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Pure Mathematics 111-2

Course information, Second semester 1988

Dear Pure Mathematics 111-2 Student.

Enclosed are notes covering the course for secoud semester. The bulk of the
notes are those written by Dr. B Siins for Pure Mathematies 111-2 in previouns years.
Some notations in the notes with which yon may not he familiar are:

- . an - ML
> dor “approximately eqnals™, asin 7> 3

:
= for “equals to the number of decimal places quoted™. as in 7 = 3.14159;
2w for “equals by definition™;

feAd - B:ws fle) tospecify the fuuction f wmapping the set 4 (the
domain of f)into the set B (its codomain). which assigns to the element .
v of A the element f(z) of B. Often f(r) is given by a formula; for
example

This year the following sections of the main notes will be omitted from the
course: §69.3-9.4, p.186-191 and exercises 7-8, p.192-193; §§10.4-10.5, p.209-217
and exercises 9-11. p.221: §11.4, p.243--245. They will be replaced by the waterial
on functions of two variables in the supplementary notes. These notes also contain
ndscellaneons explanatory mwaterial and a stiplified treatment of $8.3, p.162 169,
which will e covered wore lightly than in previons vears,

For internal studeuts there will be a compulsory test on integration, to be held
during the lecture period ou Friday. 23rd Septewber. A mark of well over 50% will
have to be scored 1 order to pass. and students who do not achieve this mark will
be required to repeat the test at a date aud time to he determined.

A number of assignments are set throughout the scmester: these should be
subiitted by internal students to their tutor. or posied Ly external students, by
the dates shown on p.ii-iii. Please note that subiuission of assigninents (except for
the last whicli is optional) is a requirement for completing 1his course,

Exterual students shonld send thelr assignuments (in au assicmment folder if
possible} to the Department of External Studies: any writien queries should be
directed to e personally at the Departipent of Mathewmaties. Yon are also weleome
tosuguire by telephone ((067) 73 2350) abont auy problems vou may have, Internal
students may sce we inwy office (Booth Block 163) any thme 1 aw free,

Hoping you eujov vour studies,

David Aungell
1st July 1988

*afe,-
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LECTURE SCHEDULE, SECOND SEMESTER 1988

Pages in  Pages in

Date Lecture Topic Notes Supplement
August 1 38 Integration 116-120
3 39 Integration 120-124
5 40  Integration 125128 S1
8 41  Integration 128-130
10 42 Integration 131-134
1243 Integration ' 135-136 51
o - As.wqmnmf 13 i due on August 12th
Augusf 5 4 Infegrahnn T 1_5;13?3 o
17 45 Nuwmerieal integration 141-144 S1
| 19 -10 The o\_pnnoundl fnnt‘tmn 1»16 1—19

_4 s.‘-zqnmtnf 14 18 u‘m' on 4uquﬂ' ].‘}Hr

Angust 22 a7 T]u- expone m;.n] iun( tion 149 if}l - 51
24 48 Tlhe natnral logarithn 156 158 S1-82
26 49 The natural ]n;ﬁ«mthm 158-159

Ae.s:gnmenf 1.) 1% du(‘ on Au_;mz’ 26th

Augusf 29 50 Partial frﬂ.c'tmns i162-166! ;52“54
31 51 Partial fractions 1166- 169 54-85
Septembher 2 52 Applications of integration 171-174 ‘

Assignment 16 is due on September 2nd

Septernber 5 53 Applications of integration 174-176
v 5 Applications of integration 177-182
- 9 55 App]i(‘atinnq ufimc';_rr'itinn 182- 180
As.szqmmnf 17 18 due on September 91‘]}

September 12 u(‘ Pn]vnnmml 'lp]u'uxnna’riml 194-197

I4 57 Polynomial approximation 19%-200

16 58 Pn]\'nnund] dp]nn\]m'mnn '7{11 "04
o 4«.%71;111::: it 18 s n’tu on Sf]n'mnhf 7 15”! -
Septemher 19 50 Pn]vnnmml ri])])l‘(l):]].llaf](lll 9(;4_;(16 - S6 -

21 60 Polyumuial approximation 206 209 S5G-S8

23 Iuit;.,lrmnn test

Auzqnmrnf 10 is due on Sepz‘embf r QJm'

VA (’.4 T]()N

11

Pages in  Pages in

Date  Lecture Topic  Notes Supplement
October 10 61  Complex numbers 223-235 58
12 62  Complex numbers . 226-234 58
14 63  Complex numbers 235-238

4~~zqnmem‘ 20 s dur on O(f”h(‘?' 141‘]:

October 17 64 Complex numbers 238-241 S8
19 65 Functions of two variables 59-512
21 G6 anrtmus nf two vumhlea S13-515

Au.srqnmrnf 21 i due on O fuh( v 21af

Qctober 24 G7 Funetions of two variables S516-518
a6 68 Functions of two variables 519-S21
28 09 Functions of h\'o variables 522-824

4u1ymmni 22 s due on O(iobn bfh

Octobm 31 il Dlﬁ'ex('nha] equatmna 247-—2—19
November 2 71  Differential equations 250-252
4+ 72 Differential equations 255-257

_4 -'-zqnmrnf 3 s due on Nummbr 4”:

November 7 73 Dlﬂ‘ewmnl vquahnnu 258—'2.’39
4 Differential equations 260 261 527--529
11 75 Exact differential t’(_[lldt]ul]‘w 530--533

A».qununf "‘J 1% clm' on Num mfu Re JJHf

Assipuinent 23 is optional; hiowever, if yvou would like 1t marked and returned before
the examination you should submit it by the end of semester. or as soon as possible

afterwards,

e oI



Questmn 1

k_].

o Questlon 2

} Show fhat

" (b) Prove that

. ('b.):‘.: 5110“ that

: ; T e
/f”‘]'=b.f“(b1—af‘](a)w[ ;.
o | Jrorian

Vo

ASSigillilélit, 13

. b : :
-/f?- / g.
: f -7'3 dr — :..n -

from‘ﬁrstprmmples (Thafls, use f_.l'._?.' I_ildudé a ;pr.b«'::f b_{r induction that

s ; e R " : n .
: ne{n+ 1)~ .
ag S L

B o tan%r
/sec 21d1:w~;—~~ C

Derive formula for sin® + and cos” - in terms of cos 2x. Hence find .

; PR TR L '
/ sin® rda’ and / cos” wdr .
oW LT o e . : ’

(a) Usmg properf:es ( ) - (6) of the definite mfegr'll prove tha’r if f and q are_ |
o 111tegrable on {a,b, and f(a ) > g( ) for all & in [a, b} then - '

*‘a;.-..uﬁ,.



Vi
Assignment 14
Qués_fi(ih 1 | | |

T

/1__? de by substitution.

(a) Find
(b) Find /\-/. 1— 22 'd..-.r. (Hint: .'you .migl_l.t' like to III,ISE; the sﬁbst.itution'r.: sinu.)
SN e
 Questions

Fl'l.l.d_._.:- ;

(a)

J o+ 3 J 1+cosay '

{Hint for (¢}): use the ‘?‘"—.%ubstitufioﬁ’ 1= ta,:n(. ]—1)
of §6.5.) S :

vii

o
o

Assignment

.Q'u.e::Stioil 1 ‘ _ _ _

- E\_;alﬁate the folldwing integrals by algebraic nla.ﬁil.mla.timis and/or substitutions:
a?

dr .
T dr .

2?2 + G + 10 1=t

in conjunction with the formula

o
. Evaluafe %il.éf:'_follo.\\'*i'ﬁg i_ntegr_als;:": :

1 _ . d..?".":: W ((‘) /1 c('15(2.’!:'-£*. 1) d'_T. .

‘cosadrs (b [

Question 3

a)-Derive a reduction formula for fecos™ e di. Hence or otherwise cvaluate the

ntegral [cos? & d
(h). Use integration by parts to show that

sina . eosal cosh @
e e . ;l‘ e - Z

di

Ha e



1'111 o S

| Abﬂglllil(‘ll’[ 16

Snnpson 5 fcu‘mu]a wn‘h four mte1 val_é to ﬁnd the é,p'pfojdﬁ_mte value of 1n 2
Wluch is bv deﬁmtmn . SRR U PR TS S

L (b ) Show fhat Snmpson s rule fmr f h. is exact for dnv cu'.bi"c ijolj*ndinjal._' o

i e) Fmd an apprcmmafe numencal \'alue for

e e
i "—:—CUSJ'

formimla with four intervals.

using Simpson’s
exact value,
Question 2
(n) Evaluate [¢fcos2rdue. . -

(b) Graph the function ;

fIIHf prm(‘]plea

(d) Use L’ HOPlfrtl 3 rulo (h’n(e] to shm\' fhdi

S e
lim = = -,
Tee s '
Questidn 3
(S.c'e.éxei"'(.‘iéé T p.153.}°
(d) Gmph the functmns u = 911111 wou s cosha.
(b} Prove that cosl® o - sinl® o 1,

. - . T . A o .
{c¢}) Show t]‘m.t sinll’ = cosli aud cosh' = sinh.

Question 4

Exercises 7(iv) «111'].:.15-1' and (4} on ].Q.IG()._

Compare vour answer with the

flo R
) . =0,
Is { continuous at + — () a2 (Hiut: consider lim (] ) Eve durn‘e f((l) fmm

Assignment 17

Questmn 1

. '::.:'Dlﬁ'erentlate the followmg funchons G e

g (]) .- f( 1) :.—. 111(.s.i:112:.1.') , (ii.) f('[‘) = 7 3 (111) | f( r) = (lli € )hi [
i

}n_'l d't‘ in fwo ways: (1) bv hubsfl’mhou and (11) b'\' nliegl afmn by pa1fs

:Questmn'_S

-Fmd: fhe follmnn&, lll‘fq_‘l dh EE :
o[ e e
. l'F‘-““, #+ cosH -

). (}Hurh?) '|/ (:,p'—' _%" .#‘;i 1)_,(' .

R ke




.Questlon 1

Deten:mne the n ’rh degree MacLaunn polvnom:al for f(.l) :
not aumteger._ S : RN

| _Ql.!es"t_i'dh 200

(a) \/E 15 to be 'c.c).ilipﬁted from thie series

'(:_;.-: ::. 1+!f o’ —-i.. SR

Hnw Id]ge shuuld ong ('lum'ae n in mdcr m guaraniee ‘fha’f |R ( ) L 0 OOOJ"

(b) F(u whdf rdngo of values oi '_' cau one repla(‘e sul x bv' - 1 1‘3
ot Eﬂmica than 5+ 10717 ' :

Questwn 3

Fmd fhe T'chu series cxpdnsmn of f(.v) = cosr a}joﬁt:fhe'point' ;

(1+ z)P, where p is

\'1’(11 a.n ermr .

X111

Assignment 21

" Question 1

(1+ 2 3 -} e
( 1)( ) 111_ the form -+ e,
R, Jpuny ' )

.’-;(b) Fmd the modulus and argumenf of

8 a ) _. E;\".I)fess

-c.')_"f_‘_'i.x_l_c'l_.:_'f_l_ie .:_u:indiﬂ_ﬁs_an.('i .argﬁ'n'léu.f of -

Hence ﬁnd Re.. dnd Imﬂ '.:

i Lt L

d) _le‘e that the real pdrf of Zis

+iv3). Find, and plot in the complex pline, 2,27 2% 1 and

and z; are complex nuinbers then

T BETaR QR:"(:IEL‘)

(=+72) .,.wh.i_'](‘. 1..1.10 .i_l.l.lagill.ﬂ.l'},-’ png'f. is Az _-._' ’:)

i



Assignment 22

Questlon 1

E ( ) Fmd all four’rh roots of 7. “ lth(mf usmg a calculator e\preqs the root 11av1ng

snm_llc-si posﬁwe ar ;.,umenf 814 A f01111 fhaf does nnt 111v01\*e any trigonometric
funchonb. - : - R

.(b) Fmd fmu demcf valueq ior 1 - \/31 "'/4 -

.Questlon 2

( ) E\pren;q r-,111(.57.") mn Termq oi cos U’ and 5111 1./*

(b) E“CplE‘SH sin® L"‘ i the form n“ -f~ al *3111 U + a; sm"r.f' iy
as, al,aa.-.'-';-._--:------- L Gl - S

Q'uest.iox.l'S - _

Fmd {he (1:11';1.;{_{11'11&111 II_IJL.)ssi‘.!Jle.)' (ifiﬁl_éju of .th.(.‘ 'fu.n.ct:iou_s._

) = cosT w2 - 3) 0

Sketeli D as a region in the £y plane.

