112)

(A + (L= Ax, + Amy + (1=~ Mm,

= x, ++ m, where m = k@l + {1 - l)@z

0
e Aasme M (since, M is a subspace).
{iv) = (v).
We use induction on m. (iv) is simply the statement that (v) is true

for m = 2. Wow, assume (iv) holds form =k - 1. ILet

k k
Y = .z o X, where X, € A, o, e & for i = 1,2,...,k and .Z e, = 1.
i=1 i=1
k
Since Z ui = 1 there must exist (k ~ 1) of the ui's whose sum 1s non-zero
i=1
(why?). By rearranging the sum we may, without loss of gemerality, assume
k-1
that S = Z o, # 0.
, i
i=1
Let of = ai/s for i =1,2,...,k-1.

k=1
Then, Z ui = 1 and so by assumption
i=1 %1

= o! x, A.
4] .z i 51 €
i=1

The case m = 2 therefore yields that
Sy, + (1 - 8)x_ e 2,

k-1
however 1 - S = a [S = Z ai sg 1 =

. Lag=8+a]),
i=1 i

1

I 1



k-1
and S¥1 +o X = S(i£1 g&_gl] + o X
k-1
= .E c. X, +ﬂk}"ﬁ{=¥.
i=1

So y e A as required.

(iv) = {(vi).

Let M = & - a, then:

(a) For m € M and X € 6l we have m = a, ~ a for some a, € A and so

1 1

Il

Aa, + (1 - Aa -

3

Ap = Afa, - a)

1]

= g' - a, where g' Agl + {1 - A)g.

Now, &' € A by (iv) (& (iii)) as a aeh, sodme A~ a=M,

1!

(h) For e m, € M we have m, = §1 - a and m, =4, - a for some 2, and
92 € A, and so
wlm tm,) = (ha, k) -2
=a' - a.
Now, a' = %a, + %a, € A by (iv) again, as a,;, @, € A&, so k{m;, + m,) € M.

Thus my + my, = 2 (alm + m,}) & M by (a).
(a) and (b) together show M is a subspace.

(vi) = (i}.
If M =3 - a is a subspace, it suffices to note that A = a + M, so A

is a transtate of the subspace M and hence A is an affine set. O

. n
EXERCISES (1) If A A2 are affine subsets of B with Al NnAaA, # ¢, show that

17 2

Al A A2 is an affine subset of En

(2} A mapping T: E' - Em is an affine mapping if T(x) = L(x) + a

where L is a linear mapping from ' to E" and a is a fixed
. m . . . . .
vector in E . That is, T is the composite of a linear mapping

and a translation.

Let T be an affine mapping from E to Em, if A is any affine subset of En,
show that T(4) is also an affine set.
(REMARK: In fact it can be shown that a mapping is affine if and only if

it maps affine sets to affine sets.)
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. . . n
DEFINITION: By an affine combination of elements of any subset S £ E we

mean a vector of the form

m m

.E uigi where §1’§2""’§m € S; al,az,...,um e ® and .X ui = 1.

i=1 1=1

Thus, an affine combination is a finite linear combkination in which the scalar

coefficients sum to 1.

(v) of Theorem 2 could now be restated as: Any affine combination of elements
of A is itselfl an element of A (or, "A& is closed under affine combinations"}.

By the affine hull of any subset S E_En we mean the set of all possible affine
combinations of elements of 5. The affine hull of S will be denoted by aff(5).

Thus,

m
aff {g) = {x €E:x= Z oS, for some m € N, s, €8, a, € ® (i=1,...,m) and
i=1

1
1

Il b~1"
Il
l.....]
\-W_J

i
[The affine hull of S should be compared with the linear hull of 5§ ~ see p.5.]

Theorem 3: Let S © B, then aff(S) is the smallest affine set in B which

contains 8. That is, aff(5) is an affine set and if A is any other affine set

in B° with § € A we have aff(8) < A.

Proof. We first show aff(S5) is an affine set.
Let x, y € aff (5), that is
X is an affine combination of some finite set Fx of elements of S
and y is an affine combination of some other finite set Fy of elements of S.
et F = Fx U Fy, then F is a finite set of elements of 5, that is
F = {§1'§2""’§m} for some m € N and s, ,S,,-.-,5 € S.
Further x is an affine combination of elements of F. (We already know x is
an affine combination of the elements of Fx £ ¥, assign 0 as the coefficient

for elements in F\Fx.) That is

m m
x = E @8, for some Gy sl peeerl € # with .Z o, = 1.
=1 i=l

m m
Similarly, y = .Elﬁigi for some B;,B,,...,B ¢ R with 'Xlﬂi = 1.
i= 1=

Hence, for any A € # we have
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m
Ax + (1 - Ay = A( Z o, §.] + (1 =~ A)( z B 5, ]
- i=l * i=1

m
= igl[Aai + (1 -8, ]s

m
and ) (e, + (1 - M8,) = AZu —:—(l—)\)ZB = x4+ (1 -2 =1,
i=1 * =1 i=1

so Ax + (1 - l)g € aff(8).

