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THE UNIVERSITY OF NEW ENGLAND
ARMIDALE NSW

DEPARTMENT OF MATHEMATICS,
2nd February, 1979

Dearn PMZ11 situdent,

Enclosed are notes fon the §inst half of ithe [inedrn Algebra counse.
These should be covened by about the end of Apnil.” Nofes and assignments
for the Later sections of the course will be sent fo you Later Lin the
semestern.

These notes cover all the definitions, results and examples which
you will be expected fo know, and should serve as a cowrse "summany" as
weld as a suggested "Learning orden”.

However, except where they are not included on insufficiently explained,
proofs and worked examples have been neferned to the text:

Beanoard Kolman — "Elementany Linean Algebra, 2nd Edition,
1977, MacMillan.

Henceforth this will be referred to as K. .

The notations and conventions adopted in these notes and those .in K, dififen
considenably. Each significant difference is noted on the {inst occuvience
of Lt in the notes. VYou should become familiar with these, s0 that you can
readily thanslate fhom one to the other and be able to read on wonk probfems
in eithen, (The preparation of a parallel table of notations might be a
usepul exercise.) Prouvided £t {8 clear what you mean I don't mind what
notations on slyle you choose Xo use in assigmments and exams s0 find one
with which you feel comfortable.

Occasionally references have also been made to the Linean algebra
sections of your caleulus Lext:

Kaplan and Lewis  "Calceulus and Linear Algebra, Vol. 2
{orn combined ed{tion].

This £ia neferred to as K. and L.

Other references anre:
Marny Tropper  "Linear Algebra, Nelson.

(This 4s an excellent book, though the style is somewhat tense.)
Warren Brisley  "A Basis for Linean Algebra" Wiley, Australia.

(This {4 at a sLightly Lowen Level than our course, but could provide a
wsedul and interesting Lntroduction to most of the material.)

"The Schaum Outline Series™ books on Linear Algebra and Matrices, may
be of some value.

Vou may find the earnly pait of Lhe cowwse difficult. 1t 45 a differnent
kind of mathematics than you are probably used fo. However with pésiseverance
most students find that it eventually 4its together and neally Lsn't all
that hard. :

Ry A



From the outset it is essential that you Learn the definition of
a Linean space (81 of the notes] - write the definition on the ceiling
above your bed and recite it through éach night. Don't waste too much
time worrying about what a 'Linear space’ is; a feel for it should
develop as you proghess through the counse. 'Linean space' is an abstract
concept not a conchete object, though particular examples of it axe.
Anything which can be made to satisfy the axioms {4 a Linear space.

Knowing definitions and nesults (not only Like a pawwot but also
with understanding as to what they are saying) is essential and to +his
end ZLhe working of problems is an integhal part of the course., FExercises
should be attempled as they are encountered not Lot accumuwlate wuntil the
end. Don't be discouraged .if you are unable %o do- some of them. ALL
mathematicians, at all Levels, suffer from this.

Remember, Theorems, Lemmas ete. once established are the tools with
which we work. You should be constantly on the Look out fox ways o4
using previous results to simplify and assist .in the proods of current
problems. When you do make an appeal to an earlion resuld in the solution
of a problem acknowledge it with a statement Like V... follows by the
theorem which states ...".

Always test that you have neally Learned what you have been studying.
After having solved a problem, possibly with the aid of notes, books efe.,
think back through it without these aids, then check a couple of days Later
to make swre you can sLLLE do L€ without the aids. This often tfakes only
a few moments concentration while waiting for a bus. Your boobwonk should
be treated similarly. Many students §ind "giving a Lesson' on the material
Lo an "imaginany" student a useful device.

Comments, crnilicisms and requests forn additional explanations on
assistance are weleomed and will be dealt with as promptly as possible.

Wishing you success and enjoyment .in youn studies.

Yourns sincenely,

Brailey Sims
(Lecturen)

AssLgnments

There will be 4 assignments. ALL problems should be attempted but
don't delay sending in an assignment for too Long because you can't do some
of £t. Always include an {ndication of your unsuccessful attempts. These
may give us some idea of where you are going wiong and so gheatly Amprove
ouwr chances of helping you. 1t may only be possible to mark a selection
of problems grom each of the assigrments however an effornt will be made +to
supply solutions for all the problems.
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Linear Algebra Assignments

Many of the assignment questions are more "theoretical" than the

Exercises given in K. However as preparation for doing the assigmment

vou should work through as many of the exercises in relevant sections

of X. as you can. I have chosen K. as the textbook mainly because of

the large number of examples, and exercises of an elementary nature.

Make use of these to improve your understanding of material in the

coursea.

ASSIGNMENT I {due Friday 23rd March)

1)

2)

3)

4)

5)

6)

Show that the following cancellation laws hold in any linear space.

If A # 0 and Aa = Ab then a = b.
If a# 0 and Aa = ua then A = .

ITa+b=a+c¢c thenb = c.

-~ -~

0 for all scalars A,

Also prove; AD

and -{-a) a for all a € V.

~

+
on § define an operation of addition @ by x @ v = xy (ordinary
o . . o . A
multiplication) and define scalar multiplication by Ax = x .

Equipped with these two operations show that & is a linear space.
Complete the details for Example (5) 8II, p.7 of the notes.

Which of the following subsets of the linear space of 2X2 matrices
are subspaces?

a) the set of all Singular Matrices

b) the set of all Nonsingular Matrices

c) the set of all Symmetric Matrices

(5ee K. Chapter I for definitions.)
Exercise 9 of §III p. 12 of the notes.

Let V be the linear space of all Real valued functions on 8, i.e.
v = F(ﬂ,ﬂ). Which of the following subsets of V are subspaces?
a) The non-negative functions, i.e. £(x) 2 0 for all x R,

b) The constant functions, i.e. £(x) = ¢ for all x ¢ &.

Il
[}

¢) Functions such that £(0)
d) Functions such that £(0)} = 5.

m
I

LA
f

fix).
—-fix).

e) The even Functions, i.e.

£) The odd Functions, i.e. f(-x)



7)

8)

9)

10)

vi

a) Let v = (vl,vz) be any vector in V,, show that <{v}> is a
line througﬁ the origin (zero vector). [See Your PM111 notes

for the vector definition of a line.]

b) Show that any line through the origin in Vo dis a subspace of

VZ'
¢) Show that a line in Vo 'not passing through the origin is not

a subspace of Vy.

*d) Show that the only subspaces of v, are {0}, v, itself, and

any line passing through the origin.

In V3 show that the span of (2,1,3) and (1,2,0) is a Plane passing
through the origin.

In F(R,&) 1let Vo and V_ be the subspaces of all even and all odd
functions respectively.[see assignment pProblem 6 &) and f)}.

Show that F(®R,& =v ev .
e o

For the linear space V let U and W be subspaces such that V = U @ W,
show that for every vector v € V there exists a UNIQUE pair of

vectors u € U and w € W such that v = u + w.

ASSIGNMENT II (due on Friday, 20th April)

1)

Determine which of the following mappings are linear.

(a) T: vy + Vy defined by T(xl,xz,xa) = (x1+2x3,x1,3x2+x1)
(L) T: Pn(ﬁj - Pn+l(ﬁj defined by P(p} (x} = xp(x)

{c) T: v, * Vs defined by T(xl,xz) = (x1~x2,x1+l(x2)

() 7T: C(®) + C(®) defined by T(f) (x) = Fxt+l).