- for some constants:

xv

Assignnient 23

§ 'Questmn 1

:.:.Fnr{he fnlluwmg iunttmm hnd f,, f,,, f“. f,,,. f[‘u rm(l fy,,. Dnu f” f,,,rf"

’(cos 3y — sin u)

| (é)_ _' f(-TaJ) = ('r+u)(-”r +”'u )' (b} flr,y) =

N

Questlon 2

Find Vf(

u) dnd hnd fhe dern‘atlve of f at (a b) in the duechon of u, whc‘w

u) =ry’e _j. {a.b) *(12)
- 3!}) (n h) =

5 )‘.'* cus( _

:Questlon 3

Fid. ’fhe rdte (1f %tcepeqt increase of f( i) at the point (a,b). and the direction

I Wh]Ch fth rate 1:: achleved inr
(’.m, = (1/ )4 (1/;,) (u h) ;(1 1}
eb) = (0 ’;:}_.

- 1i f(n.u) = '_“'g_'. A A TR .
0 7 cos #. y = rsind. Shuplify your

) Rl
;;_zmd o Ii f{ r, r,r) R T
tswers as el as possibles x




xvil

xvi

Assignment 25

Assignment 24 | - R R | o
. o o This assignuent is not '(".(..}.Ill:pﬂl‘%(ﬁ'.\'. If you wish to liave it inurked before the ex-
Questioh 1 _ aimnahon le r-'.hc:uld 5ub111ﬁ 11‘ hefore 'rhe end oi semeater or :u. s00n as pnsqule_
For each of ’rhe follow111g dnﬁerentml equatmus ﬁnd the solutmn satlsfymg the glven
initial condlhon(s)

gy .
(ﬂ.) _J + Y = e’ , U(O) — 9 ;
K . s d _. . ." . - | | ’
| . (b) ;]}{ :;‘..'r\/-.g,f coy(0) ,—; 1: |
3 coedy T LU

d;t!_

Questmn 2

Exe'rcisc' 3 on ']: 53.

Questlon 3

For each of the iollowmg d:ﬁeren’rlal eq11af1011=: hnd the qolutmn satlstmg the gnven
nuflal conditions.

(a) " +2y' =3y = 0, w(0)=1, 4(0) =
(b) 4"~ 2/ =0, y(0) =0, 0) =4
(¢} 't,r.'_’. - Gy l.Sy = .. 4(0} - 3. g0 8.

-""‘W?r‘ “ .
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XXHIV :
: uestion 1
THE UNIVERSITY OF NEW ENGLAND | =
(a) (1) Differentiate the following functions:
UNIT NAME: PURE MATHEMATICS 111-2, 112-2, 173-2 ' }; f(x) = of Sin X
i ,
x

PAPER NUMBER: -

g {x} 3

PAPERITITLE: SECOND SEMESTER (ii) Show that the Function
X E""X

2

DATE: Friday, 18th Novemwber, 1983 TIME: 9,30 a.m. to 12.30 p.m. sinh x =

TIME ALLOWED: THREE HOURS (3) plus fifteen minutes reading time
: . . is invertible, with inverse

NUMBER OF PAGES IN PAPER: FOUR (4)

sinhhl x = In[x + Y1 + x27] .

NUMBER OF QUESTIONS ON PAPER: SIX (6)

; ; ANSWERED : -
NUMBER OF QUESTIONS TO BE ¢ SIX (&) © (b) Find the following integrals:

(1) [ x> 1n x ax

STATIONERY PER CANDIDATE: [ _ | X 6 LEAF A4 BOOKS X 12 LEAF A4 BOOKS (ii) [ (sin x - sin3x) ax .

[ ] X ROUGH WORK BOOKS

- x2-3x +2
GRAPH: (NUMBER OF SHEETS)

SLIDE RULES PERMITTED: YES/AMX POCKET CALCULATORS PERMITTED: YES/!HP(Bilenﬁ

: tion 2
MATHEMATICAL TABLES PERMITTED: Y®Y/NO; IF YES, SUPPLIED BY STUDENT/UNIVERSITY Question 2 ~on

For the cycloid x = (B8 - sin 8), y = (1 - cos 8)
OTHER AIDS REQUIRED: NIiL .

sketch the graph for 0 € x £ &7

INSTRUCTIONS FOR CANDIDATES: ATTEMPT ALL QUESTICNS. find the volume of the solid obtained by revolving one arch of the

Candidates may retain their copy of this examination question paper.

curve about the x-~axis,
This paper may be annotated during the fifteen minutes reading time.

1ii) find the arc-length of one arch.

TEXTBOOKS OR NOTES PERMITTED: NIL or the complex numbers u = ¥3 + i, v =1 - i/3 Ffind:

+ the conjugate of u ; {ii) the modulus of v ;
3
. v
(iv) |=—|
u
the polar form of u; {vi) ul .

he curve r = cos 20

{Question 3 1is continued on page 3)

83/352/1

A e
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Question 3 (cont.)

{b} (i) Determine the MacLaurin expansion for y = 1n{l = x), including

an expression for the general term.

(ii) Find a range of x-values for which the Maclaurin expansion of

y = In{l - x) represents {converges to) the function.

(iii) Determine how many terms in the MacLaurin expansion of y = 1ln{l

: . 1
will be sufficient to compute the value of 1n = accurate to

2
five decimal places.

guestion 4

(a). Find the real and imaginary parts of
g2 +1T/6

{b} Find an expression for sin 60 in terms of sin0.

{c) In about half a page, briefly outline Newton's method for obtaining
approximations to a zero of the function y = f(x) commenting on

its convergence,

Question 5

Find the solution of each of the following differential eguations which

satisfies the given initial conditions.

1y -2,

dx  x+1 ' y(1) =1

ii —‘ij{ = -— . = l.

(ii) ax y{2 - y): vy(0) >

(i) FE=e"-y; yo =1

- aty _,dy o o gy -

(dv)  “5- 25 %y =01 y(0) =0, Fx0) =1
* y ,dy . 1 g =

(v) T 29ty =0; y(0) =1, dx(O) = 0.

{Question 6 is on page 4)
B3/352/3

e D O e BN R

XXXvii

Question 6
(a) A population of figh is subject to "fishing" at the constant rate of
¢ catches per year. If N{t} denotes the size at time t then
dN .
Er 0.2N - ¢ .

If the initial size of the population is N(0} = 1000 :

(i) find an expression for N(t) in terms of c;

(i1) find a value for the rate of fishing, ¢ which will maintain
the population at a constant size. Show that for higher levels

of fishing the population will eventually become extinct.

For the function £({x,y) = 4x2 + 9y2 - 12xy find
3
%5- and °f s
3yl
and verify that
32  _ a?%f
dxdy dydx "
v u -
- and  y = _,3_2. use the chain rule to find ~%§

-

e



x®xviii % xxxix
THE UNIVERSITY OF NEW. ENGLAND _ Question 1
) §-——fw——*———
(i) Find
UNIT NAME: PURE MATHEMATICS 111-2, 112-2, 173~2 :§ dx
. pt (a) -
i 2

PAPER NUMBER: -
PAPER TITLE: SECOND SEMESTER (b) f cos®x dx
DATE: Wednesday l4th November, 1984 TIME: 9.30 a.m. to 12.30 p.m.- dx

TIME ALLOWED: THREE HOURS (3) plus fifteen minutes reading time.

NUMBER OF PAGES IN PAPER: FOUR (4)

NUMBER OF QUESTICNS ON PAPER: SIX (6) Using the substitution u = sin x show that

sin % cos x dx sin? x + C.

1
b

NUMBER OF QUESTIONS TO BE ANSWERED: SIX (6}

cos x leads to

]
o]
w
=y
0
=
ot
=y
w
rt
ot
o
m
n
=]
o3
n
rt
|
r+
o
t
}_J.
0
=
<
It

STATIONERY PER CAMDIDATE: [ - | X 6 LEAF A4 BOOKS X 12 LEAF A4 BOOKS

[ = ] X ROUGH WORK BOOKS

. 1
51n x cos x dx =—§—coszx + C .

GRAPH: ~  {(NUMBER OF SHEETS)

SLIDE RULES PERMITTED: EE¥/NO POCKET CALCULATORS PERMITTED:X¥E¥/NO (silen

MATHEMATICAL TABLES PERMITTED: ¥HH/NO; IF YES, SUPPLIED BY STUDENT/UNIVERSITY

OTHER AIDS- REQUIRED: Wil

INSTRUCTIONS FOR CANDIDATES:

Candidates may retain their copy of this examination question paper.
This paper may be annotated during the fifteen minutes reading time.

TEXTBOOKS OR NOTES PERMITTED:  Nil

84/252/1

g ST
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Question 6

Question 3
{i) Find the solution of each of the following differential egatuions

(i) Use Simpson's Formula with four strips te evaluate approximately .
1 ax which satisfies the given initial conditions:
d
01+x (a) ay=—exy: y(l) =1
{ii) Sketch the curve r =1 + sin8, and find the area enclosed by it. (b) gx__ 2y _ x2 sin 3x Y(Ei - 0
X X 2
(1ii) Por the cycloid x = (0 - sin 8), y = (1 - cos 8) d?y _dy _ . _ dy
(c) el ax Y < 0 y(o) =1, =(0) =o0.
(a} sketch the graph for 0 <€ x £ 57,

(b} find the volume of the solid obtained by rxevolving one arch

'}(ii) A population of fish is subject to "fishing" at the constant rate of

or the curve about the x-axis. .
f catches per year. If y(t} denotes the size at time t then

®

dy _
at 0.2y - £.

Question 4

1
(i) betermine the MacLaurin expansion for y = (1 + x)*, including an

CIf the initial size of the population y(0)} = 1000:
expression for the general term.

{(a) find an expression for y(t) in terms of £;
(ii) TFind a range of positive x-values for which the MacLaurin expansion _
| {(b) find a wvalue for the rate of fishing, f which will maintain
of y = (1 + x}? represents {(converges to) the function. '
the population at a constant size. For higher levels of fishing

(iii) Determine how many terms in the MacLaurin expansion of y = (I + x)
find an expression for the time at which the population will
will be sufficient to compute the value of ¥1.5 accurate to five_
become extinct.

decimal places.

[You may assume the expression
X
+
1 0 f(n 1)

for the remainder.]

Question 5

{i) For the complex numbers u = 1 + /3i, v=1- ¥3i find:

(a) u, the conjugate of wu; (b) the modulus of w;

(c) in the form x + iy with x,y real;

<le

3
(d) EE ; (e) the polar form of u;
u

() Im (uld).)

(ii) Find the 5 fifth roots of i and plot them on an argand diagram

s £ Y

(iii) Pind an expression for cos 86 in terms of cos 6.
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THE UNIVERSITY OF NEW ENGLAND

'g #ind the fellowing indafinite integrels
UNIT NAME: PURE MATHEMATICS 111-2, 173-2 1 (2) | = P
. § x - 4x + 5
PAPLR NUMBEX: .g
PAPER TITLE: SECOND SEMESTER ; (b) (x = 7)

DATE: Thursday, l4th November, 1985 TIME: 9.30 a.m. to 12.30 p.m.

-X
TIME ALLOWED: THREE HOURS (3) plus fifteen minutes reading time. (c) J X e dx ’
NUMBER OF PAGES IN PAPER: FOUR (4) 9%
(&) j — dx .
NUMBER OF QUESTIONS ON PAPER: SIX (6} 1+ x
NUMBER OF QUESTICNS TO BE ANSWERED: SIX (6)

Question 2

The function cosh is defined by

(a)

X -X
e e

+
STATIONERY PER CANDIDATE: [ — | X 6 LEAF A4 BOOKS X 12 LEAF A4 BOOKS cosh X = ———— .

Find its first and second derivatives and sketch its graph.

2
"Prove that cosh x =2 1 + %- for all x.