Thus by (iii) of theorem 2, aff (8) is an affine set.

Now, let A be any affine set in En with 5§ ¢ A. If X € aff(8), then x is an
affine combination of elements of 8, however elements of S are also elements
of A, so x is an affine combination of elements of A. Thus, by (v) of theorem

2, x € A. We therefore have aff(S) ¢ A as required. ]

Corollary: aff(8) equals the intersection of all affine sets in B which

contain S, That is
aff(s) =N{A: S ¢ A and & is an affine subset of E"}.

EXERCISE: If § ¢ T c E' show that aff(S) < aff(T)

REMARK: The affine hull of a set is in many ways its more "natural home®.
For example, the affine hull of a triangle in E3 ig the plane containing it
(show this). We normally work with a triangle as a figure in the plane, rather

than a figure orientated in three dimensional space.

Affine dimension

The (affine) dimension of an affine set A, dim A, is the dimension of the

subspace parallel to A.

The dimension of any subset S E_En, dim S, is the dimension of aff(s).

Thus, dim 8 = m if and only if aff(g8)= x + M for some x ¢ E" and some subspace

n , ,
M < E of dimension m.

Theorem 4: A c E 45 an affine set of dimension m if and only if there exists

m + 1 vectors 50'91""’§m € & such that
(Z}) &= aff{go,...,gm}

and (i1) for any k e {0,1,2,...,m} the set of m vectors

R R s -

18 linearly independent.

REMARK: The set {a ,al,---,a } is referred to as an affine basis for A.
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From the above theorem we can develop a theory of affine bases analogous to

bases of linear spaces. For example consider the following results.

EXERCISES: (1) Show that any set of vectors {gﬂ,g ,...,gm} satisfying

1
(ii) of theorem 4 is affinely independent in the sense

that no vector in it is an affine combination of the
other elements of the set.

(2) If {go,gl,...,ém} is an affine basis for A, show that for
each point a ¢ A there exists a unique set of scalars

m i
such that a = .Z Aigi and Z li =1. (X
i=0 i=0

Agrh cerh

0' 1"

m Apresarh)

Ul

are known as the barycentric coordinates of a with respect

to the given affine basis.

These ideas are illustrated in the following EXAMPLE.

mmE} S= {gg = (0,0,1), a, = (1,0,1), a, = (0,1,1)} is affinely independent.
The affine hull of S is A = {(x,y,2z): 2z = 1} the plane through {(0,0,1)
parallel to the x-y plane. The unigque subspace parallel to A is the x-y
plane M = {(x,v,2): =z = 0}. Since M is 2 dimensional, dim A = 2. The
barycentric coordinates of the point (a,f,1l) € A with respect to S are

(L-o-B,0,B). AZ
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Proof (of theorem 4).

(™) Let A be an affine set of dimension m, then A = a, + M for some a, € A

0 0

(as 0.¢ M) and some m—-dimensional subspace M.
Let {?1'?2""’Pm} be a basis for M.
Then, for @ € A we have a = a5 + m for some m ¢ M

A e 8,

m
= a; + Z Aibi for some Al,lz,... -

. i=1

m m
lz A by +ag) + (1 - FAag.

1 i=1

This last expression is an affine combination of the m+l vectors
"ém = a + ?m' S0

a € aff{go, Biyeens ém} or A E_aff{go, Ayreens gm}.

Further each a; € A so aff{go, i eens gm} c BA. We therefore have

1!

A= aff{go, By ey gm}, establishing (i).

1'

To establish (ii} first note that if k = 0 we have

{gl—go,...,ém—go} = {pl,...,gm} is linearly independent.

On the other hand, if k ¢ {1,2,...,m} we have

te o @y gy T B T B e B T )

= {- T b, . b ,...,b =
R S R

which is linearly independent since the pi's are. (Why?)

(<) From (i) we have that A is an affine set. Let M be the unique subspace

parallel to A. By (vi) of theorem 2 M=A -3, or A=a_  + M. Hence, ifm

0 0

is any element of M a, + m € A, s0 by (i),

0
m m
a, +m= 'z a;a, for some ag,a),...,0p € ®] with .Z a, = 1.
i=0 i=0
m m m
Thus, m = [_z gigi] " ay T [_Z uiéi - 'Z %%
i=0 1=0 i=0
m m
= Lojlai-ag) = ) o;la-ag).
i=0 i=1

This shows that m is a linear combination of {§1—§D,...,§m—§0}, S0
{glmgn,...,gm—go} spans M. Further by (ii) {gl—go,...,gm—gﬂ} is linearly

independent. It follows that M has dimension m, and so dim & = m. il
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The concluding problem introduces some valuable topologtical properties of an

affine subset of En.
PROBLEM: Let A be an affine subset of E" show that

{i) A 15 closed

and hence (ii) A is complete.
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§2. Hyperplanes

DEFINITION: A hyperplane in n~dimensional Euclidean space E' is an affine
subset of (affine) dimension n - 1, That is, H E_En is a hyperplane if and
only if H = X, + M where M, the unigue subspace parallel to H, has dimension
n - 1.
For EXAMPLE: A hyperplane in B2 is a line.