Foxr each of the mappings in (a) to (d) which you have proved to be

linear find X .
(i} its range

(ii) its kernel,
hence decide whether or not the mapping is invertible. If it is,

find its inverse.
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2} Exercises: 2 (p.17), 17 No.l (p.22), 14 (p.21) and 3 (p.23) of the
the Notes.

3) a) Define T: F(R,®) -~ F(R A by T(£) (x) _fx) ; £ (-x)

i) Show that: T is linear

ii) Find Ker T and T(F(R.®)).

iii) Show that F(i,&) = Ker T & T(F(R,R)).
iv) Show that T = T2(= ToT).

*b) Any linear mapping P from a linear space U into itself with
the property that P = P? is termed a projection. Thus T of
part a) is a projection by iv). Generalize iii) of part a)

by showing that for any projection P e€ L{U,U) we have

U=Xer P& P(U).
4) Exercises (14) p.33 of §vI.
5) Does the set of vectors'{x2+l,x—2} span P, (R)?

6) Which of the following sets of vectors are linearly dependent?
For those which are, express one of the vectors as a linear
combination of the others.

i} (1,2,1y, (2,3,4), (4,5,10) .
ii)  {2x%4x,x +3,x} in P(R).

iii) {cos?t,sin’t,cos 2t} in C(R).

7) Find a basis of V3 which includes the vectors

W N
-
b
.

8) Find a basis for the solution space of the linear homogeneous

system
1 0 2 Xy 0
2 3 X5 = 0 .
3 2 X3 0

9) Classify all subspaces of &f.
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(i}

(ii)

(iii)

(iv)

{v)

(vi)

viii

If U = {all vectors of form fo,20,p1} £ Vi3, and
V = {all of form [p,q,2pl} < Vg

find a similar description for U n v. Find also U + V.

Find a pair of subspaces of V, such that U n V = {0} and
U+V=V2.
Show that, in V3 <{[1,0,01, [0,0,01}> n <{[0,0,11}> = {0},
but that their sum is V3.
. 5 S
Find two subspaces U and V of V, such that {0} Au#v ; V-
Show that the following is impossible:
U<V, and V<V, and UnV = {0} and
dim(U) = dim(V) and U + V = V3.

Find two subspaces U, V of Vy such that U n v =-{0},
dim(¥) = dim(V) and U + V = V;;.



PREREQUISITES

While it is peripheral to.our main task, the early first year work on

Vector Geometry in 2 and 3 dimensions {Lectures 1 to 7, the work on p.l7,

and lectures 10 to 12 of the 1978 Pure Mathematics 111 External Notes) will
help us te motivate and interpret much of our material. You should therefore
reacquaint yourself with this work and keep it in mind throughout the course.
{See also K. pp.64-67 and Chapter 3, section 3.1 excluding the Cross Product
on pp.120-122,)

Your first yvear work on Matrices and Simultaneous Linear Equations

(Lectures 13 to 17 of the 1978 External Notes) will be assumed and used
extensively later in the course, At the appropriate places you should there-
fore thoroughly revise this material. This material is also covered in
Chapter 1 (pp.5-63) of K., which could serve as an alternative to your first

year notes and with which you should familiarise yvourself.

In the first few sections of this course we will recover and enlarge

upon your first year work on Vector Spaces (Lectures 18 to 20, of the 1978

External Notes}; 1f you have these notes available, vou would be well

advised to revise them (and the exercises) before reading further.

INote: The material referred to above is also present in the 1976 and 1977
External Notes for Pure Mathematics 111, however the placing within the

notes has varied from year to year. Some copies of the 1978 notes are available
on request for students who did not complete Pure Mathematics 111 at U.N.E.

within the last three years.]



NOTES ON LINEAR ALGEBRA

§1 Definition and some elementary consequences

DEFINITION 1: By a LINEAR SPACE (vector space'-!) OVER THE REAL NUMBERS'®

we mean.

A set, V, (the elements of which, sometimes referred to as vectors,

will in these notes be denoted by a, b, ..., z. Note: XK. uses greek letters

¢, B, ..., while other books fregquently use heavy type) for which two

operations are defined -

Vector addition, associating with each pair of elements a, b of V

another element of V which we denote by a + b (Note: XK. uses & in place of

+.

While this serves to emphasize that + represents a formal operation, which

which may have little or no connection with ordinary addition, it is a

clumsy and unusual notation.) and

Scalar multiplication, associating with each real number (scalar)

A and element a of V another element of V which we denote by ra. (Note: K.

chooses to denote scalars by lower case letters: a, b, ¢, etc., and uses @

to represent scalar multiplication. However we will adopt the more usual

convention of using greek letters for scalars and rely on juxtaposition to

indicate scalar multiplication.)

{definition continued over page)

(1)

(2)

I prefer, and will use, the more descriptive term "linear space" rather
than the emotive name "vector space" which often causes confusion by
suggesting too strong a connection between our object of study and the
'vectors' of physics or elementary geometry.
In this context the important property of the real numbers ® is that
of being a FIELD.
That is, a set on which two binary operaticns + and X are defined and
satisfy:
Arpue® = A +pe @ A, pe® = A xped .
A+u = yu+ A, AX U o= U A,
(A+u} + n = & + (u+m). A x o {uxn) = (Axy) X n .
3 0 ¢ fl such that 0 + A =4 , 3 1 € ® such that 1%¥A = X all A e &.
Foreach A e @ J -2 e & For each A ¢ \{ol}F 271 e R
such that A + (-A) = 0. such that A x A™1 = 1,
AX 0= 0.
A X o(p+nm) = (Axp) + (Axm).

In some deeper results the additional structure of 8-(§:g: the presence

of an order relationship "=") is important. However the elementary theory

of linear spaces could be developed with any field substituted for ] .
Indeed, later in the course we will find it useful to replace # by the

field of complex numbers (, which enioys the property of being "algebraically
closed" (any polynomial of degree n has n roots in Cy.



These two operations ave required to satisfy the following axioms.

(i) a+b=>b+

iy

for all a, b e v (commutivity).
(3)

(ii)

tQ

+ (b + ¢) (a + b} + ¢ for agll a, b and c {associativity)

(iii) There exists an element 0 in V such that O+a=aforall aev
(existence of a zero element in V). b b

{(iv) For each a € V there exists an element a’ in V such that a+a'=0
{existence of additive inverses). -
[Axioms (i) to (iv) are summarized by the statement: V is an abelian, or

commutative, group under vector addition].

(v) l(a +b) =ia +Ab for all X ¢ & and a, b € V (scalar multiplication
is dlstrlbutlve over vector addition).

(vi) (A +wWa=2ra+da forall A, u e R and a € V (scalar multiplication
is distributive over addition of scalars) .

(vii) A(ua) = (Ap)a for all A, u e & and a e v,

(viii) la = a for all a € V (N.B. 1 denotes the scalar one).

The above is a convenient working definition of a linear space which you
should now compare with that of K., section 2.1, definition 2.1, p. 68 (or

K. & L. section 9-1 (definition 9-10) p.641). All the dxioms are the same
except that our (iii) and (iv) have been replaced by the apparently stronger
{and hence more difficult to verify) (3) and (4) which involve unigqueness
assumptions. The equivalence of our definition with that of K. is established

in the following elementary pProposition.

PROPOSITION 2: In a linear space V,
(1)  there is a UNIQUE zero vector 0,

(ii) for each element: a € V there is a UNIQUE element a'
satisfying a + a' = 0.  (This unique a' is referred

to as the additive inverse of a and will be denoted by -a.)