[= ] X ROUGH WORK BOOKS

GRAPH: - (NUMBER OF SHEETS)

SLIDE RULES PERMITTED: YES/N@  POCKET CALCULATORS PERMITTED: YES/N@ (silen Show that the area enclesed by the above graph, the x-axis and any two

‘vertical lines is always equal to the length of the graph between the
MATHEMATICAL TABLES PERMITTED: XES/NO; IF YES, SUPPLIED BY STUDENT/UNIVERSITY e verticals

OTHER AIDS.REQUIRED: NiL

7 Rt ) . . . 1
INSTRUCTIONS TOR CANDIDATES : Find the volume of revolution obtained by’rotatlng the curve y = Y

‘ abdut the x-axis between x = 1 and x = 2.
Candidates may retain their copy of this examination question paper. :
This paper may be annotated during the fifteen minutes reading time.

2

-3
, 4
TEXTBOOKS OR NOTES PERMITTED: NIL Q2 el L dx

if you don't have a calculator; but leave

appropriate for computation.]

1 .
Same curve, y = ~, is rotated between x = 1 and x = M, show

= X

h?_VOTvHQ moprozchies o £ivile value as M -k 4w, buk bhe suvfacnt
ke oo .

.anag- L7.2 22 large as Jesired.

LT
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following differential equations which

Find the solution of sach of the
given initial conditiong

Question 4
{(a) Sketch the cardioid, given in polar coordinates by
satisfies the
- 24t eos 6, T8 <250 .
. : . . o dy 2x .
ind the lent*h n- The cardicid and the ares 27 closed by ik, (a) Py + vy =0 ; y{0) =2
x 2
: 1l +x
(b} Find the Maclaurin expansion for 1n{l -~ x) and state where the seriesg
ad -X
converges. {b) a§-+ vy =8 cos X ; y(@) = 0. i
(¢} From (b) deduce the Maclaurin expansions of 1n{l + x) and 1ln %—§~§ . )
d%y dy
7 t2g, Ty=0 y(0) =1, y'(0) =0
-d
+£3dY + 2y = 0 y(0) =1, y'(0) =o.

Use the first two terms in the second of these to find an approximate
and find an upper bound for the error.

value of 1n 2

Question 5

{(a) Express

-10i
(2 +4i)(1 - 31)
in the form x + iy, with x,y real.
Verify that
-10% -10i .
(2 + i)(1 - 3i)] [2 + 1] J1 - 3i]
With minimal effort express
104 ’
(2 - 1) (1 + 31)
in the form x + iy, with x,y real. :
- i8 -i8
(b} Using the formula ele = cos 8+ 1 sin §, show that cos g = E——g—g——
and hence that
3
cos38 = %—ccs 36 + Z-cos B .
{(c) Locate the fifth roots of 1 in thecomplex plane. .
1 are the sclutions of the quartic

Show that the unreal fifth roots of

u + 1L =0,
formula for cos0 in part (b}, prove tha

and

9]
8]
[&4]

equation
T
Using this equation, and the
2% -1 + /5
s T T Ty
-1 - 5

k|
‘;ﬁ.
s
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1 1i
Quegtion 1) Question 4)
Find - 1 Macl 1 e o . . .
Find the Maclaurin expansion, including an expression for
4 the general Llerm, for Lhe funclion
Y S f{x) 1= /2 sin{x + =n/4).
{ii) i
Briefly describe Newilon’s melhod Tor approximating a zero
of the function I, and slate condilions whiech are
Giii . sufficient te ensure convergence of Lhe iterates Lo a zero.
Question 5)
Question 2) .
. }.Fdﬁ the complex number z :x 2 - 243 i, find
i : |
. 2 dx IZ[
(a) Evaluate 3 3
- "+ x -1 z2
-0
zZ/%
{b) For a » 0 we know that )
_ a complex number o, with |«] = |z|, such that the
. . ~angle between the lines from the origin to z and
. al- 1 i ox =0 - the origin to w is n right-angle
R R S * | -
. tn{a) if x = 0. _.the two square rools of =z, and ploil these together
with z in the Argand plane.
H " 3 1 - - 7' - .
Use L'Hopital’s rule to show Lhat plane the distance from the origin to the .
< equals Llie perpendicular distance from o to
Limie ax: L tnia). 0 = ~1. Write down a relationship between « and
: hg % fiich expresses this facl.
sel of complex numbers z which satisfy the
guestion 3)
| ' lz]® = Ke z?
Find the volume of ilhe figure of revolution generated by rotati!
about the vy-axis Lhe segment of a cycloid given parametrically:

X = @ + sino0 0SS w. ¥ - r = cog(20)
y = 1 + cos0 1 oordinates for which cos(28) = 0
s!( GHESES 0 . = .
et h.ﬁhe Curve in the Argand plane.
.G_ - ¥ Y

=T

287/266/2




Question 6)

In each of the following cases find the unique solution of the
given differential equation which satisfTies the given initial

condition(s).

87/266/,

(1 + :\')3/4‘:

y/x

lii

v{1)

v{Q)

y{Q)

y(0)

_'v'(U,

¥y (0
¥y o)

Y0

il

1/2
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CHAPTER 7
7.1 The definite integral
To each function f defined on some given closed interval
b
la,b] of real numbers we aim to associate a real number £
. ) |
“which we call the definite integral of f from a to b, ‘
; ; . b |
Intuitively the idea is very simple, the number | £ should be
a
_the area of the region enclosed by the curve vy = f{x), the lines

x = b and the x-axis. Regions "below" the x-axis being assigned

to 1 of the function

R | . )
- §* ¢y A5 region B is
= below the x-~axis

fficulty lies in making scnse of what we mean by "arca" for

cated functions.

ould we mean by the area of the region enclosed by x =0,

axiy and oy = f{x)  whoen

0 if x is rational

1 if x is irrational ?

.
.

i

Possible to assign an area to every function f£.

LTI
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We will only go part way toward answering such questions in the present
course. To begin with we identify some "self-evident" Properties which

the definite integral must satisfy. *

T

b b
(1) For any real number c; cf = ¢| F

a
Here o©f denotes the function whose value at any x is ¢ times

the value of £ at x. (1) asserts that if the vertical distances
between the x-axis and the graph of y = f({x}) are all scaled by a

factor of ¢, then so too will the area be.

For twe functions § aud g dﬁ%mdwzﬂminwmml[&bh

1y b b )
E+ g = f + g.

a a a

Here f + g is the "point-wise sum” of £ and q;

(4 g) (x)

f{x) + g(x).

€aion € is Region A "laid on top of" Region B and so has the
same area as p_

£ £ isgq positive fumction on [a,b]; that is, f(x) 2 0 for all

in [a,b], then

a
e Dofis . . , . )
e _Defmwe integral 1g translationally invariant; that is, if

is the function obtained by "sliding f +to
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the right a distance c¢", then It is convenient to have (5) hold for a8ll real numbers a,b and c

T

bic b & regardless of their order. This is achieved by taking
g = £ -
ate a a I -
y : f :=-y £ , whenever a < b.
A\ E a .

A number of further properties of the definite integral can be deduced

from the above six.

- For Example

If £ is identically zero on the interval [a,b] , then | £ = o.

(5) If ¢ ig a real nmumber with a <c <b then Proof. If £ is identically zero, then

£f=0.1

where O 1is the real number zerpo and 1 is the constant function which
YA a a c '

Sfidentically equal to 1 on [a,b].

Hence,
b b
£ = 0.1
=3 23 b
- x = 0 1, by (1)
- a
= 0 (b - a) by (6}
ia)
f = total shaded area = 0.
a a
= Area A + Area B
N Cf N bf lf‘ T(x) £ 0 forall x in [a,b]l then
a c b
f <0
a
b
(6) 1 = b- a, f is 'negative’ on [a,b] then -1f is positive and so by (3)
a b
. . . s . 1 0 < - 1f
here 1 denotes the constant function which is identically equa
a
b
to 1 on [a,bl] = =14 £ , by (1)
\ ? a
Y A 1 £50 as required. 0
14--- e :
:; Area = b € OF the most useful consequences is the
‘ "' ‘0‘— )
i. Moey
. Tr . - . v
Ta > x é
Y
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190 | urther for a function f which is continucus on the cleosed interval

INTEGRAL MEAN VALUE THEREOREM 7.1.1. fa,bl 1t can be proved that

b

If mM are veal nmumbers such that m s £(x) £ M for all x in : R n b - d
= n_:l;m )‘.f(a'i-k - ) P (7.1.2)
l[a,b] , then a k=1 -
b hi . s
m(b - a) < f <Mb- a) . A result which intuitively should not be surprising (sece diagram below)
a

-+ and from which we can determine the defini . . '
Proof. Since £(x) £ M for all x in [a,bl the function g(x):=M-f(x) erinite integral in a number of special

L CAases.
is positive on [a,bl and so by (3}

b b -
¥ o= N
0s<sjg = J (M - f) Y 7
E /
a a .ﬁ
b
= M.1 + (-1.£)
a .
b b ,
= M 1+ -1 f , by (2} and (1} o e ey = 3
a a Wl e
. b iy LA : S"‘%——-n = 6
= M(b - a) - f , by (6). 7 3 PN Y
a
Rearranging gives
b
£ < M{b - a). LA
| a | ISl LR N
The inequality wm(b - a) £ L]f ig deduced similarly, and is left as an. 0 ; > X
& .
cxercisco. .
AMIPLJ () s w R e ,
o LE {x) 1= x Lo find Lhe derinitoe intoegral from a

A Few words of explanation about what we've been doing are probably e first note by (5) that

desparately awaited,
espar y b b a

It ecan be shown that for a large class of functions, including all A . .

the continucus ones, the properties (1) to (6) uniguely determine the

definite integral, in the sense that for each function £ and each pair

b n -
- - £= 1im 2y [RR)F
of real numbers a,b with a € b there is only one way of assigning th o S .1_ -
: ‘ =1
real number n
; i C
b = bi llm —'E\‘— }{ .
E noe M0y
a
sa bhat (1) to (6) always hold. a " 1
kZl kK= Znn+1)(2n + 1)

Thus we take (1) to (6) as the axioms (defining properties) for the

uld : . ;
- Prove by induction, if you are not already familia

definite integral. L
i
,‘n



122

::Zﬁ -
.
with it), we therefore have .% their consequences, continue to hold is non-elementary. It has been the
"
bf 3 n(n+l) (2n+l) Ei object of extensive mathematical investigations which to some extent
= im - .
0 N 61'13 3 . - . . . .
culminated in the theory of Riemann intograble functions (circa 1850}
and Lebesgue's theory of integration (1904). Functions F i ; :
similarly, replacing b Dby a ¢ ns For which such an
a 43 assignment is possible are termed integrable functions. A1l continuous
f - — .
3 . .
0 functions are integrable, as are bounded functions with only a finite
and so we deduce number of discontinuitios.
boo. pl_al :
R 3 3 5$o'illustrate this, let £ be a bounded function whose only discontinuity
;iﬁ{the interval [a,b] is at c.
i v
. i
When a function f is defined by a formula such as f({x): = x* it M
is convenient to write
b b b
f as X“ or even x- dx, 1
a a a
here the symbol dx  has no meaning in isolation but serves to indicate
that the variable (argument} of the formula is  x.
for (5) to held we reguire
Thus in the notation :
b c b
b . , £ = f + £
[ formula ] d [ argument of formula ] S N c
a . _
we have © We need only assign a value to integrals of the form
b b3 a?
¥7 dx =03 o oy ¢
a £
) a
and equivalently
b b3 3 .is continuous everywhere in the interval [a,c]l except at the
” d :
£2 = = - .
dt 3 3

cl

Because any symbol may be substituled for x  without affecting the ¢f£his note that for any real number £ > 0 we require

answer it is sometimes referred to as a dummy vardable.