A hyperplane in E3 is a plane.
We begin the study of hyperplanes by characterizing (n-1) dimensional sub-

spaces of En.

DEFINITION: For any non-zero vector Xy € E" we define the orthogonal

complement of 50, §l

0 {(proncunced "xo—perp.") to be

: (11, X,) = o}

4,
EXERCISE: Show that X, is a subspace of " for any x EEn, X, # 0.

0
[Hint: See the definition and exercises on inner-products given on p.2.1
THEOREM 1: M is an (n-1)-dimensional subspace of E' if and only if M = @é

for some non-zero z, € £t

L . .
Proof. (<) For any non-zero X, € E" we must show X, has dimension n-1.

We begin by showing that any vector vy € o may be written as y = Axo + m
N 4 4 - =
for some scalar A and some m € X Since x, # 0 we have
lxgll% = (x4, %,) # 0 and so the scalar
(v, x,)
TZL~1QH- may be formed. Let A = (¥ 50) , then v = Ax  + m, where
Xork,) X, X 4 -0~
0'=a ~0’~0

m=y - lgo is such that

(m, x5) = (¥, x ) - Alx ., x;) = (¥ X)-(y'{:) (x4, %,) =0

o, X Yr %4 X0t ¥y Y, X, W}%O—)— X0 %p ’

that is, m € xé.

b k
. . . 1
Now, if Pl""'bk is a basis for X, we have m = Z Aibi and so any y € E
- ~

may be written as y = Ago + Albl + ... + lk@k. Thus the set of k¥ + 1

vectors {Eo'b ,...,@k} is a basis for E and son =k + 1. It now follows

1
. s
that dim Xy = k=n =~ 1.

(=) Let M be an (n-1)-dimensicnal subspace of En. By the remarks made on
P.5 (last paragraph), there is an orthonormal basis {@1,...,§n} of E' with

1 . .
M= <b1""'?n—f>' We show M = bn' Since (pi,@n) =0 for i =1,2,...,n-1
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n-1
and any m € M may be expressed as m= Z hibi for some Al""’hnml it follows
i=1

.

that (m, @n) = 0. Thus M €§bl.

Il

In addition, dim @i n -1, by the {&) part of the proof

dim M

and sa, M = b:. The result now follows by setting %, = pn. O
Corollary 2: H is a hyperplane in £ if and only <if

H= g, + @# for some A and some non-zero vector T, € £

Proof. (+) Follows immediately from the definition of hyperplane and the
preceding theorem.

(=) If H is a hyperplane, then H = a, + M for some aD 3 En and some

0
(n-1)-dimensional subspace M of En. By theorem 1 M = g% for some non-zero
Xp € E'. Further g, = AED + m for some A and some m e M (see the («) part of

the proof to theorem 1),

L L 1S 1 £
Thus H (hgo +m) + X, Agn Xpasmex, som + X, = %X
. , i
EXERCISE: TIf H is a hyperplane with 0 ¢ H, show that H = Xy + Xy for some

n . , . ,
non-zero X, € E . [Hint: In this case show that the A in corollary 2 is not

1
agqual to zero, then show that gé = (Axy)" for any A # 0.]
As a consequence of Corollary 2 we arrive at our final, and most useful,
characterization of a hyperplane.
THEOREM 3. H is a hyperplane in E' if and only if for some constant ¢ € &

and some non-zero T ¢ F' we have H = {y ¢ E": (y, xy) = cl.

Proof. (=) If H is a hyperplane then H = Agﬂ + gé for some A and some

n
X, € E, x, # 0 (Corollary 2). Thus

o]

1
T
yeETY = ax, tx

Ty N e xg
Ty - Axgixp) = 0
M (gf 1:0} = }\(?’_CD:?ED)

The result now follows by taking c = A(go,gﬂ).

f=) If H = {y ¢ B (v, fo) = ¢}, then

XEHﬁtzr}fo) c

< = S © N
(¥, 20 = A(Fyr %) where A Gegrxy)

“(y - ;\}fo"fg) =0

CY - Axy € %

" ye A§0 + gl
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Thus, H = Ago + xé and so H is a hyperplane. [

ILLUSTRATION: From theorem 3 we have that H is a hyperplane in E3 if and only

ifH={ye E3: (v, xo) = cl for some ¢ ¢ R and some x, € En, x, # 0.

H

Letting v = (x, v, =) and xD = (al, az, aa) we therefore have

H={{x,yv,2) ¢ E3: a.x + a,y + a_z =cl - a plane in gd:

1 3

Just as a line divides E® into two half-spaces and a plane divides EJ into two
half-spaces, theorem 3 shows that in E" a hyperplane H = {y ¢ B : (y,xo) = ¢}

may be used to divide £ into two closed "half~spaces"

-+

{g e B (v, 50) =cl

Il

=
and {y e B (g, :fo) < ¢}

Note: The Open Half-spaces {y ¢ B {v: xo) > ¢} and

{y € . (g, XO) < ¢} can also be defined.