Proof of {i)

The existence of such a zero vector is guaranteed by 1{iii).

Now assume there were two such elements 0 and o', i.e.

o
+
o
Il
fu

for all a € V (1)
and

for all

]
+
m
Il
[
1

£ V. (2)

(3) As a result of this axiom we can omit the parenthesis from expressions like
((a+a)+a)+b and write g2 +a+a+b without introducing any ambiguity.



Then, putting a = Q' into (1} we have

o' = '

=]

3=

T

9
0 (by L{i))
(

o g el

+
by (2) with O replacing a.

That is 0 = 0', proving uniqueness.

The proof of (ii) is accomplished similarly and is left as an exercise.
H

EXERCISE 3: Prove that each element of a linear space has a unique additive

inverse.

The next proposition establishes a certain consistency among the notations

adopted above.

PROPOSITION 4: Let V be a linear space over 8, then:

(i} ©0a =20 for any a € V;

(ii) For any a € V the additive inversge -a = (-l}a.

[In view of this we can, without confusion, write a - b instead of a + {(-b)

and —KE instead of -(Aa) or (-A)a.l]

(iii) For any n e {1,2,3,...} c®and a e v

na=at+a+ ... +a

M/

n times

I

Proof (i) Since 0O 0 + 0 we have
Da = (0 + 0)a = 0a + Oa (by (L(vi}))
adding -(0a) to both sides of this identity vields
0 = 0a + (-(0a))
"= (0g + 0a) + (-(0a))}
O0a + (0a + (-(0a))) (by (1(ii))
O§ + 9

It

= Qa.

(idi) By (2) it suffices to show a + (-la) = 0O,

now a + (-1la) = (la) + {(-la) (by (1 {viii))
= {1+ (-1))a (by (1(vi))
= Oa
=0 {by (i) abaove).

(iii) For n = 1 the result is ensured by 1(viii) .
The general result is now readily established by induction on

n using 1(vi) , and is left as an exercise. N



EXERCISE 5:

(1)

(id)

Prove 4 (iii).

Show that any finite sum of scalar multiples of elements

in a linear space V is an element of V. That ism, if

Vir seep ¥ o€V and Ay, ..., ln ¢ #, +then

AV A, ol + lnvn e V.



§II Examples

The importance of our concept lies in the extremely large number aof
"mathematical objects" which exhibit the structure of a linear space. Some
of these objects are listed below. In each case you sheould convince your-

self of the truth of Axioms I{i)-{viii) For the operations defined.

Once a general result for linear spaces has been proved we then
immediately know it is true in all these examples. Thus, once we have
accumulated a body of results for lihear spaces, showing something is a

linear space amounts to immediately knowing a lot about it.

Further, as we see below, ordinary two dimensional Space is an example
of a linear space. Thus when attempting to establish a result for less
familiar linear spaces we can see what the pProblem amounts to in two
dimensional space, use our "geometric intuition" to find a proof in that
case, and then, provided the proof only relied on the linear space structure

of Euclidean space, translate it back to cbtain our result.

EXAMPIE (1):

The prototype of linear spaces is the set of directed line segments from an
origin in "ordinary" 2 (or 3) dimensional Epace. Representing these "vectors"

by their components with respect to a set of Cartesian axes, we can identify

the space with the set of ordered Pairs (or triplets) of real numbers

vV = {g = (al,az): a,, a, € ' } on which vector addition and scalar multiplication

is defined component-wise, i.e.,

a+b = (al'az) + (bl rbz) = (§l+b—l'a2+b2)'

ha = l(al,az) = (lal,laz)-

e

That these operations satisfy axioms II(i) to (wiii) is easily verified.

Refer to your PM1ll Notes.

EXAMPLE (2):
Example (1) generalizes to the set of ordered n—tuples of real numbers ﬂp,

with component-wise definitions of vector addition and scalar multiplication.

We will denote this linear space by Vp. See PML11 1978 Notes, p. 76
and K. Example 1, p.68 for details.

A trivial but important special case is that of n = 1, which shows that

the real numbers can be regarded as a linear space over themselves. (See

K. Example 3, p.69.)



EXAMPLE (3):

Of course we need not stop at finite-tuples, the space of all real (infinite)

sequences is a linear space with respect to component-wise definitions of
vector addition and scalar multiplication (the proof is essentially the same

as for Vn). This space is sometimes denoted by & .

EXAMPLE (4):

The set of all mxn - matrices with real entries (m and n fixed positive
integers) is a linear space over ® when we take the usual addition of matrices
as vector addition and the usual multiplication of a matrix by a real number

as scalar multiplication. (K. Example 2, p.69).

EXAMPLE (5):
Let D be any set and denote by F(D,f) the set of all real functions with
domain D and co-domain  +the real numbers #, i.e., the set of functions

f: D = .

Define addition and scalar multiplication of Functions point-wise:
For £, g € F(D,R), (f+g) maps each x ¢ D to f(x) + g(x)
and for e @ Af maps each x € D to Af(x)(l).

(2)

Then with respect to these operations F(D,) is a linear space .

[Note: The role of ® in F(D,®} could be taken by any linear space V, and

the conclusion would remain wvalid.]

A CHALLENGE: We need only establish Example (5). All the other examples

are really special cases of (5); can you show how this is so?

(1) Note, this agrees with the standard practice in calculus and elsewhere
when we write (f + g)' = f' + g', (Af)' = Af! etco.

{2) To prove this proceed as follows.
Verification of Axiom I(i): For £, g ¢ F(D,R) and any x € D

(£ + g) (x)

it

f{x) + g{x) by definition of addition.

g({x) + £(x) as £(x) and g(x) are real Numbers, the addition
of which is commutative (Field axioms).

{g + F) (x) by definition of addition.

Thus the image of each x € D under either of the two functions f+g and g+f

is the same, and so f£+g and g+f are two names for the one function, or

f+g = g+£f.

The other axioms are established similarly (do so).

Note: to establish I(iii)} we seek a function 0 e F(D,R) such that for every

f e F(D,®A O + f =1£f, that is, for each x ¢ D O(x)+f(x) = f(x) and so

O (x) = 0. Thus the only possible candidate for O is the Function which

maps every x € D to the scalar D. It only remains to check that this O

does the job (obvious!).

i



Many other examples of linear spaces could be given now, however, using
the above examples (in particular Example (5)) and the work of the next
section, the verification that axioms TI(i) to (viii) are satisfied will he

considerably simplified, and so further examples are deferred till S1v.



8IIT Subspaces

BDEFINITION 1: A subspace of the linear spave V is a subset of V which itself

forms a linear space with the operations of vector addition and scalar

multiplication which are inherited from V.

We will write WS V to mean W is a subspace of the linear space V.

LEMMA 2: Let V be a linear space and W a non-empty subset of V. Then W is a
subspace of v if and only if(l)

(i) for any pair of vectors a, }3 € Wwe have that a +b e W

[i.e., W is closed under vector addition].

and (il)  for any scalar A ¢ R and vector aeWwe have da € W

[i.e., W is closed under scalar multiplication].

Proof. See the proof of Theorem 2.2, p.72 of K.

EXERCISE 3. Let V be a linear space. Show that the single point set {g}
(where 0 is the zero vector in V) and V itself are both subspaces. These two
subspaces are known as the trivial subspaces of any linear space. A subspace

of V other than-{Q} or V is referred to as a Proper subspaée.