Definite integrals for many of the simple functions can be calculabt

in this way. “The procedurc is however tedious and part of our aim is to

find an alternative technigue (section 7.2).
The general question of determining which functions can have defini

. d '.M are
integrals assigned to them in such a way that (1) to (6}, and hence re lower and upper bounds for £ on [a,b])

s T
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and so0 .
c : 125
[ f 0 as e > 0, :
o—g ?% (2) Find, using only the results of this section
yielding : 2
c c-E - (a) Bx? + 3
[ F o= limit | £ . . X + 2 dx
a L0 a
b n 2 2
(b) x?  [Hint: Show by induction ), k* = 22+ 1"
Fxtending this to a bounded function £ whose only points of a k=1 4
discontinuity in the interval la,bl are c,, c,¢..., C we have a 0
: 1 2 n {c}) ax + t
x dt 2
b o1 co b 0 (d) x*
f = f + £+ ...+ £ - 1
a a C . c

In general, for a function £ which is discontinuous {(or undefined) From any integrable function f and real number c we can construct
: ruc

at the point b we take

provided the limit exists.

similarly, wo Lbako

(L8] b
f := limit £
a brao ‘3
whenever the limit exists. Such integrals are sometimes referred to

as improper integrals. We will meet examples of this type of integral

later in the course. X
Flx) := | £ .
EXERCISES : xtended fo k
orm of (5) we have however that
(1} (a) Show that all but the last of the axioms (1} to (6) would b " « N .
satisfied by taking £ c:f B {f " £
e b
5] = £
L = U

a

for every Function f{ and pair of numbers a,b. on ¢ and k but independent of x. Thus, any

- funections

for £ differ onl .
(b} Show that for every function £ and pair of numbers a, b y by a constant and so, if F

a < b, all but the Fifth axiom would be satisfied by taking

tive f ;
unction for £ then every other primitive function

1 b .é form
f f = af(a) + Bf EEH, + Cf(b)
o

F{x) + c , where C 1s constant.

where A,B and C are positive constants with A+4B4C

b-a.
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127
. : : and s0O as x + xgp Wwe have F + F PRI R
We will sometimes denote this expression by : 0 (x) (xg) , establishing the continuity
[x _ .f of F at each point xg. [
£ or [ £ . ' : -
. . haps - o
When f is given by a formula f(x) we will also write ; Perhaps more surprising

is the central result of this section and

much of our subsegquent work;
f £{x) dx.
5 “’rhe Fundamental Theorem of Calculus 7.2.90
« .
For exa.mple x2 dx = T + C. .

o If 7 is am LmitL .
The problem of finding the definite integral of f from a to b ! y primetive function for £ and

f <8 continuous at

is easily "reduced" to that of finding a primitive function for £.

then ¥ ig differentiable at xg with derivative

X
_ . L. ion, so Fix) = J f for ' {x = F .
Tndeed if TF(x) is any primitive function, . ) (xq) |
some ¢, then
b o b F(xo + h) - F(xo)
§f=[f+[f - “-f(xo)’
a a <
‘r) [af Xu‘i“h Xp
= f -
_ ] f(x) - | £(x) - f(xp)h
- o c for some o .
h
. d n
Tt therefore seems reasonable to pursuc the connection betwee xp+h Xpth
. o Fix) - £{xq} The second int i
tion f and its primitive. 0 integra
a func ) Xq X equals F(xglh as
As a general rule, the primitives of a function are "better ; f(xp) is a constant.
behaved than the Function itself. For example *¥p+h
e vt of q bounded inlegrable functid [f(x) - fi{xg)1
Theorem 7.2.1  Any primitive function of a g _xg
h
18 continuous.
x .
Proof. Let F(x) = j f Dbe a primitive for the bounded integrable
c < Maximu I
. d such that -M < £(x) £ M for m E(x) - f(}{g)l
function £ and let M be & boun for x between '
. x
all x. Then for any pair of points X and %0 _ 0 81d xp + R
« g tegral mean value theorem since for x  between Xy and
c C = Ex) ~ f(xg) < M~ where
%
_ [ c \ M= Maximum — [£(x) - £(xq)].
g for x between
. %5 and x,+ h
< Mlx - xgl « by the integral med .08 0
Theorem

* e e
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Now, by the continuity of £ at xp, a5 X & Xg £E(x) + f(xo) and

Similarly, SinCE fOr a re
al number d,6 m m-
so as h -+ 0 we see that M = 0. we know  ——(x)=mx {(x#0 when m<0)

wo readily sece that

Thus d xn+l N
limit Flxg + 1) - Flxg) - £(xq) = 0 e dx n-+l) - whencver n # -1 {x#0 when n <0)
h + 0 h 0 I 'and s0
n n+l
establishing that F is differentiable at x§ with F'(xg) = £xg). ¥ odx o= =4
O ﬁence, in particular
This connection between integration and differentiation, first bx2 dx =[:§§Ib _b? a3
observed by Newton and Leibniz {circa 1670), is seminal for much of a 3 a 3 37

mathematics and its many applications. It provides the key to

determining integrals for many of the elomentary functions. Indeed, o differentiate},

and one indicative of the power of the last theorem

since two functions with equal derivatives differ only by a constant, In?these
cases, the problem of integration is reduced to answo

if T is an antiderivative for f: that is, a function which ring

differentiates to give £, £ =T'; then F is a primitive function

What funetion will diffc .
e, . Lo L. 7 Syroy bt _ s ~ .
for f£. Thus the problem of finding a primitive (and hence integrating) atfferentiate to give flx):

e e . . . idea readj .
can in many cases be ceduced to that of Finding an antiderivative. Si readily establishes the results tabpulated below, with which
4 c

the rules of differentiation are mechaniecal it is possible to build up

a "table" of standard derivatives and hence, reading it in reverse, al - )
function Primitive
a table of integrals. ‘ ,
£
For example: Since E;(sin x}) = cos x we see that sin x 1s an N
X {n # -1) i
antiderivative (and hence a primitive) for cos X, 5 (XA0 when ‘n+1 +c

s5in x + C

cos x dx = sin x + C
- cos x + C

and so in particular T . <1 Sin—l(x) + C

ra| =

1l
'..-l

cos x dx = sin(g)— sin (0}

tan_l(x) + C

At this stage it i1s convenient to jntroduce the notation

Llist 4S5 more n
[F(X)lz := F(b) - Flal, of the "elementary" functions are

kL

raj=

so we could write cos % dx

. )
in x
is ]0

T

we wi i
11l see how such a list, combined with some
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rules for integrals, allow us to integrate (that is, find primitives for)

a large number of simple functions.

EXERCISES:
{1} sShow that

(a) sec” x dx = tan x + C

® s:i.n-l x + vl - x2 +C

(b) sin " xdx =
(2) Find .
dt
(a) n
o] 1 + L~
“at
(b) -
(c) —}—_; dx
1 o

(3) (1) Show that for any numbers a and Db, with b # 0,

a sin bx dx = - %—cos bx + C

(ii) Using the identity

. I ,
sin mx Cos nx = 5{51n(m+n)x + sin{m-n}x]

deduce that
-
sin mx cos nx dx = 0
~Ti

for all integers m and 1.

(4) From your knowledge of differentiation we readily deduce that
for ]xl <1

-1 dx = cos-lx +C.

V1 - =2 ,

This has been left out of our table, however

131
-1
dx = -1 = dx
Vl—X2 ‘/l._x?_
- -1 4
- X by axiom (1)
-1

’f'HOW do you reconcile these two apparently conflicting answers?

~ If f is an integrable, invertible function show that

X £l x)

ctions f and g (f:+lé) = e+ g

ase when f i
: and g are continuous functions not just integrable

also reflect the

= cf! and (f + g)l = f' + g,-]

integrate any polynomial.

3f
12 x3%dx + Tix7ax + 91 dx

1
3t 1 =3
42K + 9% 4+ C.

i T
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-5imilarly we have
we may note that

133

{8 =sin x - 1 + 11x) dx = 8|sin x dx - dx + 1lix dx
I - x= vl - x2 % cos(x°) = —%’COS(XQT.EX
- 11 5
= -8 gos ¥ - sin "X + 5 X + C. = g(£(x)).Ff' (%)
where g := L c 2
perhaps the singly most important method of finding primitives as : = 3 cos and f(x) :=x°,
antiderivatives is a consequence of the composite function rule for - £1x)
x
2y —
differentiation: (G o £)'(x) = (G' 0 £) () .E"{x), known as x cos(x°}) =| g
re
. . . = %Cos
Integration by Substitulion.
. 1 %7
unfortunately this method is not casy to explain and certainly requires = 5| cos ,
I -,
= 5 sin(x%) + C.

ingenuity if it is to be used successfully.

h the idea is to find (guess:) suitable fnnctionsg

To determine T
‘It is useful to rephrase

these results in terms of the "substitution"

f and g so that h may be rewritten as
enice; the name of the method)  u = f(x).
hix) = (g o £){x}.£"(x) h
n these terms, we seek a substitution u = £(x) so that
[that is, h(x) = g(E(x)}f'(x)] d
hix} = au
bo=glu) o
as then
hix) = |(g o £){x).£'(x)
hix) dx = g{u) ggrdx
X
= | (G o £}'(x), where G' =g, or G =
= |giu} du.
= {(Go £f}{x) +C.
f (%} h order to make sense of the 1 :
| g ast equality we i i
This last expression could also be written as g ' Y need the implied
for wu, which yields the answer,

Substitution of £{x}

so summarizing we have:
f{x)

= then h{x)

If hix) = glf(x))E'(x)

Of course this will only prove useful if we have been able to choose 2

for which it ig within our ambit to find an integral.

function g
For example:
S Qo
dx

To find x cos(x?} dx

] stl_.i:ute us=1 4+ x4 , I'lOtint_}' that

fix)
g

Xl/_l_ + ¥+ dx .

du
a;'= Ax, we have

and so

g L
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xV1 + x2 dx = % Yu -%% dx
fairly tame. In this case making the substitution u = f(x) we have
1] ¢ 1% -
= 2lufau=3u o+ J h(x) ax = [ g{u) ax
where the sought for factor 3x 1S missing. This may be artificially
resubstituting 1 + x* for u we therefore have e
cured by writing
%Vl + x? dx = i{l + xz)% + C —
> gtw) ax =|| gw .= | M ax
T ad | &
— dx
= %(143‘) Y14x2+C , if you prefer .
_ dx
= E(U) an du ,
(2) To find | sin®x dx note that inverse function theorem (see chapter 6), provided £ is.invertible.
sinSx dx =| (1 - cos’x)? sin x dx example: To find |Vl - x¥ dx, making the "inverse substitution”
=1 sin x dx - 2|cos?x sin x dx + cosx sin x dx sin u we have
. A %2 _ 5> 4d(sin u)
= -cosx +2|u?adu -} uau x= dx i - sin T aqu v
where both the last two integrals have used the substitution u = cos X = | cos?u au.
.5 _ 2 3 _l 5 + 0 Th]_ R ' ) .
Thus, | sin'x dx = — COS X +§‘COS ® g COos~X . ! ISL ast integral may be found using the identity

[Provided your knowledge of the Binomial theorem is up to scratch, a

similar treatment allows us to find any integral of the form

a
..m n cos~u du
sin x cos x dx

if at least one of the exponents m and n is odd.]

. . X . ma
The basic problem is to find a substitution (if one exists) for y b

and s

which the resulting integral fg(u) du is tractable. There are no

general rules here, one must proceed by trial-and~error guided by

experience gained from practice (see exercises).