M

1%
S B
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§3. Convex Sets
3.1 Algebraic Structure for Convexr Sets

For X, Vv € E" we denote by [x,v] the segment of line between x

and y.

Thus [x,v] < L{x,y) and z € [x,v¥] if and only if z = Ax + (1-A)y for

some A with 0 £ A £ 1 (see diagram on page 7).

DEFINITION: A subset C of E- is CONVEX if for every pair of points
X, v € C we have [x,y] € C.
That is, C 18 comvex if and only 1f, for every pair of points x, v € C

and every A with 0 £ A £ 1 we have Ax + {(1-A)y € C.

A convex subset of E2. ‘ A non-convex subset of-Ez.

EXAMPLES: 1) For the type of sets studied so far we have the following

inclusions.

Convex Sets

Affine Sets Subspaces

Hyperplanes
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(You should convince yourself of the truth of these statements, viz:
Any affine set is a convex set etc. You should also give examples to

show that each of the inclusions is proper.)

2)  Any half-space (see page 17) 18 convex. For example, let

To show C is convex, let x, vy € C, then (x,xo) =z ¢ and (y,xo) Z c.

For any A with 0 € A £ 1 we therefore have

(Ax + (1-My,xg = Alxexg) + (1-2) (y,x)

v

Ac + (1-A)ec as both X and (1-)) are positive
= C.
Thus Ax + (1-A})y € C, and so C is convex.

We will make extensive use of the following result.

THEOREM L: The intersection of any collection of ecowvex sets in E- is

itselfl a convex set(l).

Proof. EXERCISE.

EXERCISES: 1) Prove Theorem 1 above.
2) If A, B are convex subsets of En show that
i) A+B={xeF:x=a+b for some aec A and some b ¢ B}

is a convex set:

(1) Here, and elsewhere, we take the empty set g to be a convex set. (Indeed,
how could ¢ be non-convex?)



20.

’ s Il .
and 4ii) UA = {x € E: x =¢a for some a € A]‘ 1s a convex

gset. Here U is any fixed real number.

Hence deduce that & + UB is a convex set.

3) Give an example to show that for two convex sets A and B,

the wion A U B is not in general convex.

4) If A is a convex subset of En and T : En - Em is an affine
mapping (see Exercise 2 on p.9), show that T(A) is a convex subset of

m
E .

5) Show that the ball of radius r > 0 and centre X € En,
Br(x) - see p.2 - is a convex subset. [Hint: Use the triangle

inequality given on p.4.]

6) For any pair of real numbers a, b with a < b show that the

closed interval [a,b] = {x e R a < x < b} is a convex subset of E!.

The following corollary to Theorem 1 is of considerable importance

for many applications, particularly linear programming,

THEOREM 2: The solution set of a system of simultansous linear
inequalities (ineluding equalities) in n variables is a convex subset

of ES .

Proof. A given system of m simultaneous linear inequalities in the n

real variables Xr Xpr o-ees X has the form

+ ... + 1o
8% A%, aGn¥ M P

alel + a,0%, + .. + aZan 82 b2

----------------------------------
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This system may be rewritten as
(x,2)) & b,

(?51?»2) (Rz b2

where X = (xl, STy xn) and a, = (ai a earg ain) for

1 iz’
i=1,2,...,m.

The solution set of the simultaneous system is

lnczn...ncm

where, for 1 = 1,2,...,m, Ci is the solution set of the i'th linear
ineguality, that is

= n- H
¢; ={xeE: (xa) & b}

From this we recognise that each Ci is either a half-space or a hyperplane

and so, Ci is a convex set. The convexity of C now follows from Theorem 1.

Convex Combinations
Let S5 be any non-empty subset of ES. We say x is a (finite)

convex combination of element of S if

X = Algl + lzgz + ... + Amsm for some m € N ;

§1, ceny §m € S , and scalars ll, A
m

i=1,2,...,m and E li = 1 (clearly this requires that each li e [0,1]).
i=1

VALY Am with li z 0 for

By the convex hull of 5 we understand the set of all possible

convex combinations of elements of S, which we denote by co(S).

Since any element 5 € S may be written as s = 1s + Os, we see

that 5 ¢ co(s).
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We begin by establishing that a convex set is closed under convex

combinations.

LEMMA 3: If C is a convexr subset of B, then
co(C) = C.
Proof. By the preceeding remark it suffices to show that co{(C) E C.
m
Thus, if x = E lici where Clr +ver C_ € C; A ceep A = 0 and
~ o if

~m 1 m

I
) Ai = 1, we must show x e C.

i=]1
The proof is by induction on m the length of the sum.
If m = 2 then X = A191 + {1-A)g,; € C by the definition of convexity.
Assume every convex combination of length (m -~ 1) or less is in

C, and let § = % Aigi ; where m z 3 and without loss of generality

i=1
we may assume that each Ai ; 0 (otherwise x is really a convex combination

of length (m-- 1) or less and so is in C).

m m
Now, X = llcl + Z Aici and p = E li > 0 (since
- i=2 - i=2 #
Aogs Agy wee > 0).
m Ai li
Let vy = Z — g, , then — >0 for 1 =2, ..., m and
= , pooci 41
i=2
m ), m
Z NER X A = l-u = 1, so y is a convex combination of
i=2 ¥ =g * W -

elements of C of length (m - 1) and so v € C.