Lemma 2 is the work-saver promised at the end of §IT. If we can recognise a
set as a subset of a known linear space V and the operations defined on it as
those inherited from V, then we need only verify 2(i) and (ii) to show it is a
subspace, hence a linear space in its own right and so automatically establish

the validity of axioms 1(i) - (viii) for it.

Subspaces Spanned (generated) by Sets of Vectors

Theoxem 4. Let V be a linear space and S any subset of V, then the set of all
vectors which ave finite sums of scalar multiples of elements of 8 is a sub~

space of V.

[We will call this the subspace spanned by § and denote it by <§>. Its

elements will later be referred to as (finite} linear combinations of elements

of 3, being of the form

A
1

a =
i

5. = A + A9S9 + ... 4+ A s
381 T Ais1 + Aaso ALS

§j 18

where m € N; Ay, Az, ..., Am e & (the scalars) and Sl S2/ ---s 5 € S.

If W= <8> we will alsc say the set of vectors & spans W.]

{1) It is not difficult to see that the two conditions {i} and {(ii) can be
condensed into the single equivalent condition: for g, beWand A ¢ §,
a + Ab ¢ W. '



10.

Proof. ILet a, b € <8>, then

= A + A + ... + A
a = A181 252 mEm

for some m € N; A3, Az, ..., Am e R and s1, S2, ...y S, € (]

= + ree T+
and b = w11 + uota + MLt
for some n € N} U1, «.., H o€ ® and 1, ..., t, € S.
+Db = A + .. FA e +
Hence a + b 181 ALSn T oMb + LN =N

is a sum of scalar multiples of elements of S and so belongs to <S>,

Further, for any A ¢ &

Aa = A{Ays) + ... +_lm§m)
(Ah1)s1 + ... +_{1Xm)sm {by I(iv) and (vii))
and so Ag € <85>

Thus <§> is a subspace by lemma 2.

Another useful way of viewing <S> is provided by
Theorem 5: Let V be a linear space and S < V, then <8> is the smallest

subspace of V containing S.

i.e., If WSV and § ¢ W then <> < W,

Proof. If a e <§>, then a = A1s1] + ... + Amgm where

Alr sy Km € {1 and Sly wvns §m € 5. Since 5 € W, hence each s; € W, and
W is a subspace so closed under scalar multiplication and vector addition
it follows that Ay1Sy + ... + lmgm e W

i.e. aew and so <8> c W. B

Corollary: <S> ig the intersection of all the subspaces of V which contain s.

Proof. If W is a subspace of V containing S, then by theorem 5 <S> S W. Thus

certainly <S> is contained in the intersection of all such subspaces. But, by
Theorem 4 <S> is one such subspace and so the intersection cannot be larger

than <S>. -
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Combining Subspaces

Theorem 6: Let V be a linear space, and U, W <V, then

{1) Un WSV (and hence any finite intersection of subspaces
is a subspace)

and (i) U+ WSV

where U + W is the set of all vectors of the form u + w with u € U and
weW. In faet U+ W= <U0u W.

Proof. (i} This is left as an exercise but follows readily from lemma
2 and the definition of linear space.

(ii) Since <U U W> is a subspace (Theorem 4) we need only show

U+ W= <U0U W>.

Clearly by the definition of <U u W> any vector of the form U + W belongs
to <UUW>, so U+ Wc <UU W,

Now if a € <U U W> then

a = Aijg;1 + ... + A i eeeyr S € U W
151 mgm with Sir r 2o U

i.e., each s, € U or W. Using commutivity of vector addition we can rearrange
the terms in this sum so that all the §i's in U come first (followed by those
in V) since U is a linear space ({subspace of V) the sum of these first terms
is therefore an element of U. 8imilarly the sum of the remaining terms will

be an element of W.
Thus a is of the form u + w and so in U + W.

i.e., <UUW SO+ W. g

EXERCISE 7. (i) Prove (i) of Theorem 6.

(ii) The union of two subspaces U and W of the linear space V,

U U W 1s not necessarily a subspace.
Otherwise, from Theorems 5 and 6 we would have
UUW=<OUW = U-+W,

give an example showing that this need not be so (Try in Vs).

REMARK 8. If U and W are subspaces of the linear space V such that

Un W= {0}, the trivial subspace, then we call U + W a direct sum and

write Ug W for it.
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(Note: This is not to be confused with K.'s use of @.)

Thus to write V=0 & W means

V=u+W={au+w: ueUand we Wl
=<UUW>
and U n W= {0}.

EXERCISE 9: The three problems listed here are trivial, but the results are

useful in subseqguent calculations.
(1) Prove, if U=Wand W=V, thenU=YV

(ii) If W is a subspace of V show that <W > = W, hence conclude
that for any subset 5 of the linear space V, << 8 2> =< § >
(hexe <8 >®>> means the span of the span of S).

(iii) Let W be a subspace of V and wy € W, show that the translate

wo + W= {wy+w: we Wl eqguals W.
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81V More Examples

Further examples are obtained by identifying various subspaces (hence,

linear spaces in their own right} of the spaces introduced in S8IT.

EXAMPLE 1. Let W be any subset of Vn (Example 2 of §I) such that the
components of every vector in W satisfy a given system of linear homo-
geneous relationships.

Then W is a subspace of Vn.

For a praof of this see K. Example 14, p.73. However, first note that
the abové definition of W means there exist real numbers
B11r8)ore-sr89]s8o0se+0s83pyy Such that v = (Vl'VZ""'vn) belongs to W if

and only if the m linear homogeneous relationships:
a1,V + a;,v, + ... tagv, =0

+ v + a8,V =0

a51vy * ay,v, onVn

am; vy + am, Vo + .. Fagvy = o,

are satisfied.

Or, equivalently, writing v as the column

v € W if and only if v is a solution of the homogeneous matrix equation

Av = 0

211 219 --- 81q

where A is the m X n matrix

A particular case of this is Example 12, p.72 of K., where n = 3 and

- oM
=
ooo
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Note: It is really only necessary to establish the result for a subset of
vectors whose components satisfy a single linear homogeneous relationship.
The subset satisfying a system of such relationships is then the intersection
of the subspaces determined by each of the relationships in the system and

so by Theorem III 6 is a subspace.

EXAMPLE 2: TFrom your first year work on sequences; if

X1+ Epy eeey Xy ... 15 a convergent sequence (limit %)

and
Yyr Ypr «-+s ¥pr --- 15 a convergent sequence (limit y),

then their "sum"

x1+yl, x2+y2, <e-r Xptyp, .o has limit x+y and so is a

convergent sequence also,
and for any ) € @

hxl, AX9, ..., Axn, -+ has limit Ax and hence is convergent.

We can now interpret these results as saying: the et ¢ of convergent
sequences is closed under addition and scalar multiplication and is therefore
(Theorem 2 of IXI) a subspace of the space of all sequences (Example 3 of IT).
m, the set of all bounded sequences, is another such subspace, as is Cq the

1]
set of sequences convergent to zero. Indeed cp=cs=ms R

EXAMPLE 3: For any interval I of real numbers {e.g. I = [0,1] or I = (-1,1)),
let C(I) denote the set of all continuous functions (refer FMI111 notes) from
I into & Then C(I) is a subset of F(I,f) - §1I, Bxample 5 - further your

first year theorems:

"The sum of two continuous functions if continuous" and "any multiple

of a continuous function is continuous", show that C(1) s F(I,8).

EXAMPLE 4: From the school results

d d

T (T +g0) =60 + & g0
and

d -3 &

E;‘hf(X) =h ax f(x) A e &

we conclude that the subset of F(I,f) consisting of all differentiable functions

is a subspace.