In some instances a useful start can be the observation that

h and £

hi{x) g{f(x})) where g is a "simpler" function than

Y YT R NI TSI YT

2 1
cos-u 5{1 + cos 2u)

M N

e found via the substitution v = 21 see

0 we have, substituting sin = for u that

-1 . -1
X 2-51n(2 sin "x) + C -
-1 1 , = -
X + 5-51n(51n lx) cos (sin lx) + C
- 1 —
x + aﬂ{/i - sin?(gin~lx) + C
-1 1
X+5x1/l—x?-!-c

* el
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In general finding a workable substitution is not easy. Its choice

T v, the product u.v i {deri ;
:”g:and ' P 1s an antiderivative for u.v' + v.u' and so

is to some extent determined by the form of the integrand (that is, the

u(x)v(x) ulx)v' (x) + vix)u" (x) dx

function to be integrated), however freguently more than one

]

substitution will work. For example the integral u(x)v'(x) dx + | vix)u'(x}) dx

PR yearranging this we obtain the basic formula
x V1 - x- dx e

2

may be found using either of the substitutions uw =1 - x* or X = S$IN U u(x)v'(x) dx = ul{x}v{x) - fv(x)u'(x) dx

see Exercise 7.3.(2) or in terms of definite integrals

b b b

A few suggestions are:-
u{x)v'(x) dx = | u(x)v(x) a T vi®u'(x) dx

‘a

Integrand Substitution '
ar To apply these formulae we need to recognise the integrand.as a

A function of ax + b (by u = ax +b roducﬁ1of two functions (u and v') in such a way that an antiderivative

completing the square, functions
of a quadratic in x are
reduced to this form - further
gubstitutions are usually

for ‘one factor (v') can be found and also, if the application is

be ft:' i i i
pltful, s0 that the resulting integral fv.u' is in some sense

necossaryl. ;
mpler than the original one.
A function involving ve? - x¢ X = ¢ sin u Ly 5 e
- r = cu ° perationally then the r i . oo
A function involving ve2 + x* x = c tan u or X =€ ule might be expressed better by writing
a function involving vx~ - ¢ X = C 5@C U u.-and g for v' to obtain
A function of sin x and cos X The "t-substitution": f f.g = f_fg - f(fi_fg)‘
only t = tan x/2 o
: used in cojunction with the. implied ti .
. nat the i 1 :
formulas of §6.5. (Sometime - same primitive for g is used at both
u = tan x works better.)
n . :
A function involving fractional x=u , where n is the
powars of x common: denominatoxr of the
exponents.
— COs x dx = x sin x - | 1 sin % dx
¢ b bt
v! u v u' v

Another important method of integration;

ﬁm{?f’?@ -
.
%%%§@$%d

Integration by Parts

derives from the product rule for differentiation: (u.v)' = u.v' + V: twe m
' ' S might have selected cos x for u and x for v

From this we see that for two continuously differentiable funct

2 1

Cos =
¥ dx = jxcos x + ) | %7 sin x dx

e T
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and resulted in a less tractable integral than the original one.
- - . The tri : .
Clearly some care {and intelligent trial-and-error) is necessary. e trick used to find In in the last example often works. That
i : - ha
Integration by parts may be used to derive various reduction . is, we use integration by parts to *fing Jh in terms of /b again a
e s dan
" then solve the i ,
formulae, for example: i resulting expression for [n.
If I ==fsinnx dx, then
n ! "EXERCISES
n- %
I = | sin X .s5in x dx (L For a continuous functig ‘
n ' ;I;, Mo n £ and constant a show that
1
X
. n-1 ., n-2 2 ‘
= sin x.{-cos x) - |({n-1l)sin xcos X.)-cos x) dx e
2 Find
3 4 t, 4
u v u v
= —sin™1x cos x + (n-1) [sin™ “ x cos’x ax xv1l - %2 dx ‘
. by using (a) the ' i
- -2 _ substitutip = - 2
= —-sj_nn lx cos x + {n-1) sinn X (]."Sinzx) dx . nou 1 *
, and (b) the substitution x= sin u
= —sinn—l}{ cos x + (n-1}) sin’ “ xdx - {n—-1) sin"x dx .
Erve that (h) lpads to fSl o]
= n u cos-u du, ] PR .
= —gsinV + (n-1)I - {n-1) I . Making the further substitution
= -gin cos x n-2 a €os u gives
fxm dx = f : 2
51n u cos~u du = _IVZdv - _ _]; V3 "
rearranging and solving for I, we have 1 ; 1 C
=-3 cos™u + C = - 3 cog3 (Sin—lx) + e,

- n-1

I = - % sin" 1 ¥ cos x + - I ther hand, using x

n-2 = COS u gives

- 2 .
x“ dx= —{sin?y cos u du

n 1 n-1 n-2
or sin X dx = -~ o

-1 .
sin X cosx+-n— sin x dx .

Repeated application of this reduction formulae allows us to find

sin" x for any n (even or odd).

Thus
3 .
sinfx = - % sin’x cos x + Y sin®x
—_— (v) dx
1 .3 3 V4 < ox? ——
=-151nxcosx+a— %2 4 2x 4 2
. 3 5in i
' = -%sin3xcos—%51nxcosx+-8— 1 dx. X sin 2x dx
(vi) _dx
3 1= x
=-£sin3x+—3—sinx cos X + -x+ C . f“————_dx ! + cos %
‘ ° ; L-/%
dx
~xdx (vii)

2 + sin %
W ) Slin x
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i i to find: .. : . .
(b) Use integration by parts to n _(11) Starting with the "gbvious" inequalities
' *si . 2n+ _
(i} ®x“sin x dx 0 < sin2® l'x <‘sin2n'x . sin2n .
. 5.
(ii) x tan L x dx for 0 <~ x < 27, show that
L
2
-1 L Sinzr1 x dx
(iii) sin " x dux, 1< e 141
5 . 2n+l 2n
Igsin X ax
0
compare your answer with 7.2.{1) (b).
. =1 ’
[Hint: rewrite the:integral as |l.sin = x dx. Hence conclude that
Considering the factor v' to be the constant 1 which can T oimit 2. 2 4 4 6 6 2n 2n
. . . . . . 2 n - 1-3.3'5.5'7-"'21-1_1 2n + 1
always be done is a trick which often works with integration
by parts.] esult known as Wallis' (1616-1703) product.
(c) Find, using any method 'sing this we obtain the following approximations to 7 .
, + 2
(1) = dx
Y5 - x2 + 2x
{ii) sec_l/; dx
(iid) dx
WWx + 1
(4) (a) Derive the answer obtained in the notes for sind x dx by
.. n
using the reduction formula for sin x dx.
{b) Derive a reduction formula for
cosn x dx.
{c) (i)  sShow that
u
7 on4l . _2 4 6 2
0 o ¥ =357 """ 'an + 1 dx
and Vcos x - Cos {
ding definite j
'2‘ In 4 1 3 5 n - 1 : Siinlte integral from O to f determines the period
51n xdx=§.5—.z.g-.. 5h

with the vertical.)

R
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Other integrals are gimply too complicated for us to be able to Find i ;
: Licat ‘ . find. further we will develop an alternative -
o approach. We begin b indi
, y finding

an approximation to

In still other cases an explicit functional form for the intedgrand

may not be known only a table of values, collected from an experiment i
n terms of the values £(-h), £(0) and £(h). 1In view of Exercise

In these situations it is useful to calculate

say, may be available. B
1.(1}(b) it is reasonable to seek an approximation of the form
: ; ;

an approximate value for the definite integral
b ¢ Af(-h) + BE(0) + cf(n).

a e L
he.coefficients A,B and € will be determined 50 that the approximation

at several points between a and b.

from the numerical values of £
X?Ct for the three functions 1,x and x” (and hence by Axioms 7.1(1)s(2)

Since the definite integral for a continuous function is given by ' i
. T any quadratic). That is we require that

b b-a h
T = limit A+B+C= 1= am
a nor o
~h
one way is to simply evaluate the cxpression inside the limit for a h
- hA + hC = « = 0

sufficiently large value of n.

If we divide [a,b] into n equal intervals, each of length h

and write
Xg =& ¥ =ath... =2 +nh =15 B=<h, and so
then we have
b
£ = h[f(xl) + fix,) +...+ f{xn)] .
R :
For example, using n = 4 we have
! 1 3
e Ll L o Ls 3 : h = (b-a)/n, x = atkh.
l)}\ dx - E[(E) + (2) + (4) + 1] /ny y = @ kh;
= 0.3 {e.f. the cxact answer of O-lé}
: h
E(x) -
i dx = f{x + a + kh) dx

This idea may be developed into the Mid-orcéinate and the
-h

Trapezoidal rules for numerical integration. Rather than pursue thes

= bre
3[£(xk_l) tAf(x ) ¥ f(xk+l)i

T
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xn—2

- %—{f(xn)-i-‘lf(xﬂ"'f(xz)] + -}%[f(xg}+4f(xa)+f(xq)] + ...

h
+ g{f(xn_2)+4f(xn_l)+f(xn)],

yielding Simpson's formula for n intervals (N even):

a

For example: Using n = 4 we have

I}

I, 1 g 1y Ll 35
[ X EE{O + 4(3? +2{2) +4(4) +1]

1N

0.168 {(c.f. our earlier approximation of 0.3 and
the exact answer 0.16 )

In general Simpson's Formula leads to better approximations, for the

same number of intervals, than the other methods mentioned. Indeed we

will later sce that the error in Simpson's Formula is proporticnal to:

. 1
7 while the other methods have errors proportional to o °F
n+
n

EXERCISES ( a calculator may be handy):

(1) (a) Use Simpson's Formula with 2, 4 and 6 intervals to obtain

. 1 o

approximations for } %x°. Calculate the percentage error in each case;
0

does it decrease in the way you would expect?

{b) Use Simpson's Formula with 4 intervals to estimate

il
b dx
0 YCos X

(2) ‘“Tabulate approximate values for the primitive function

x
1
Bx) = LE dt

at x=1, 1.5, 2, 2.5, 3, 3.5 and 4 wusing Simpson's Forumula with

h = 0.25.

b .
f £ = %{f(xﬂ)+4f(xl)+2f(x2)+4f(x3)+2f(xq)+"'+2f{xn—2)+4f(xn~l)+f(xn

145

yse this information to pPrepare a graph of F(x) for 1 < x < 4

‘and so estimate the value for x  at which F(x)

s 4
“(3) {a) show that Simpson's Rule for f f

~h

= 1.

is exact for any polynomial of

the form

£(x) := ap + ayx + apx” + a§x3 +agx + ... +a x2n+l
e A

odd deqrees only

(b} By noting that

R+l h
J ax? + bx -+ c dx = af x2dx + (2axk + b)
k-1

h h
x dx + (ax®+bx + 1
N Lh xobxy c)£h dx

4 3 S 2
deduce that Simpscia's formula is exact for any quadratic.

Extend the argument in (b} to show that Simpson's formula is
exact for any cubic.

n:-deriving Simpson's Rule the coefficients

A, B and C were chosen

0. make the approximation exact for 1

1, x and x'. Tt is possible to

“alternative functions than these Lhreo.

ight be sensible tao choose functions whose form and graphs

Derive i ] i
Ve an approximate lntegration Rule of the form Af(1l) + Bf(1.25) + Cf(1.5)
o - .t

is exact for J £
: 1

Foi—

when f =1, « and x

15 to estimate

obtained in (2) and the

g .
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Et!yizgﬁ_j% Let g{x) = f(%)/fg » then g{0) =1,

THE FUNCTIONS EXP AND Ln g'(x) = %f' (:E}’/r“ S
. . N
8.1 The Exponential Function | = £ /5 (by (%))
The solution of many simply occurring problems requires a function
= g(x)

f satisfying;
fi{x) = £5 glkx).
f* = kf and f£{0) = f A 6

Th ;éfore to solve (*) for any value of k and fy it is only necessary

(Here k and £y are known constants.) B
to kpow a function g satisfying the "differential equation”

For cxample:-—
g' =g and g{0) = 1. .

(1) Population Growth (Biology). Let P(t} denote the size of a

He moment we will assume that such a function is possible (and so

population at time t; if we make the assumption that the number of off-

dels given above are sensible at least in so far as they admit

spring per individual per unit of time is a constant r, then we have;

ns). We will refer to this function as the exponential function

. . dp - ,
the rate of change of population size, == IrP. d denote it by exp(x).

Also P{0) = Py , the known initial size of the population.

exp' (x) = exp(x) and exp(0) = 1

. e ...