Further, x = llcl + By and Kl, L >0 with l1+u =i, + Z Ai = Z A, = 1,

hence x is a convex combination of elements of C of length 2 and so

x € C. =

THEOREM 4: For any non-empty subset s of E°, co(S) is the smallest convex

subset of E' containing S.

Proof. We must show i} co(S8) is convex
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ii) if C is any convex subset of E" with s ¢ C, then

co(8) = C.

i) For any X, v € co(S) we have

m
x = iEl li?i for some m e N; §1""'§m € 5 and ll,lz,...,lm_z 0 with
m
)3 A, =1
i=1
and
ml
y = izl ui§! for some m' e N; §i,...,§$, € S and ul,nzf---,um, z 0 with
ml
Iou, = 1.
i=1
Further, without loss of generality we may assume m = m' and
Si = Si for i = 1,2,...,m (assign 0 as the coefficient of any

"unnecessary" Si's in either sum).
NMow, for any A with 0 < A £ 1 we have

Ax + (L-A)y

m m
AEAs; - a-h LoAgs,
i=1 i=1

m
‘El '[Mi + (1—x)ui] 5,

and, for each i = 1,2,...,m lhi + (1-R)ui 2 0, as each of A, (1-}A), li

and ui is positive, while

I I I
Yo[aa, o+ (-] =2 A. + (1-A) ) u.
i=l|: + l] i=1 T i=1 *

A«l + (1-2)-1 = 1.

So, Ax + (l-A)y is a convex combination of elements of &8, that is

Ax + (1-X)y € co(S). It follows that co(S) is convex.

ii) Since 5 £ C any convex combination of elements of § is also a convex
combination of elements of ¢, that is, co(S) = co(C}.

By lemma 3, co{C) = C, s0 co(S) € C.
|
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Corollaries: 1) For any non-empty subset S of E" we have co(s) equals

the intersection of all convex subsets of B which contain s.
2) A subset C of E" is convex if and only if C = col(C).
EXERCISES: 1) In B2 find co(f(0,0),(1,0),(0,1)}).
2) Bhow that co{A n B) = co(A) n co(B) for any two subsets

A, B of E'. Give . an example to show that the reverse inclusion need

not be true.

SIMPLICES

The convex hull of a finite set of vectors in D is known as a

polytope. For example: in E2 any convex polygon is the convex hull of

its vertices and so is a polytope;

a polytope in EZ.

Yy Y3

in % any convex polyhedron is the convex hull of its vertices and so
is a polvtope.

In En, a polytope which is the convex hull of an affinely
independent set of vectors (see p.l2) is known as a gimplex. That is,

S c " is a simplex if and only if

S = co b, b

bt eees ?m} , where

?1 - EG ; PZ - ?D' ey ?mA— ?ﬂ is a linearly independent set of m

vectors. The vectors bﬂ’ bl' . bm are known as the vertices of S.

The number of vertices, m, is the simplectic dimension of §. Since the
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number of vectors in a linearly independent subset of E" is at most

n, the types of simplices imn E" is strictly limited.

For EXAMPLE we hawve:

Space Possible Simplices (_S;mpfzgt;; di:iizézz)
2 . .

E a single point 1
]

a closed line segment 2

—

a triangle 3

E3 a single point 1
o

& closed line segment 2

a triangle 3

a tetrahedron 4

It is of basic importance that every polytope in " is a union of
simplices from ', We will not require this result and so will neot

attempt to prove it.

THEOREM 5: The dimension of a convex set C € E' (see the definition
on p.l11) equals the maximum of the simplectic dimensions of the simplices
contained in C minus 1.

Thus, the dimension of a circular disc in E° is 2, since it contains
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a triangle (simplectic dimension 3) but does not contain any tetrahedron.
A

v

Proocf. Let k+l be the largest simplectic dimensicn of any simplex

contained in C.

Let S = co (b, bBiy cues bk} be a simplex in C of simplectic
dimension k+1, and let A = aff by by, oeny bk} . Then dim A = k,

and since {?0, El' ey bk} EC we have A £ aff C (see exercise on

p.1ll}. We next show C £ A, For, assume this were not the case, then

there exists b ¢ C\A. Thus, b ¢ aff {bD' ey bk} so, by exercise 1)

on p.12, {by, bis eees Pk' ?} is an affinely independent set of k+2

~ ~

vectors in C and §' = co {bﬁ, bl’ «ver By b} is a simplex in C

of simplectic dimension k42, contradicting the choice of k.

We therefore have C § A and so aff(C) € A.

Thus aff(C) = A and

dim C = dim aff(C) = dima = k.