Similarly, the set of all n~times differentiable functions {(n € W) is a

subspace of F(I,R), which is sometimes denoted by Dn(I) .
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EXAMPIE 5: For any interval I it is readily verified that the set P(I) of
all polynomials on T is a subspace of C(I) and hence F(I,f} - see K. Example

5, p.70, but bear in mind Theorem 2 of II.

Also, the set of all polynomials on I of degree less than or egqual to
n{neN, Pn(I) is a subspace of P{(I) (K. Example 10, p.71).

Indeed for any n € N we have:

Pn(z) < Pn+l(1) <...2 P(I) ,s...s,_I)nﬂ(I) < 'Dn(I) <.,.< Dl(I) < C(I) = F(I,4D.

EXERCISE 6: Show that the set of functions (solutions) satisfying any given

{second order} linear homogeneous differential eguation
alx)y” + bix)y' + c(x}y =0 {refer PM11l1l Notes)

form a subspace of the set of twice differentiable functions on &.

EXERCISE 7: Let D be any set and Z be a non-empty subset of D. Show that

the set of all functions in F(D,f) which are =zero on Z, i.e.,

{fe F(D,M: £(z) =0 all z € R}, is a subspace of F(D,f).

This example is particularly important in the case when D € § and Z consists
of one or two polints, where it shows for example that the set of all functions

satisfying the initial condition f£{t;) = 0 form a linear space.

Bxercises 6 and 7 coubined with theorem II 6 i) show that the solutions

of any given linear homogeneous initial value, or boundary value, problem,

E.g. a{x)v" + b(x)y' + c(x)y =0
{ yltg) = y(t;) =0,

form a linear space.

EXERCISE 8: By a step function we mean a function f from @ to ® of the form

£fi{x) = a, for x € I, i=1,2,....n
i i

where 81 B¢ eees a, are a finite set of real numbers and Iir Ios vous In
are a finite family of disjoint intervals whose union equals .
Show that the set of step functions st(f)}) form a subspace of F(H,H). This

subspace is of basic importance in most theories of integration.

g A @,
._.
Qg : '
;‘— i 1 :
: [t T :
Ssefe G Jpmiila
7L
@, ¢ Ia 13 I# Lg
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Many other examples of linear spaces could be described. However we now

have an adeguate number on which to illustrate our subsequent theory of linear

spaces, and by now you should be convinced that the cccurrence of linear spaces
is both frequent and varied.

You should now work through all the examples in K. section 2.1 including
the "negative" ones, e.g. Example 11.
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§v Homomorphisms (Part of K. Chapter 4)

Generally, a homomorphism between two similar algebraic structures is a map-

ping from one to the other which respects the structure.
Thus:-
DEFINITTON (1) Let U, V be linear spaces over . By a homomorphism from

U to V we mean a mapping ¢: U + V such that

(i) & (ut+w) ¢ (1) + 6w, all u, w e U,

(additivity)

and (ii) B (Aa) A (a), all u e U and A € &,

{scalar homogenity)

[Note in (i) the First "+" refers to vector addition in U, whereas the secand
"+" refers to vector addition in V. A similar remark applies to scalar

multiplication in (ii).]

A mapping from one linear space into another which is both additive and scalar

(1)

homogeneous is termed ILinear.

Thus for linear spaces homomorphism and linear mapping are synonyms (hence-

forth we will use the latter); other synonyms are: linear function:
(linear) transformation:
(linear) operator.

For two linear spaces U, V we will denote by [ (U,V) the set of all linear

mappings from U into V.

Note: ﬁ(U;Vf‘is a subset of F(U,V) and so in L£{U,V) we have addition and scalar
multiplication of linear maps defined roint wise,
i.e. For T, § € £(U,V) we have
(T+8) (u) = T(w) + S(u)
and for 2 ¢ | for all u e U
(AT) {u) = X{(T(u))

EXERCISE 2. show that T+S and AT are linear mappings whenever T and S are.

As a result of exercise 2), Example 5 of §II and lemma 2 of §3 we make

the important observation that £ (U,V) is itself a linear space over @,

(1) As you may have gathered already, the term 'linear' refers to the two
operations; vector addition and scalar multiplication, present in a "linear"
space. Thus a linear mapping respects both of these operations, a linear
combination of vectors in formed by the use of the two operations, etc.
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EXAMPLES

(3)

(5)

Let M be an' n ¥ m matrix and define a mapping T from v™" into V" by

T(X;r Kopr =eey Xm) = (Yl,.yz, cens yn) where

[v, %,
¥y Xy
. =M |:

then it follows from the definition of matrix multiplication that T
is a linear mapping.
2.9. See examples 5 and 7 of K. p.150.
Also observe that the linear mappings of K., Examples 1{p.l148)
and 8(p.151) can be regarded in this way for suitable matrices
(find them).
Let U be the subspace of F(I,f) described in Example 4 of §IV (i.e.,
the set of all differentiable functions from I to ®) and let D denote
the operation of differentiation, i.e., = g; or D{f) = £' the
derivative of £, for all £ € U. Then D is a linear mapping from U into
F(z,8). (X., Example 2, p.l48 is a special case.)
Let C(I) be as in Example 3 of IV where I = [a,b], then from first
yvear we know that

b
I(f) = J f(x)dx exists for each f ¢ Cla,b].
a

Further, that

I

I(f+g) = I(£) + I(qg}

and 1(AE) AT(E)

are standard High School results.

Hence I is a linear mapping from ([a,b] into the linear space V! (= &).
(K., Example 4, p.149 is a special case.)

[A linear mapping from a space U into the linear space fl is sometimes
referred to as a {linear) functional.]

Similariy, the "primitive"™ mapping Ia(f) = fz £(t)dt is a linear map-

ping from Cla,b] into F{([a,b],f).
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(6) Let U be the space of infinite sequences desecribed in Example 3
of §I1I (or any of the subspaces of it discussed in Example 2 of
§IV) then the right and left shift operators defined helow are

linear mappings of U into itself.

SR(xl,xz,...,xn,..-) = (O,XI,XZ,...,XD_,---)

in {n+l}th place

SL(xlfxz""'xn"") = (xzrxar---rxnr---)

in (n-1)th place

THEQOREM 7 (Elementary Properties of Linear Mappings)
Let U, V be linear spaces and T ¢ L(U,v) then
(i) T(Q) =0
T
Barg zero
vector vector
inu inv
(1i) TQu + pw) = AT(w) + uT(w) all A0 ¢ Rand u,w ¢ v.
(iii} T(-u) = -1'(ua) all u e U.
{iv) TQApuw) = A(e(T(w))) all A,u e Rand u e U.
etc., ete.; you may add to this 1list at your discretion.

Proof: Exercise, see also K., Theorem 4.2, p.153.

KERNEL AND RANGE (IMAGE) OF A LINEAR MAFPPING

DEFINITION (B): For linear spaces U and V and linear mapping T « £(U,V);

the Kernel of T denoted by Ker T, is the set of vectors in U which T maps

to the zero vector of Vv,
i.e., Ker T = {u ¢ U: T(u) = 0}, (K., definition 4.3),
and the range of T is the subset of V,

T(U) = {v ¢ V: there exists ue Uwith T(u) = v} ,

(K., definition 4.4).
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T (1)

The concept of range should be familiar to you from your first year work on
functions; that of Kernel may be more novel, see K., Examples 3 and 4,
pp-156-7 for illustrations of it. (For the moment, ignore the work on

dimensions included towards the end of each of these examples.)