(%%)

(

b2

}  Radic-active (or organic) decay (Physics/Medicine).

gqon see that there can be only one such function, so it makes

Starting with an initial amount of matter ™M  and assuming that a iy . ,
g gilve it a particular name. A proof that such a function does

fixed fraction k of the matter M(t) present by time t decays per ist is deferred to §8 2

unit of time, we have

— = -kM, m{0) = Mg . or cach  x,

exp(x).exp{-x) = 1.

reo e I h'e PIOduCt b le O 1 e][t akio EXP(X) ax _l( '}\) 15 dlfferent

an initial investment of I; compounds interest continuously at

MPx) 1" = exp! (x)exp(-x) + exp(x) [exp(~x)]"'

rate r, +then if I(t) denotes the value of our investment by

i

exp' (x)exp(-x) - exp(x)exp' (~-x)
time t we have —

| exp(x)exp(-x) - exp(x)exp(-x) (by *%)
ar
dt

= (d+x)1 , I(0) = I, = 0.

gt Y
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particular x, using x = 0 we therefore get

It

gx) ] ,
exp(x).exp(-x) = 1. O [EE;ETET{] 9" (x) expl-x} - g(x) exp'(-x)

= 0 as exp' = exp.
The result of this lemma is often used in the form

g(x)
- equal i ;
exp(-x) = exp(x) S — - exp(x) 1 § a constant. To find the value of this constant
exp(x) .
put x = 0 and conclude that
Corollary 2: exp(x) ; 0 for all =. &
g(x) _ _g(0) 1 o (x)
) , = h = g
Proof. First note that lemma 1 implies exp{x) # 0 for all x. bNow exp(x) exp(0) ’ yix exp(x) . .
suppose there were some point x; with exp(xp) < 0. Then since
exp(0) = 1 > 0 and exp 1is by assumpt;on differentiable and therefore Temma 5: For any x and a, explatx) = expla) exp(x).
continuous, the intermediate value theorem (5.4.1) givesa point between . |
_ expla+x) L
Let g ({x) = Terxpla) (possible as exp(a) # 0)
1 and x; where exp 1is zero, contradicting our first observation, so
no such point x; can exist and we have exp(x) > 0 for all «x.
") = —— '
i g'(x) exp{a){e#p(a+x)]
. . . . . . : 1
Corollary 3: exp %8 a styictly increasing, and hence invertible functi = ewpla) exp' (a+x).1

Proof. This follows immediately since exp'(x) = expi(x} > 0 by _ expla+x) .

= ‘z;a;a;y- ’ as exp' = oxp
Corollary 2. ]

= gi{x).

exp{a+o)

g, further g(0) =
exp{a)

We next show that exp is the unique solution of (*¥).

ngclude that g is the unique solution exp to (*#*),

.

Lemma 4: Theve is at most one function which satisfics (**). exp (a+x)
—— e

XE(a) = exp(x} or expla+x) = exp(a) exp(x).

Proof. If there were more than the cne solution exp(x) to (*%) then,
could certainly find a sccond function g with g' =g and g(0) =1

We show this is impossible by proving that g = exp. By Corollary 2 th 'ial function

guotient g/exp exists, indeed by lemma 1

g(x)
oxp(x)

it

g(x) exp{-x) 7 eXp(0) =1, by Corollary 3.

and so by the product rule for differentiation t'7 decimal places e = 2.7182818. We will Look e

i S Y
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(ii) Using exp{l) = & and lemma 5 we have
_ 2 _ .
exp(2) = exp(l+l) = exp(1)® = e The Exponential Function: y = exp(x)
exp(3) = exp(2+1) = exp(2) exp(l) = e? om , : : ] ]
I T T T i

and in general, by an easy induction and lemma 1.

exp(nf = e for any whole number n.

Indeed, for any rational value {p,g integers)

2]
aq
expy = 9
q

slope =
height

To see this ohserve that for p,g > 0

11 1, _ 1.9
g = exp(l) = exp{= + = +...+ ) = [exp()]
D B q q q P q
q terms
hediaght
1 1 ’
So exp(a) =8 /4 (the q'th root of &)
and then o ]
~ i1 1 1, .p —
exp(l—)) = exp(> + = +...+ 2} = [CXP(—)]It t — | 1
q a 49g gq q ~20 —1.5 1 s 1 i
st 2. 5 -1.0 -05 00 05 1.0 15 20 25
p terms ' X-—axis .
- oP/d o
The general result, inclﬁding negatives, now follows from lemma 1.
ffercntiate ecach of the following functions.
Combining (ii} with the requirement of continuity leads us to define exf .
vy e MF (x # o)
er := expl{r) for all real numbers r. xesin ® (v) Ix Tx
v :
e™ °oe
. . x -
For this reason the exponential function is often denoted by &€ € (vi) (1 + e"h)—l
instead of exp(x}.
€ach of the functions:
Putting the above information together we scc that the graph of
b4 ~x7

y =8 has the form illustrated below.

LT (x # 0)
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1
(3} Find the following integrals: = 0.6 |- -~- )
. e f
) sin X (iii) dx ' “
(i) f cos x € dx V : y:e_x
dx (iv) I e* sin x dx '
. iv ! I
(ii) x X 0.4 I \\
e” " +2e +1 5,
2 )
se® S —
e ax. T
) Jx | N
| \\\\
0.2 | ' o
. | -
(4) (i) Use 1'uépital's Rule to show: Siutat ittt St N
R -
{a) limit "
b - R
and in general t tG +T tg+2T tg+3T tp+AT  t
.. e* _ . integer n =~ 0. '
{b) limit = = « for any inteq
w o W = ¢ 1
T is referxred to as the Eu-lifb of the decay process.
_ 1/x
(i1} Find llmlg x € onvenient measure of the rate of decay. We will later show that
X :
"
—V/xT L T £ 0.693/k.
(5) Let £(x) := .
0 x =0
‘ 1) (The Hyperbolic fumnetions)
(i) Show that f is continuous.
. . 1 t f ig ® e
O g iples f£'(0) and conclude tha oX _
(ii) Find from first princip sinh x := ———E—E——- (pronounced "schine")
differentiable. eX 4 g%
cosh x := 5 {pronounced as written)
(iii) show £"(0) = O.
. X -X
. tanh x := 51n2 x_8& -4@ -1 - - 2
(6) (Half-Lives) COSH X a¥ g% e*® + 1

i th
For the decay phenomencn doscribed in example (2} on p.146 show

- e—kt
M(t) = My Graph each of

r
How long will it take for all the material to have decayed away:

11) Prove each of

i time
Use the intermediate value theorem to deduce that there is a

{a) cosh?x -

. 1
T at which M(T) = EMU -

For any time

tg + T is half the amount present at time  tp .

(b)  sinh (x+y)

t,. show that the amount of material left by time: (&) cosh (x+y)
O

(pronounced "than")

the above functions.
the identities

sinh?x = 1

sinh x cosh vy + cosh x sinh y

cosh x cosh y + sinh x sinh y.

imilarity with trigonometric identities should not have

you. It is parxtly as a result of this that hyperbeolic

It provides

Y
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i i i a's
functions are useful. The connection is made precise by Osborn

Rule:
A trigonomic identily L converted into a valid identity for

hypenrbolic functions by replacing each trigonometadie gunctuon

by the conresponding hyperbolic one and whenre-ever a product

(oh implied product, as Ln tanh?x ) of two sinh's occurd

change the sign of the team.

.l
Thus, from cos 2x = 1 - 2 sin“x We have

cosh2x= 1 + 2 -sinh%x

We will later see a justification for this rule.]
{iii) Prove that
(a) sinh'(x) = cosh (x)
(b cosh'(x} = sinh{x)
1 - 2
and {c) tanh'(x) = " [ = sech (x) 1]
cosh® (%)
= lnvers
(iv} The functions sinh and tanh are one-to—one and so have in
inh_l and tanh_l If cosh is restricted to [0,=) it also
5 .
-1 . -
has an inverse cosh defined on [1,%=).
{a) Graph these inverse functions.
-1 _ e .
(b) Show that sinh{cosh ~(x)) = Vx 1
(¢) Prove:
(sinh 1) 7 (x) =
«' + 1
(cosh_l)'(x) = (x » 1)
x! - 1
- 1 <1
(tanh l)'(x) = - (|X\ )
1 - -
Find
(v} { 1 o
x? + 1

(8)
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1
dx

1 - x?
noting any restrictions which might® apply to the range of

integration in each case.

(The Gamma fumetion, T(x))

Define T by
(x = Q)

(a) (optional) Show that the improper integral of the right hand

side exists.
[Recall the discussion on pl24.] '

{b) Use integration by parts to show that

Mix + 1} = xI"{x) for any x > 0.

{c} By first showing that T'(l) =1 wuse (b) to conclude that

'{n + 1) = n! foer any natural number n.

Thus I'{x) provides an "extension'" of the Jfactorial funciion

to all positive real numbers.

Some wvalues of ['{x) are tabulated below

X I'(x}

1.00000
0.91817
0.88726
0.88623

.
=N o

0.89352
0.93138
1.00000

L T

o @ ¢

I

':USE these values to graph [I'(x) for 1 € x < 3

the information in (b).]

[Don't forget

Ao e

L4
n.,
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o approximate

formula on 6 intervals t

3 '.j The natural log arithm: v

J e—t JE at .
0 gl 25

(e) Use Simpson's

I

In(x)

E T
2 I ' i g l
T

Note that this provides an approximation for 1'{1.5), [compare

it to the value tabulated abovel, obtained by neglecting tho

integral from 6 onward. Can you estimate what error this

neglect has entailed?

/
L ;
8.2 The Natural Logarithm -
‘py Corollary 9.1.(3) the exponential function has an inverse Oxp | . i
| ; |
L - 1
defined on (0, ). 1 S 3 4 5 | i
1 X ° 7 8 9 10
N - — — ... _a .
Since e®*P (x) _ explexp l(x)) = x, we have that "exp 1(x) is X1s

the power to which e must be raised to obtain x " . For this reaso
exp_l(x) is referred to as the natural logarithm of x (or the

and denoted by 1n x. [Some books Note ip

logarithm of x to the base € .
g } particular that from the defini
efinition we have;

however we will rescrve log » for the

uso loqc % or just log X,
ln(l) = O, ln(e} ] l‘ ln(ez) =2 ete

ordinary or Napcrian logarithm log, . X although we will hardly evel 1
» €r, by the inverse function Th
2orem {chapter 6)

need to use it.]
ble with

= illustrated below may be obtained from

The graph of ¥y = In x
1

exp’ (1n %)

1
exp{ln x)

1n' (x} =

that of the cxponential function by reflection in the line y = X-

1n is differ—

*T
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Thus we see that ln x is an antiderivative of and so

1n

- 1In(l} X.

1n(x)

law

At last we are in a position to demonstrate the existernce of the

exponential function.

Since the function is continuous {indced differentiable} on

{0,=) the discussion in §7.1 shows that the primitive a
®
1
= = dt
In{x) L t

exists for all x > O. Thus the natural logarithm and hence ipso fucto

its inverse exp(x) exist.
A basic property of the logarithm is

function

rational exponents:

(ab)

c

Further this law continues to holgd (see exercise 6)
I

To prove the latter for all real b

b+
c . _ e(b+c)

Armed with this definition we

159

as does the

and

c observe that
lna:ebllla+clna
- eb 1n a eC in a
= ab.ac

(by the above definition).

can now easily differentiate the

X = 0

Lemma 1: For x, a > 0 we have
. £(x) = a* (a > 0)
in ax = 1n a + 1ln x. f{x) = exp{x 1n a)
‘ . . 1 =
Proof. Sinee vxp and ln are inverses, putting z = ln a + ln x we have ' (%) = exp'(x Iln a).1ln a
= \ln a)ex {
lma+ ln x ( pP{x 1ln a)
2= 1n(e®) = In(e' "
= (ln a). a*.
_ 1n{elﬂ a . eln X) , by lemma g.1. (5)
= 1inf(a . x}. Show that
) log x
That is n x = 4 =
' log e (ln lO)log X.
1n a + 1n x = 1n ax Differentiate
(i) ln(sin }c)?“ (iii) xx
i (i) 3%° -
In §8.1 we defined € to be exp(r} for any real number T. {1v) xIn x - »
oxtend this to powers of numbers other than €, by defining (v} log x.
af = e" 1n ®  for any a > 0 and real number; Use 1'Hp:
1'HOopital's Rule to find
_Note: This could also be expressced as in(a¥} = r 1n a.
. . 12 limit ln x
This is what we would expect when r 15 a rational number a - % + o ”
we have p/d in a,p/q ence determine
a = (e )
= ep/Cl In a by the usual rule £oT. limit t 1n t

* g e
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Take exponentials of both sides and let h = 1/n.]
and
o 1/x - Verify that this yiclds the following estimates for e
limit X T
S e . :
N ol y and canh Y (x) - : n H 1 ‘ 10 I 100 ‘ 1000 ’ 10,000 | 1,000,000
. co
. it formulae for sinh = X. -
(4) Find explicit form X - e . 1.n
-1 ve ¥ = —5 i {1+ 2 2.6 2.7 2.72 2.718 2.71828
t: In the case of sinh ~ %, SO 2 ' "
[Hint: n

ing both sioes B @ o anren® Problems with this calculation of € include
irst multiplying
for x by firs

. X .
guadratic equation in € -

the rate of convergence is slow (large n are required)

and
(5} (a) Find ) .
L a win | T
. -
(1) I % 1n % *

(ii} we have no easy way of estimating the error in any particular

approximation.

o2 (iv) [ tan x 4ax From the above result deduce that for each x
(11) [X3 ax

limit (1 + %Jnx

n -+ «

ind
kb) Use integration by parts to fi

(]
Il

-1
(1) J in x dx (ii} J ran X 4x.