As an immediate consequence of the above proof we have:

Corollary 6: Let C be any non-empty convex subset of Eﬁ then an affine

basis for aff(c) may be chosen from among the elements of C .

Corollary 7: Let C be a convexr subset of D of dimension k, then C

containg a simplex of simpletic dimension k+1.
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3.2 Topologieal Properties of Convex Sets

n
PROPOSITION 8: Let C be a convex subset of E , then the closure of

c, C (see p.3), 18 also a convex set.

Proof. By the exercise on p.3 we have that C = O [C + B_(0) 1.
E>0 -

By Exercises 5) and 2) on p.20 and 19 respectively, we have that
Cc + BE(O) is convex for each € > 0. The result now follows from

Theorem 1 (p.19). 0
DEFINITIONS: Let C be a (convex) subset of En, we say x € C ‘is a
relative interior point of C if there exists € > 0 such that

BE(x) n AE£(C) < C .

That is, x € C is a relative interior point of C if and only if foxr

some € > 0 we have y ¢ C whenever v ¢ aff(C) and {lx - v|| < =.

9

The set of all relative interior points of C constitutes the
relative interior of C, denoted by rel. int.{(C) (We say C is
relatively open if rel. int.(C) = C.)

REMARKS: 1) The definition of relative interior point should be
constrasted with the usual topological definition of interior point
(see p.3). For example the triangle T = co {(1,0,0), (0,1,0), {(0,0,0)}

in E? has rel. int.(T) = {(x,v,2): 2=0, x>0, v >0, xtv < 1} , on
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the other hand int(T) = g. This reflects the remark made on p.l1.

2) It would be possible to similarly define the relative clasure
of C to he

rel. cl.{C) = {x.e aff C: there exists (cn)m c C with cn - x} .
- - = =

However, since aff(C) is closed and C is the smallest closed set
containing C we have

rel.cl.(C) = C n aff(C) = C .

So the notion of relative closure is superfluous.

PROPOSITION 9: Let C be a convex subset of E", then the relative

interior of C, rel. int.(C), 15 a convex set.

Proof. Let X,y € rel, int.{C) and let % € (0,1} we must show

z = Kf + (l-l)g € rel. int.{C). Since X e rel. int.{(C), there exists
e, > 0 such that w e C whenever "f - Wﬂ < e andw e aff (Q).
Further, Y e aff{C} if and only if T =W - Xxe M the unique subspace
paraliel to aff(C). So we have X + m € C whenever me M and

”T" < Ex. Similariy, y € rel. int. C implies there exists Ey > 0
such that y + m e C whenever m ¢ M and [m] < e,- Let €= Min{Ex,Ey},

we show that BE(z) n aff(C) « C, and so conclude that z € rel. int. (C).
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Now, if w ¢ BE(z) n aff{C) we have w = z + my for scme m, e M with
Imgll < e.

Let w = X + m, and W, =¥ +I“W then, by above, w

g m pandwy e c

and so, by the convexity of C,
Awl + {(1-A)w e C,
~ -

however Awp + (L-Adw, = A(x + mag) + (1-2) {y + mg)

= Ax + (1-A)y + m,

= Z+mu

= W .

50 w € C, and the result follows. []
THEOREM 10: Let C be a non-empty convex subset of E ., then
rel. int.(C) # ¢ .

At first sight this result may appear somewhat surprising.

EXERCISE: Find the relative interior for each of the following

subsets of Ez.

i) The closed line interval {{x,y): y =0, 0 < x < 1} ;
ii} The single point {(0,0)}.
Proof (of theorem-10). Let dim C = m (= dim aff(C) > 0), then by

Corollary 7 on p.26 C contains a simplex (of simplectic dimension
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mtl), S = co {YG' Vie weey Ym} S C, where vy, vy, ..., v are

affinely independent.
First note, that Vor Vie -een Vo is an affinely independent set

of mtl vectors in C € aff(C) and so is an affine basis for aff{C).

m
That is any vector a € aff(C) may be written as a = Z A, v, where
~ - i=0 -

m

E Ai =1 and AU’ ll’ .- Am are the Barrycentric coordinates of
i=0 1 m
a. The proof is completed by showing that v = —— Z v, is a

- - m+1 i20 ~d

point in the relative interior of C (clearly v ¢ C). That is, we

show, there exists r > 0 such that whenever a € aff(C) and

[a - v < r we have a € C.

“aff{C)
0
m

We begin by noting, a € aff{(C} if and only if a = Z Ri v, for some

b Ti=0 b

m

Ao Ay we., A_with ) A, = 1. If, in addition, each A, = 0, then
1 2 m icg * i

the above sum is a convex combination of elements of C and so a is

in €. This, it suffices to show that there exists an r > 0 such that
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whenever

’ m 1 m
Lhnt G L ol <=

I| T~
-
I
|

we have Ai 20 for each 1 =0, 1, ..., m.