THEOREM (9): Let U, V be linear spaces and T e £(U,V)  then
Ker T and T(U) are subspaces of U and v respectively.

Proof: See K., p.156, part (a) of Thecrem 4.3 and p.157, Theorem 4.4.

{10} Recall: A function £ from domain X to co~domain ¥ isg
(i) one to one (1-1) if f(x) = f(y) implies x = v
{or equivalent x # y implies £(x)} # £(y))

and (ii) onto if its range £(X) = {y € ¥: there exists x ¢ X with

Y = £(x}} equals v.

IHFOREM (11): Let U, V be linear spaces and T e L(U,V), then:

Il

v;

{o}

(i) T 18 onto 1f and only if T(U)

(ii) T 28 1-1 if and only if Ker T

{i.e., T(g) = 0 implies u = 0),

Proof: (i) is immediate from the definition of onto;

(ii) see K., p.1l56, part (b) of Theorem 4.3.
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The importance of these concepts lies in the following:

{12) Recall: For sets X, ¥, 2 and functions f: X + ¥, g: ¥ + Z the
composite ¢f (or geof), defined by gf(x) = g{f{x)), is a function

from X to Z.

If U, V, W are linear spaces and T ¢ £(U,V), 5 ¢ L(V,W), it is readily
seen that ST is linear, i.e., ST ¢ L(U,W). (Check this.)
Also, for any linear space U let IU denote the identity mapping defined

by IU(g) =uall ue U Clearly I « L(o,m.

DEFINITION {(13) (See XK., p.161) For linear spacesU and V, T ¢ £(U,V) is

invertible if there exists a mapping ¢: V + U (not assumed to be linear - see

below) such that ¢T = IU and T¢ = I

A

$T=I

U

EXERCISE (14) Show that ¢ in the above definition, if it exists, is unique.

[Hint. Let ¥ be another such mapping and consider $p. ]

If T ¢ £{U,V) is invertible we will refer to the unigque ¢ of the above definition

as the inverse of T and denote it by L,

THEOREM (15): Let U, V be Linear spaces, then T e £(U,V) is i{mvertible if and

only if T i8 1-1 and onto (i.e., by above, Ker T = {0} and T(U) = V). Moreover,

ite inverse T © is a linear mapping, i.e., Tt e L(v,U), and _['I'“"l) 1o,

Proof: See K., p.l6l, Theorem 4.6.
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An invertible linear mapping between two linear spaces U, V is sometimes
referred to as an isomorphism. If there exists an isomorphism from the
linear space U to the linear space V we say U and V are isomorphic.
Informally two vector spaces are isomorphic if each is essentially an

identical "copy" of the other.

EXBMPLE (16): The space Pn(I) of polynomials on T of degree less than or
equal to n (see Example 5, §IV) is isomorphic to V0Fl, The mapping

+
. v s e (1),

n

given by
= 2 s
T(al, Byr weny an+l) = a, -+ anx + a,x + ... + an+lx R

iz ¢learly an isomorphism (Prove this).
NOTATION: Henceforth, for a linear mapping T and a vector u in the domain

of T we will write Tu in place of the unnecessarily cumbersome T(u).

EXERCISES (17):

1. Let U, V be linear spaces and T ¢ L(U0,V)
(a) (i} show that I T = TL =T
v u

(ii) prove Exercise 14 of §v, p.21

(b) Let U, V, W be linear spaces and let T ¢ L(U,V) and 5 ¢ [(V,W) be
invertible mappings. Show that the composite ST ¢ L{U,W) is
invertible with (sT)™* = 7% g1 |

2. Let V be the linear space of sequences, show that the right shift

operator S (§V Example 6) is 1-1 but not onto, while the left shift

R
S (8V Example 6) is onto but not 1-1.
Hence conclude that neither SR nor SL are invertible. However SL R = Iv’
so Sp is a "left inverse" of Sz i.e. SR is left invertible (similarly

8_ is a "right inverse" of SL i.e. S_ is right invertible) - this shows

R L

that the double condition of befinition 13, p.16: ™T¢ = I, and T = I

is necessary for an operator to be invertible
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Let V be the linear space of all continuous functions from [-1,1] into
61 (i.e. v = C([~1,11)).

For any fixed point X5 € [-1,1] define the evaluation Ffunctienal

E by

Exo(f) = f{xg)

i.e. Ex maps each function f € V to its value at xg.

0 .
Show that Ex is a linear mapping from V into . Deduce that for scalars
Ry Agr een An e @ and points Ry Xp; wuuy x_ € [-1,1] +the mapping
defined by

T(f) = AlExl(f) + AzExz(f} oo+ AnExn(f) for all f e v

is also a linear mapping from V into &,

In particular then we have

S{f)

AlE_l(f) + AZEU(f) + AaEl(f)

]

llf(—l) + Azf(O) + laf(l)

is a linear mapping from V into R,
1

The definite integral I(f) = f f(x) dx is also a linear mapping from v
-1

to &
Find values of the constants Rl, Aoy Ag such that S approximates T in the
sense that S and I agree for the three functions

f(x) =1, f(x) = x and E{x) = x> .

(Can you recognize what you have just established?)

Show that each of the following "integral ocperators" are linear
(a) The Laplace Transform L from the linear space of all real values

bounded funections on [0,=}), defined by

L(E) {x) =J e ™* £(s) ax
0

{b) The convolution

[SIE]

T(f) (%) = (sin*f) {x) = J sin(x-t) f(t) dt
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§VI Basic Structure in linear spaces

In this section we develop further the concept of spanning sets
introduced in SIIT Theorem 4. The ideas of this section are among the most
important in elementary linear algebra and it is essential that you make

every effort to fully understand them.

As foreshadowed in §IIT, § is a spanning set for the linear space
V (ie V = <8>) if every element of V is a linear combination of elements

from 5, where
1)

DEFINTTION 1) by a (finite ( )} linear combination of the vectors
Yis ¥2r---, ¥, We mean a vector of the form
n
v = jzlljyj = AVl + Aavo +.. .t AnYn

for some set of scalars ll,Ag,...,Aneﬁ.

A linear combination is non-trivial if at least one of the scalar
coefficients, Ai’ is non-zero. Otherwise, if all the_li are zero, it is
trivial and necessarily equal to the zero vector.

(Refer K. p.78 definition 2.3, also see Example 1 on the same page.)

EXAMPIE: In the linear space C(R) ~ Example 3 of §IV - the vector sindx is
a linear combination of sin x and sin 3x. Indeed from elementary trigonometry,

.3, _ 3 . L. 3
sin’x = 7 sin x - = sin 3x.

DEFINITION 2} A linear space V is finite dimensional if it has a finite

spanning set, ie.if V = <S> for some finite set (set with only a Ffinite
number of elements) S. Otherwise, if every spanning set for V contains an

infinity of elements, we say V is infinite dimensional.

EXAMPILES : {gl,gz,...,gn} where e = (0,0,...,1,...0)
+ .
k'th place

is a finite spanning set for Vi -

{fﬂ,fl,fg,...,fn} where £ (x) = <= is a finite spanning
set for Pp(I) - see Example 5 §IV p 11. So both V, and P, (I) are finite
dimensional. Before we can easily give examples of infinite dimensional
linear spaces we must develop some further theory.

Finite dimensional linear spaces will dominate our subsequent work, not

because infinite dimensional spaces are less important but because of

1} Throughout this course all sums will be finite unless otherwise specified.
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technical difficulties inherent in any satisfactory theory of them.