. limit (1 + %)n i
(i} by comparing with (2) (iv) .1

n -+ w
[Check your answer to

:Show that the

= y d ¢ and
( b)c a € for all real numbers L an
a =

5-—life of the decay process discussed in Exercise
(6) Prove th.at

B.1.(6) is given by
a > 0.

(7) (Evaluation of e - First Try)

) . . - . : .
1 11 x fOI Which F( ) - l E erc S5 .- : | | | | | | | |

rude estimate for €.

t.f. the more precise value
provides us with a ¢

In 2 = 0.6931472 obtained from tables or

1l.n
(a) Show that €& = 1imit (1 + E) .

a . calculator. ]
n - o

{Hink: Observe that

1 = in' {1}
- 1imit in(l * h) - in{l)
h+0 h

1/h
- 1limit 1Ini{l ¥ h)

h o+ 0

1/h
= 1ip [limit (1 + I} 1, as
h+0

AT
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8.3 Further Integration

freedom t _—

© choose the coefficients of p. ang
. . . . . L , . 1 P, so that the identity
In this section we consider the integration of rational funetions; is satisfied.

that is, functions of the form p(x)/q(x) where p and g are torer B | | ‘
Y repeated application, this result extends to allow a
. i i . ny
polynomials, and of course integrals which can be reduced to this form rational function of the form

by a substitution.

P (x)
ql(X)qz(x)qa(x) ce qn(x) !

Partial Fraction Decomposition

‘ . . ~ where the degree of 2 i |
First note that by dividing we can exprass pur rational function g J °% the numerator is less than that of the denominat
: nator

7 and the

. d,. - ) ;

in the form 17 9pr---09, A8re mutually relatively prime polynomials, to
p. {x) ‘be expressed as 1
pix) 2 i

= p,(x} +
g(x) 1 q(x) ( |
p}. x) p2 (X) Pn (X) . |
where Py is a polynomial and the degree of the polynomial p, is ql(x) qz(x) + ...+ qn(x)

less than that of the denominator d.

is less than that of q,(x)
1
x + 1

x4 2x3 - x - 1 For cxample:

In our last illustration the teorm

x? 4+ %0 - x =1 | x' + xT =X =X
\ X
- x
3 2 3 2 -
x? + ¥ 1 X7+ xs - -
= x + 1 + X l 3 9 ® ol (x ~ 1) {x + 17
=% 1 - XY + ® - X - 1 Y bo ¢ .
Py - x -1 | 1 P¢ expressed in the form

X

= A -
- + E'_xﬂ—_,,_

x -1 (x + 1)°

‘ . {(x -1 2
our second reduction is a consequence of the following general Fix + 1)

result.

: we lllustrate nex ]Ilay be a[_:)p Ed n g era IO deteIllllIl.E t]le
t ll pR an l-

plx)

éfficients A, B
ql(x)qg(x)

A rational function of the form , where the degree

and i i
€. putting the right hand side over a common

) . W mi
of the numerator is less than that of the denominator and qy 9y al nater we have

X

(x = 1) (x + 1)°

relatively prime polynomials (that is, @ and g, have no common A+ 102 4 (Bt (x-1)

factor of degree greater than or equal to 1} mal be written ai {xx - L} (x + 1)°

this i
to be an identity in x we require

p(x) _ p, (x)  py(x)

q. () q.(x) T A
ql(x) qz(x) ql(x) g, {x

¥ = A(x + 1)? + (Bx +C) (x - 1)

whee py and p.,aee pod ypomiali whosse degqree are ““”V““’T““I

.-

néw Proceed by either

at least one less than that of 4 aitd g, -

The proof of this result relies on showing there is suffici®

H o
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(a) Bquating coefficients: That is, collecting equal powers of x
P(x) suh 1 - x '
together on the right hand side we have n ' cii as :
d 9 g(x) {x + 1)7 in the last example, where

again the degree of the numerator is less than th

(A + B)x? + (2A - B + Cyx + (A -~ Q) at of the denominator.

x =
Here, repeated division of %) in
and require a(x) into p(x) shows that we can write
A+B=0 pa_ _ Pt L2t eyt P
qx)™" q(x) ()2 + T T _nix)
24A -B+C=1 ax) q(x) q(x)"
‘where each of th
A c=0 : e numerators Pl(x), P2(x),...,pn(x) has degree at least
1 1
From which we deduce A=C =7, B=-7 one less than the degree of gq(x).
(b) Substituting "key" values of x to obtain equations for A, B : For example:
and C. (values which ensure that one of the terms vanish are often We can write ’
a good choice.) 1 - x A
= B
= +
(x + 1 s X + "y
Thus in our example ) (x + 1)°
where the
he A and B can be found as hefore. Indeed equatin
x = -1 gives Fficients i ! El
ents in 1 ~ x = A({x + 1) + 1 qivos -
: 1 gives A = -1, A+ B =1 so
-1 =0 ¢ (-3 +C) = (-2) or C-"B=x3 <
2 2 and we have
x =1 gives 1 - x 2 1
3 - - - -
1=a%4+0 or A= %—. (x + 1)« (x + )7 x+1

To obtain a third relationship we could use X = 0 which gives

1
o=a+c -1, so C=A=7 omposition:
and then B=-= x' + 2x3
T - I rexox-1 11
7 =x+ 1+ = 1 1 1 1
Xt 4 x? 4 tg. - =
- x -1 ®x ~ 1 2 ( 1)7 4 % + 1
x + 1}° 2
will ]
ater demonstrate (Fundamental Theorem of algebra) that
o any
_ynoml'al ca
- n be written as a
. . rod i
By cither way we obtain . product of linear factors of the Form
and quadrati
¢ factors of th 2 s
x 1 1 1 - x e form =x° + 8x + y (which have no real
, 4l x-1 N 2 ith the possibili
(x - 1) {x + 12 (x + 1)~ 1bllity that some of the factors are repeated

9 this with i
_ the above discussion we see that any rational function

The third and final step in our reduction is to handle terms g tten a&s th
= @ sum of a polynomial and terms of the form

form

s T
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1

A Bx+C : Bﬂg and x =

or ——— 5 -

{x + a)r {x2+Bx+Y)

-1 gives A =1 after which we can readily find

C, D, ¥ and I from the first Four equatibns. |
This was illustrated by our last example; as a furthexr illustration

Thas;

consider the following.

3

Example. Find the partial fraction decompositon of

X+ 2

+ L 1 10x+2
9 ¢

sdxt2 L
3 -

- 1
bpoxi2xh-2x? x+1 -1
+2x0+2 -3t — - bid \

* * X2l X:+x+l

(%" +x+1) -
X2 + X

<6 + 2%5 + 2x* - 2x? - 2x - 1 Integration of Fational Functions

pretending that after a little playing around we noticed that We have just seen that any rational function can be written as the

both 1 and -1 are roots of the denominator and so after some further: sum of a polynemial and terms of the form

A or Bx + C
frolics arrived at the factorization

r ]
{x + «) (x? + Bx + Y)S

6 4 2x5 4 2% - 2x2 - 2x - 1 = (x+l) (x-1) (x24+xs1) 2,
| ; this form.
we have from the above discussion that

Since this is always possible we conclude that any rational

+
x3 + x I 8 + Cx+D + Ex P

o el y
. . . : LI
Ko o2xb o+ o2x" - 2x° - 2x - 1 x* tx+l (x=+x+1) Erdeed

and we require

J A dx Aln(x + w) + C if r =1

O .
I -r +C 1f r#1

el

9 (x + ﬂ_}r
wix = A(x-1) (xF+x+1) S+ B(x+1) (%" +x+1)7+ (Cx+D) (x+1) (x~1) (x +x+1)

+ (ExtP) (x+1) (x-1)

Multiplying out, collecting terms and equating coefficients (you shoul Bx + O

may be found b
(x~+ Bx + Y)S Yy
do this, I had to!l} we obtain

o . ) .
ompleting the square and making an appropriate substitution to
A+B+C =0 | 3
A+ 3B +C+D =0 .
| — =+ E du
A + 5B + D+ E =1 e et
o 1-
- A+5B-C +F =0 E du A # 1
. s
(u? + l)s 2 1 -3 4
_A+3B-C-D-E =1 In(u + 1) s=1
- A+ B -~ D _F:O

5olving thesewe have

’ 1
——
an 2 du = 1 u Js -
1 10 - -2 - -L ana r=-%. (u? 4 1)S 4. 28 - 3 1
A=1,B=% C=-5 P~ 5 F 3 3 ) 25 - (u2 + 1)571 28 = 22+ )5t du ,
ul
[Here I actually “cheated" by noting that substituting x = 1 give

T
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to find the first integral. Remember | and
du -1 :
[ - = tan u+ C (ii) % + 9
ut + 1 - ax=4f_ w3
- iti ; (x= + x + 1)? 3 5 du
For example, using the partial fraction decomposition found previously } fu? + 1)2
we have: _ -z
- v 2 du
3 <
0 ( xt o+ 2x3 - x - 1 (0= + 1) Y3 (u? + 1)2
dx
x3} + x7 - x-1
- - =2
1 1 1 i ( ¥ i% = + 1 du
_ 1 1 1 1w _ = I{u” + 1) {3 3 5 -
= [ x + 1 dx + J 1 dx + I 5 dx a Jx T 1 dx u® + 1 u’ 4+ 1
(x + 1)
230 -1 2. -1
+ 2 tan .o
2 2 u + C
_ x 1 1 1 _ 1 3{ur + 1) /g
= 3 + ¥ + Z—ln(x - 1) - E-X T 1 a In{x + 1) + C. '
2 = X
X 1 1 x - 1 = P 2 ~1 3
= — 4 X - + = + C. N +- 2x + 1
2 T T 2x o+ 2 4ln{x+l] X© 4+ x + 1 J_{t = €=
V3
. Combini
(2) xd + % ax (Combining these results ve have:
o o2xh o2t - o2x - 2x - 1 e ox
x6 + 2x5 4 axh - 2x2 2x - 1 o
dx 1 dx 1 10x + 2 1 X+ 2
= E - = dx___.
x+ 1 O)x -1 9y x4l 3wk + DY
; =Inl(x+ (x -1 - 29, 4,2
) 1n ?(Xh x4 1)
1 10x + 2 1 x + 2
= In[i{x + L) {x - 1) /9] - %— dx - 3 _ x Lo

3 4 x o+ 1)

ughly forgettable result.

To find these last two integrals we proceed as follows. What you shouldn't Forget
get are the

a 1 3 Hes used to derive it.
Since x* +x+1=(x+* Eiz o making the substitution

ave illustrated
all these techni i
ques in just two exam
ples. Y

4 = 2x + 1 ocu
= expected c
/3 : to know and apply the s i ;
ame ideas in simpler cases. F
ated ratj ToeE
onal i B
e have ) functions integration in elementary terms i
etical curimes s 1s almost
‘ uriosity, ce :
L o ' rtainl
(1) 10x + 2 dx = 2 5u /3 da - Y a tour de force, except that since the
n 2 . ore i
xtx+l ur + 1 mechanical there now-days exist "

artificial intelligence"

-1
5 in{u? + 1) - 2/3 tan ~u +C

A - 2%t
5 1In [%(x2 + ¥ + l{}- 2/§ tan L 2x+d C
3 V3

ich woulg
; perform the above integrations in a matter of

mlcro— CDm_{J'the:r: .