We make use of the fact that the barrycentric coordinates of a point
vary continuously with the position of the point*. That is, given

£ > 0 there exists, for each i = 0,1,..., m a 6i > 0 such that

[l. - Af] < € whenever [a - a'| < §. , where
i i . z i

m m m m
a = ) A v, , a' = oAl v, and oA, o= Y, Al = 1.
i ) i i - , i i . i i
i=0 i=0 i= i=0
? o1
¥ow, consider the particular case when a' = v = Z — v, and
-~ ~ . m+l .i
1=0
E = Exi-. Choose r to be the smallest of the corresponding Si, then

r > 0 {(as there are only a finite number of §. each of which is

m m
. L . 1 .
- —_— <
strictly positive} and if I.Z Ai Yi .X il Vi r (< Gi each i)
CA=0 i=0
we have
i 1
- — < == A = .
i 7 mr mHL SO 4 ° 0

COROLLARY 11:  Let C be any mon-empty convex subset of B, then

aff(rel. int.(C)) = aff(C) = aff(C).

Proof. We have rel. int.(C) € C © C c aff(C) as aff(C) is
closed. Hence

aff rel. int.(C) ¢ aff(C) ¢ aff(C).

* A proof of this depends on coempactness arguments similar to those used

in "Approximation Theory". It suffices to show that if
m

a = Z Kgn) v. are such that [a,l + 0 as n + = then A
~T i=0 1 ~1 ~

Fn) +0 asn+w
i

for 1 = 0,1,...,m. WNow by the theorem of Hine-Borel there exists
subsequences hénk) such that A(Tk) + | for each i as k + =, Let

= £ v < — —> -

so by unigueness of limits u = J and then by the uniqueness of barrycentric
coordinates we have ui = 0 or Aénk) + 0.
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Tt thus suffices to show aff({C) = aff{rel. int.(C)}. To do this,

note that
aff(c) = affl{yo, MUERRRL Ym}
= gt {vp vpe oo V)
where Y! = v + §W§_§_§;“(Y - Yi) {see diagram below), and by the

construction given in the above proof vi e rel, int.(C).

DEFINITION: Let C be a {convex) subset of En, by the relative
boundary of C we mean

rel.bdry(C) = C\rel. int.(C).

Note: By the previous theorem rel. bdry(C) ; C .

For EXAMPLE: If C; is the closed interval [{(0,0), (1,0}] in EZ then
rel. bdry(c;) = {(0,0}, (1,00}; if ¢, is the "open" triangle
{(x,y): z=0, x>0, y>0and x+y<1}in E3 then

rel. bdry(C,) = 10,il v [0,3] v [i,]]
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A
RLf—rel.bdry(Cz)

{(Note: Using the usual topological definition of boundary,
a\int.(c), we would have bdry Cl = Cl and bdry C2 = Eé the whole

"splid" triangle.)

THEOREM 11: Let C be a closed bounded convex subset of E containing

at least two distinct points, then
C = colrel. bdry(C)).

Proof. Let x ¢ C and choose any other point y € C (that is, Y € C
and g # f')

Let I = £(§,¥) nC, then I is a closed (as both C and £(§,¥)
are closed - see problem on p.l4), convex (by theorem 1, as both

£(x,y) and C are convex), bounded (as C is bounded} subset of En.

Further, from the definition of £(x,y) - see p.7 - any point in
I has the form Ax + (l-A)y for some A e R.
Let A = {A € fi: Ax + {1l-A}y € I} , since I is bounded and

r= + (1-M)yl + = as |l| + = (prove this) we have that both

M

Sup A and m = inf A

exist and are finite.

Further, since x (A 1) and y (A = 0) are in T we have M = 1 and

m = 0. Let

]
H]

Mx + (1-M)y and X, = mx + (1-m)y . e (*)
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Lf(:f,y)

Then, since I is closed we have x_, X, € I {give details, hint:

there exists a sequence ll, Kz, eevy A 4 ... such that ln + M and

n

lnf + (l-kn)g e I}.

Also, from (*) we have

Il

(l-m)x (1-m)M x + (I-m) {1-M}y

1 ~
and

{l—M}x2 (1-M)m x + {l-m} (1-M)vy ,

subtracting and re-arranging gives

_ (i-m) (M-1)
R rar * um X2 -

Thus, x is a convex combination of x, and Xg (M >mand m< 0 so

1-m L. M-1 {(1-m} + (M-1)
Mom > 0, similarly M > 1 so - > 0 and M- =

= 1).

Tt now suffices to show X Xy € rel. bdry C. Assume this were not the

case, then X (or x,) must be in rel., int.(C). Assume x, € rel. int.(C),

that is, there exists an r > 0 such that a ¢ aff(C) and {a - xl“ <z

implies a £ C.
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-

Let a = (M+€)x + (1-M-E) where € = —————— >
. : X 2[x - vl

0. Then,

ace £{x,y) c aff(C) and

fa - % I I (m+e}x + (1-M-B)y - Mx - (l—M)gll

Elx - vf < =r.