DEFINITIONS (3): S is a minimal spanning set for the linear space V if s
[ oy
spans V and no proper subset of § spans V, i.e., V = <8> and if 5 # 5
[reg

then <5 5> #* V.

PROPOSITION 4: Let V be a finite dimensional linear space, then any finite

spanning set 5 for V contains a minimal spanning set for V.

Proof: Let m be the number of elements in 5.

If S is not itself a minimal spanning set, then there is some proper subset
§, of 8 (with at most m-1 elements) with <8;> = V.

If s, is not a minimal spanning set, then there is some proper subset 5, of §

{(with at most m—-2 elements} with <52> = V.

Clearly this process must terminate before m steps and so produce a minimal
spanning set. Otherwise we would have V = <§> = § which is impossible as

V contains a zero-vector. 0

Clearly, no element of a minimal spanning set S can be a linear combination
of other elements of 5. [If g € § were such a linear combination of elements
of S\{s}  then we would have <s\{g}> 2 5 and so

v 2 <s\{g}> = <<8\{gl>> o <8> = v, showing S\ {s} is a spanning set for

V and so.contradicting the minimality of S.]
From this simple observation we can derive an extremely useful necessary
condition for a subset of S to be a minimal spanning set.

(1)

LEMMA 5: Tet 8 = {vl, Vor eeny vn} be an ordered subset of the Llinegr

space V, then the following are equivalent:
(i) There exists some k, 1 < k < n, such that v 18 a linear

k-1

combination of its predecessors i.e., Y = ¥ A v; some

Li=1
Ay g e A e B

(ii) Some element of 8 i8 a linear combination of other elements of S

{Continued on the mext page)

(1} By an ordered set'{vl,_vz,_..., v_} we really mean an ordered n—tuple of
vectors in which no element appedrs more than once. Thus the order
in which the elements are listed is important, {vi, vo, «v-, v.} and
{YZ' Vir «eer Yn} are not the same ordered set, although they~Have the
same elements. For an ordered set statements such as: the first

element, the last element, the next element, the preceding element, make
sense.
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LEMMA 5(Cont.)
(iii) There extists a non-trivial linear combination of the elements

of s equalling the zero vector, that is

n
0 = Z ALV, for some set of scalars A., A,y ... A
~ i~i L 2

i=1 n

not all of which are zero.

DEFINITION 6: A set of vectors satisfying any one fand hence all three)

of the conditions listed in Lemma 5 is said to be linearliy dependent {one

of its elements depends {(linearly) on the others). A set of vectors which

is not linearly dependent is linearly independent, thus {Vl' Vor eens vn}

n
is linearly independent if E Aiyi = 0 only when A = g = ... = ln_= o.
i=1 '

Proof (of Lemma 5): That (i) = (ii})- is cbvious.

n
Now, if ii) holds, for some k, 1<k<n we have v = X l.vi for some set

of scalars Ai some (or all) of which may of course be 0.

But, then

:g:¥ A1 vy + A2yz ...t (-1) Y te-et lnyn and the R.H.S. is a non-trivial
linear conmbination of the elements of S as one of the scalar coefficients,
namely -1, is non-zero. Thus ii) = iii}. That iii) = i)} is proved in the

- last paragraph ("Conversely, let S be ...") of the proof to Theorem 2.4

in K. on 83.
on p O

From the remarks preceeding lemma 5 we have

COROLLARY 7: A finite minimal spanning set for a linear space 18 a Llinearly

irdependent set.

COROLLARY 8: Let {v,, V,r ---s vn} be an ordered minimal spanning set for
the linear space V, then for any v € V there is a unique set of sealars

Aye Aor eees hn such that

Il
s iél MY

These unigque scalars are known as the coordinates of v with respect to

the minimal spanning set {v;., ¥z, ..., vnl.
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(¥ We first show S¢p is a spanning set for V.

Assume not, ie. there exists veV\<Sy>.

Let s = 55 u {v}

ie. 5 = {vy, vo,..., v . vl

then 5 is g super set of Sp and so must be linearly dependent, thus, by
Lemma 5 i), one of the elements of 8 must be a linear combination of its

predecessors, it cannot be one of the v k=1,2,...,n or again by Lemma 5(i)

kl’
So = {vi,..., yn} would be linearly dependent, so it must be v ie.

vV =
i

| t~13

lAiYi for some Al,lg,...,lneﬁ .

But this means Ve<Sp> contradicting the choice of v, so no such v can
exist and V = <gp>.
Now, assume Sp is not minimal as a spanning set ie. V = <51> for some

§1c Sy, let Vi be any element of Sp\S; then N can be expressed as a linear
N Y
& .

combination of the elements of S1- Thus one element of g, namely v, ,

is a linear combination of other elements of Sp, so by Lemma 5 ii) 8 is
linearly dependent. A contradiction showing that Sp is a minimal spanning

sgt. 0

The next result is one of the most fundamental to the study of finite

dimensional spaces and possibly the most tedicus to Dprove.

THEOREM 10: Let S = {s), ..., s} be a finite basis for the linear space

V, Then any other basis for v also has n elements.

Proof: Let T be any minimal spanning set for V.

It suffices to show that T has m elements where m < n, for then the same
argument applied with the roles of § and T interchanged would show n = m.
{See K. Corollary 2.1, p.89. The preceding Theorem 2.7, p.88, also
provides an alternative proof to the one we give here.)

Assume the contrary, i.e., m > n, then certainly T contains n+l linearly
independent vectors 1= EZ’ e.-4 E

~n+l’
Since S is a spanning set for V each of the vectors Ek k=1,2,...,ntl
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be written as linear combinations of the elements of 8§, i.e.

£) S HNSL Y St TSy = Lupsg
i=]
1
b, = UpiS) * MpoSy *oeen *lppSy = ] M8
12
n
= U S 4 ...+ =
15 Mrifl T HeaSs HinSn Zluki*l
n
= s+ 8+ ... s = ey
NS S L B TS P Pnt+incn i;l”n+11§1

By substituting these identities, any linear combination of the ;k's,

n+l
E At n be written as a linear combination of the s,'s:
k-k © . Zi
k=1
nfl nil E
At A [ U ]
kel k=k k=1 ki%i

L]

Al(ullgl + Hi,8, +...) +A2(u21§1 + Uy08, +..0.) Fa.n

(1—111?\1 + BZ].AZ +..¢) §1 + (;-112;\1 + j.lzz}\z '[‘.--) §2 +...

E [n§1”k1 k]

i=1‘k=1

Il

Such a linear combination will equal the zero vector provided each of the

coefficients of the =T is zero,

n+l
Thus E A t] = 0 for any set of scalars ll,hz,.. 'An+l which satisfy the
k=1 " °
equations
n+li
Z Ho A, =0 - i=1,2,...,n,
k=1 ki k
i.e.
“11l1 + u21h + ena + Hoetl An+1 =0

Hiphy T lgon0 F oors T Hpio Aan
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Now, this homogeneous system involves more unknowns {ntl of them;
ll'lz""'hn+l) than equations (n of them) and so always has a non-zero
solution. [This is a well known result which follows readily from vour
first year work on equations - a proof is also given in the appendix attached
to this section.]

Any such splution provides a set of kk's, not all zero, such that
n+1

= -t “en
Ellkgk 0 and so shows that the n+l vectors El' ,§n+l

dependent, a contradiction which establishes m < n as required.

are linearly

As a result of this Theorem we can now offer

DEFINITION (11) Let V be a finite dimensiénal linear space, then V has

dimension n (written dim V = n) where n is the number of vectors in any one
(and hence every) basis for V.

EXAMDLES: ‘ dim Vn =n, dim Pn(I) =n + 1.

(See K., pp.89-90, Definition 2.7 and the subsequent examples.)

We have:seen that in finite dimensional spaces a basis can be viewed as
either a minimal spanning set or as a maximal linearly independent set. We
also saw that any spanning set contains a basis.

We now give the complementary result for linearly independent sets.

N a
PROPOSITION (12) 1ILet S be a linearly independent set in finite dimensional

linear space V, then S can be extended to a basis for V, i.e. there exists
a basis B of V with &5 € B.

Proof. See K., Theorem 2.8, p.90.

We are now in a position to establish examples of infinite dimensional

linear spaces. To do this we observe that from the above results we need
only demonstrate the existence of "infinite" linearly iﬁdependent sets {why?),
i.e. sets containing an infinite number of vectors, no one of which can he

written as a finite linear combination of the others.

EXaMPLE (12): P(I) and hence any linear space containing P(I) as a subspace,

. . s . . . ’ n , . .. .
18 infinite dimensional as {1,x,x2,x°,. «e¢¥X ,...} is an infinite linearly
independent set (Prove this).

The Linear space of sequences convergent to zero Cg, (and hence any

linear space containing it as a subspace) s infinite dimensional.




31.

For any n the sequence
e =0,0,...,0,1,0,0,....
~n
+
nth place
clearly converges to zero, and
-{glrgzr---rgnr---}

is an infinite linearly independent set in C,.

Theorem (13). Let U, W be finite dimensional subspaces of a linear space

v, - then
dim(U + W) = dim(U) + dim(W) - dim{Un¥W).
In particular then, for a direct sum (see page )} we have

dim(U ® W) = dim(U) + dim(W).

Proof. ILet dim U = nu
dgimW=n

W

dim UNW = n

and let 8 = {§1’§°""'§n } be a basis for U n W.
n

By Proposition (12} we can extend S to a basis for U, say

5y = {§1,§2,---,§nn, [ P H

by the addition of nu - nrl vectors.

Similarly S may be extended to a basis for W;

SW = {§lr§2r---r§n r Wllwzr---rwn -n )
n W N
ILet

Sl = SUUSW = {ﬁlr---:§n ' uljj--rgn 11 Il @1:---rWh -n }-
u n W u

It suffices to show S; is linearly independent, for clearly any vector in
U U W can be written as a linear combination of element of 5, hence 8, spans

<G U W =U0U+W t=le) S1 is a basis for U + W and
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dim{U + W) = no. of elements in 5;

Il

n +{n -n + (n -
n ( u n) ( W nﬂ)

n +n -n
u w n

dim U + dim W - d4im{(U n W)

the desired conclusicn.

et n -n_ =m, n ~n =%k and assume
u n W n

- . + “ea =
A5, + An S, FtHy to..t HoBo F ey + *touw =0
nn
then
ArS; + .t hnngnn + Hyu, oot umgm = =Wy Wp me. - mkyk.

R.H.S. is an element in W while L.H.S. is an element in U sc both are in
Un w.

Thus both are equal to a linear combination of elements in s, i.e.

WY Teeem 0 W= B8 + ... + On g

n
nn
and
.t + eoe 4 =0 + ...+ 8
A1~1 An h Hi¥p F P m 151 n ¥n
non nn
or
0,8, + ..o + Bn = Fowgw, oL+ w, W =0
non .
and so, since SW is linearlg independent
91 = ... = Gn == ... =w =0.
. n
But then
. ee. + = g, =
ey + + An g, T Wyt Ml = 9 (all ; =0
50, since SU is linearly independent
Ay = ... = An =H = o...= Hoo= o,

showing 8, is linearly independent as required.
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EXERCISES (14): (The results of these exercises will be assumed in

subsequent work) .

1)

2)

3)

4)

5)

6)

7)

Prove that any set of vectors. containing the zero vector is linearly
independent.
Show that if W is a nonzero subspace of a finite-dimensional vector

space V, then dim W < dim V.

Show that if W is a subspace of a finite-dimensional vector space

V and dim W = dim V, then W = V.

Let V be an n-dimensional wvector Space.
{a}) If s = {al, Qs weey an} is a linearly independent set of

vectors in V, then S is a baszis for V.

(b) If s = {a, Byy vuns an} spans V, then S is a basis for V.

Let V be an n-dimensional vector space. Show that any n+l vectors
in Vv form a linearly dependent set. Hence any linearly independent

set of vectors in V has at most n elements.

Show that a set of vectors is linearly dependent if any subset of it

is a linearly dependent set.

A subspace U of the linear space V is complemented if there exists a

subspace W of V such that V = U @ W.
Show that any subspace of a finite-dimensional space is complemented,

[Hint: Tet {ul, Uy, vuns uk} be a basis for U and extend it to a

basis for Vv, {ul, Upr cevr Wy W0y el Hn} .1



14 : APPENDIX TQ §VI '
) Linear Homogeneous Systems involving more unknowns than equations '

Here we give a proof of the well known result used in the rroof of Theorem 9.
For the system of simultaneous egquations

a..x,. +a . x + ... 4+a x =20

1171 1272 lmm
+ + ... =
B1%1 T B22%2 T o = O
X, + X, + ... + X =
*n1*1 an2 2 anm m 0
where m > n there exists at least one solution set xl"""= Qe Xy = 8yy cuuy X = ®ny
- m

such that not all the @, are ‘Zero.

The proof is taken from Warren Brisley "A Basis for Linear Algebra" and is
reproduced for the private use of students in PM211 only.

Proof. By induction on the positive integer m, #(m) is the whole statcmen)
of the Theorem. #(1) is void, /(2) is the assertion that “'given-an equation
a;,x, + a,;x, = 0, there is a non-trivial (i.c. nol-all-zero) splution™.

I a;, and a,; arc both zero, put x; = 1, x; = 1 as solulion.

ifa,, + 0, put x, = 1and x, = —a,,/a,,.

Ifa,, =0,buta, # 0,putx, = land x; = 0.

So &°(2) is true.

For the second leg of induction, operate under the assumption that £(k)

is true for some k = 2. Examine the system involved in £k + 1)

Qry -« - fraq [ x, ] 0
Gzp « v+ G249 x| = withr < k + 1.
a;l s Oy ' BLY
_xl+l.d
. Wallthe a;; here are zero, putx; = x; = .., = x,,, = | asasolution.

If not all the a,; are zero, we can rearrange the equalions and rename
the a,, so that, without loss of generality, we have a,,,, # 0. Say,
a,414) = fi # 0. Then the last equation gives

.
(i) %x,+—é-3x1+...+%x*+x“1=(},

“If we now subtract “a, ;4 times this equation™ from each (other)
ithequation(i = 1,2,...,r — 1), we have

o=

(ii} bll blz ""bll ‘x-l
b?l bys ... by (bfj =a, — a;nﬂ; -arg)

-xk_

and (ii) together with (i) is equivalent to the original set of equations.
Now 2(k) is true by assumption, so there is a solution-set

. {x1=a,.x1=u2,...,xl=a&}
(with not all the o; zero) for (ii). Use (i) to calculate
o . G0y .+ an
k1 = .
B
Now {x; = oy, x; = a,,. .., Xg41 = U444} IS 2 non-trivial solution for

the system. Thus we have
(i} 2(2) true,
(i) whenever #(k) is true, (k > 2), then Pk + 1) is true. |