S50 aeC. Hence a € I and Sup A 2 M + € > M, contradicting the

definition of M. Therefore x) € rel. bdry . C. A similar argument shows

that X, ¢ rel. int.(C) and the result is established.
|
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CHAPTER 2 - SEPARATION THEOREMS

Let A, B be two subsets of En, we say the hyperplane

H

{x ¢ E: (x,xg) = c}

.[_

separates A and B if Ac H and B c H , that is

1n

Y

{a,xp) c for all

i
m
b

and

{bfxo) € B;

1A
0
th
0
H
o
H
|_J
i

strictly separates A and 8 if (a,x,) > c for all a € A

and
(mxd < ¢ for all b € B;

strongly separates A and B if there exists an € > 0 such that

{a,x.) > c+ E for all a € &

(mx@ < g=- € for all b € B.

separation strict separation strong separation

Let C he a convex subset of E'.  We say x € C is a support point
of C or C is supported by H at x, if there exists a hyperplane H such
that x € H and H n rel. int.(C) =4. - ntuitively H .04 a "tangent

plane” to C at x.
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LEMMA 1: Let C be a non-empty closed comvex subset of E and let x
be any point of E" not in C, then there exists a unique point c, of

C which is closest to x. That is, ch - x| < e - x| for all ¢ ¢ C,

S # EX- \I'

t

Proof. Let d = inf {llc - x[: ¢ e c}, then there exists a sequence

(cn) © C with "cn - x| +dasn+®o Now, since C is convex

c, tooy e te.
—— = ¢ Cand so d < ﬂ:————:—- - %l or 2d £ {{e_ - %} + (¢ - x)“ .
2 2 - ~1 ~ ~m ~
We therefore have
- 2 = - - - 2
0= Hgn Smﬂ ﬂ(gn f) (c f)"

- - _ 2 a2 w2
"(fn f) + (o f)ﬂ + 2"Sn fH + EHSm_ fﬂ by

the parallelogram law {(p.3)

A

- 2 _ 2 _ 2
(2d) = + 2"Sn f“ + ZHSm f”
and so taking the limit as n, m + = we have

0< e, -cl?2<-(2a)2 + 2a2 + 242 = 0.
n m

That is, ch - Cm" +0 as m, n + =, or {cn) is a Cauchy sequence.
. . n o,
Hence, since C is closed and E is complete, (cn) converges to some

point, c  say, of C. Further, Hcy - x| = limit ch ~x] =d, soc

n—+o

is a closest point of C to x.
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Now assume c¢' is another closest point of C to x , that is

c, + c' R
le' - x|l = &, +then since :H_E‘;m. € C , as C is convex, we have
C + c'
~X ~
< f|l— = .
d 2 5"
Jex Z 2], e %] : ;
< -5 + 5 ' by the triangle inequality.
d d
= 5 + 5 = d.
That is, fc_ + ¢' - 2xll = 2 and so, using the parallelogram law
- =12 = - - . 2
le, ~ ¢l ”(‘Ex x) (c x|
= ey, - =+ (e' -+ 20, - %2+ 2c' - x|?
= - (2a)% + 2d% + 282 = o,
ox le. - c'l =0 and so ' = ¢ .
~ X ~ ~ ~X D

THEOREM 2: Let C be a non-empty closed convex subset of B and let
x ¢ E" with x ¢ C then there exists a hyperplane which strongly

separates {x} from c.

Xx +Db
Proof. Let b be the unique closest point of C to x. Let m = = 5 -
f f { ~ A
f
and x, = x = b (# 0). / !
L
Take H = m + Xog s
that is
H={y e E": (y,xn) =

where o = (m,xﬂ}.

2
First note that x = m + xp/2 and b =m - xﬂ/z. So (x,xo) = ¢ + ﬂxﬂ" /o

and (b,xD) =a - "X0"2/2 . The proof that H strongly separates {x}
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from C is completed by showing (C'XD) < (b,xo) for any ¢ € C , for then

we have (x,xO) > g + £ while (c,xo) < ¢ - £ for all c € C where

e = Ix 1%,

Now assume there exists ¢ € C with (c,xo) > (b,xD), then, since

C is convex Z = Ac + (1-A)b € C for all X ¢ [0,1]. Further,

Iz - x1® = (Ac + (1-0b - x,Ac + (1-A)b - x)

(b - x+ A{éc -b),b -~ x + Xlc - b))

Ip = %1% + 2A(c - b,b - x + A2lec - b]|2 .

Now Xg = - b so (c,xo) > (b,xo) gives {c,x-b) > (b,x-b) and

- —~ ~

so (¢ -~ b,x - b) > 0.

or (c - b,b - %) <0,

We therefore have

I

1z - x1* = Ib - xI® - 2xp + A%g

where p = ~-{(¢c - b,b - x) >0

and g = lle - bl? > 0.

So, for sufficiently small positive A, indeed for any A with

0 < A < gg- we have

Iz - xl < Ip - xl

Choosing A to be less than 1 we also have % ¢ C , contradicting the fact
that b is the closest point of C to x. We therefore conclude that such

a ¢ cannot exist and so (c,xo).i (b,x ) for all c g C.

O