+

I

T
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EXERCISES: CHAPTER 9
(1) Find the following integrals. APPLICATIONS OF INTEGRATION
(i) { ;fl—d}é_x)— 9.1 Areas

From its inception the definite integral

(ii) dx
ii
};2 + X3 b
J I{x) dx may be interpreted as the
a
X
(iii) 5 dx ‘arca of the region enclosed by the curve = f(x) the 1i =
(x? + 2x + 2}° a : Y Yy = f(x), e lines x = a,
x=b and the x -axis (subregions "below" the x-axis being assigned
dx (int: x* + ¥2x+ 1 is a factor] |
(iv} — negative areas), see §7.1. .
1+ xt '
Intuitively it is useful to think of this integral representing
) [ 1+ o ax he sum of infinitely many Jinfinitesimal "strips" of the form illustrated
v -
T % .
1-e elow. The strip sitting on the point x having arcag  £(x) dx.
Ay
3
Jo4ox + 2
{vi) = > dx
<"+ 2x* + 1
y = f£(x)

{(2) Prove the Reduction Formula

[l TR R

du i
— _ 25 -

; 2s - 2 2 s-1
us + 1)8 s (u” o+ 1)

-3 1
u + 2s = - 1 du.
= {(us + 1)

€ all subregions are counted as positive.

ls over sup-intervals throughout each of which the inteqgrand has

If f(x) = x - x2, the signed area

.. ,
fof T3

R T
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f\y | y
| 1
2+ (2,2
N i . |
¥ =\x—x2| | !
i
i :‘
1
‘ i
l i
| s
' T (1,1 1
while 1 - . !
Q Sk e - " [
2 ' ! ! i
A = f ,; i- !
J‘U | l ) i_.;_l L :
1 | 4 I '
= J £ + J -F < R Cer? I !
: ! - x - %' N4 : i
S ——— Yy = X X '.l 0 - l b
£>0 £f<0 . ; :
' P oven by : 2 inE
1 2
= J x - x2 dx + J x? - x dx ’ ' f¢ “1+/5
0 ' x dx + N R o L
. 0 f Q+ /2= e02) - (1 - 5T TATE) ax
- 1+/7
' 2 4 2 V2 T (% = 1y7
gimilarly, the area of the region enclosed by the two curves Yy = f(x), L, (x - 1)2 ax.

y = g(x) and the lines x =a, X = b is given by
b
Y A = J |£(x) - gx)| ax
/[\ a
= g(x)
= £(x)
..
“x

Using these resul
complicated regions, usually by decomposition into "simplexr”
the area of each one being determined in the above way-

In almost cvery case

a good diagram.

e arca of the region

For uxamplc:

[(x,y) : v £x, x2z0 and (x - 1)° 2

ts it is possible to calculate the area of quite

sub—IEGi”

1 3 + 3 s a
an essential preliminary 15 the preparatiol

In so it i i
me cases 1t 1is expedient to work with the inverse Function

5 consider our area bui
_ uilt from *infinitesj
infinitesimal strips® parallel to

xis. Th i
en using the formula of exercise 7.2(5}) - a result which

150 . 1) I}
be derlygﬁ using integration by parts - we have

£{Db)
f(b)b - f(a)a —_ f_l
fla)

rectangle
of area
£{(b) b

AN
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For example: In the last jllustration we would have 175
A=J1+E—(yw1)2 -y gy ' X y
. o 5 .
> 125 :
e . 0.
0 .25 “2 _J__.
7 2
= 1 + = .
2 .375 1.85 0.38
.5 5 0
Curves Specified Parametrically .75 V2 -1
V2
I+ is sometimes convenient to specify a curve by a pair of equations 0
' -1
x = X (t) -2 0
0 1
vy =¥ ().

- . . N
ecause ()1 {:I]E p_ Erl()dlclty Of silne and COSiI’lE fOr largor va

The curve is then the set of points {X({t): v(t)), one point for each val L
: rve retraces itself. - - ] the

|] -!_1]: Of each !)()lnt on urve g @ POlHtS . ] £ ’

by a corresponding value of t. [If we interpret t as time and

at time t, then as time progresses

e eion ot i We therefore see that these are parametri
etric equations for an i
ellipse;

the point is seen to trace out our curve - this corresponds to the

My D
. : kel R 2 _ .0
archaic notion of a "locus".] (2) * ¥° = sin® 7t + cos? fpt = 1.

[

AY t2 -
the alb i
Y . ove cxa
. t mple illustrates, a curve expressed parametricall
| : ally need
nE correspond i
N . | . s tc a functional relationship between x and
l .. z ¥, at least
‘ ‘ ver the whole
.[“ﬂ)_- | ir ' e range of parameter values.
‘ ‘ l f however x i i i
| ‘ t 5 an invertible function then we have
‘i { ! — —'l (x)
X(tl) X(tg) Xltg) )
For example: For the curve specified by
X = 2 sin 7t
{x
Y = COS mt )) N
we have -
Ethod Df ns

inverse substitution" discussed on page 135

T e
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For example: In the last example X(t) = 2 sin Wt is invertible for :
oL e : But then
0£t = %-, so the area of the ellipse in the positive guadrant is given ' ty . .
Y == dt = ax dx
by J at f y =5 db o+ J y X { dx
1 tl tl to dt at
: d _ - 1
2 cos it —(sin wt) at ik
0 dt E S
. - {a + B)
2 B
: 1 = + C.
= 2u J cos® Tt dt = ~§n
0

(so, total area of ellipse is 2m)

t .
x = X(t)

1n fact the above formula feor area remains true even when X is not

invertible. To see why this might be SO consider the following

schematic illustration. ' teri
aram : '
p eterizes a simple closed loop {thus, the points (X(ty), Y(t;)) d
[ 1 an

4\3’
P (X{t2), Y(€y}} coincide and as t varies from t; to t, we mal
2 make one

T
dax
Y({t) — 4t o
\ L:l at quals the area enclosed by the loop.

B T 3
hus the area of the ellipse considered earlier is:

2

A = 2m J cos? wt dt = 27
0 .

ty <t <ty , Ep <ES T

the parameter ranges:

First, note that in
iva'

ty € £ £ty x(t) 1is invertible so the above formula applies to g

zUrves Specified in other Coordinates - Polar Coordinates

to X2
dx
y ——dt = y dx = I Treduentl -

Jtl o ];1 Y @ curve 1s morec naturally described using a coordinat
o
tem other than the Cartesian one.

. » To i
| l ilustrate thi i
x : is we will ide i
{ T{%E - [ e consider the Polar coordinate system;
t ) L.ch the positi i i
3 J position of a point P 1is specified by the ordered pair
where
ty Xl
N | r 1is the di
N ] ) e stance fr i % '
[ . ) J . e om P to a fixed point 0 (the pole)
T3 *3
B is th
_ e angle (measured counter-clockwise) between the line
OP and a fixed direction OF
g
*
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For example: The polar coordinates of the point (-3, 4) are given by
' YA
: r=+9+16 = 5 +4
P : B = I[ + tan—l 3 -
2 4 .
¢ v
j = 2,214 j
-
0, i
e ] g s
el -3 0 4
c}P 1e) (Fixed line)
D o

te that lar rdinat T r : T r . 2n%)} In general a curve
Note tha he polar coordinates (r,8), (-xr, 8+ m) an '

. p y . Sa P - lglllty
i all S Ele tllC me OJ..ILL'. To remove thlS aﬂb Ilsi[
I +

(ST 1m am se t e re ea .h- I i Ie 0 }

i ; 9) satisfying these . . |
oint P there is only one pair of coordinates {x,8) elationchip e
P
r coordinates of P.

ola
restrictions, we will refer to these gs the p

= Bp(a constant) line through the pole inclined at

an angle 6y to the fixed direction

i with the
in order that the coordinates can vary continuously

many situations useful to allow r and

ok 1t iS4 Ry (a constant)
position of the point it is in

circle; centre the pole, radius Rg

. i - os({ - 0p) = r line b the point el
0 to range over all possible vilues. o 0 ine through the point Pglrg , 9p)

and perpendicular to OPg

i igi ole and
For a Cartesian System 6f axes, with origin at the p
e} 3 '

: ! ent ( :Ol 60) r radi 15 RU
. .
Xx—axls 1n 2

circle; centre (Rp.0), radius Rp

r=v/x2 +vy2 , and

¥ = r cos O . circle; centre (Rﬂ.g),radius R
| 8 is the unigue solution of
y = rsin?® cos 6 = X/T
sin 8 = y/x _ ‘ | |
toncern ourselves with curves given by relations of the form:
.VA\ in the range 0O £ @ < 2w.
1

[tote, this gives - 2
tan O = v/x.]

r=D5b+ acos &, or the special case (b = a) of the
a {1+ cos B).

curves; ¥ = a sin n@ consisting of n petals,when n is odd,

etals, when n is even,equally spaced round the pole

R T
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tan ¢ = tan (Y - @)

= SianDSG—‘coslps.in@
COs ¥ cos B + sin § sin o

tan ¥ cos 6 - sin B
ces B + tan ¥ sin §

© But, tan ¢y = ¥ _ dy Sdx
. dx di ao

dr
The Archimedean Spiral; r = a®@. _ag S8 + R cos g
dR
In sketching and analysing these curves you might make use of ag cos 8 - R sin @
the following.
dR . g ) .
- . 3g Sin cos 0 + R :
{a) Symmetries. TFor example, if R{-0) = R(8) then the curve is gg cos<{ -
- sin
. . - . oy - . . 3p @5 8 - R sin g
symmetric about the line & = 0. Similarly if R{-8) = -R{D} it is tan ¢ =
i - - i i ¥ h i dr
symmetric about 8 /2 for instance this would be the case when xr ) cos 5 4 a@.slnz 6+ R sin 8 cos @
a function of sin 0 only. Useful symmetries can also arise from the. gg cos 6 - R sin B
periodicity of the trigonometric functions (this is the case for the rose
_ _R
curves) . dR
dg
(b) Bounds on the valuec of r and § . tang= R gﬁ '
R

For example, the curve r = 2 + s5in 0 must lie within the annulus

1< r < 3. example: To sketch the cardioid

(c) The dirvection of the tangent(s) to the curve r= R(B) = 1 + cos

(i) At the pole: given by the roots of R(0) = 0.

r # 0; if the tangent makes an (~€) = r(8), s0 symmetry about 8 = 0 (hence we need onl !
nly work

(ii} At the point P{r,8) where

¢ with the line OP, then " the upper half of the grapn).

v

angle

tangent © Curve is confined to the disk |r| <2

thig

and plotting a few values we obtain:

R Y.
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nrae [£4 o (.] 1 C. — [} S E rom t [=] abO e
the v
hD ¥—axXl1ls W EL]_SO nee

following information.

= 1 the roots
(c) (i) The direction of the tanggnt{s) at r = 0. Namely,
of 1 +cos 8 =0; 6=1. _
/dR 1 +cos B
joi ince Rf—/ = — =7
(ii) How the two halves joln at (2,0). B5inc 9 sin O
¢ =+ 0 or 2m ,

>t as

CItlLL\l and s we haUE;‘ the CDHlplLth plCtuIC
thC tangu[lt 15 v

Y
F;

1

by the parametric

v

‘Substituting x(8)
. 6,

|

1

dr , . .
R cos 8(35 sin 6+ R cos 9) - R sin B(gg cos8- R sin ) 46
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diagram we see that this (shaded) area equals
1
A+H+D+C—5(}\+B)—%(I\'i*[))

LB+ O 4 (D4 Ol

=

x] Y2 _
%Uf . fl:l
T —ixa Y1
Yo X0
1 -1 -
s [ ]
Y1 x]
1 dy _ dx
> x(0) a0 4aa y(B)de ds ’

expression for area.

R{9) cos 8, y(8) R{6) sin 8 we obtain

I

hich simplifies to

tinates This can also be remembered by the follow-~
. ; ordinaile i L eme 7
Areas associated with curves given 1n Polar Lo B2 ing elementary triangle.
= R(B) and 1 2
ed by the curve T = R® dp .
It is natural to seek the area enclos Y 2 5 Area of
1 —qn~ circular
the lines B = 03 and 0 = 02 TR AN v segment is
o = 6 0 R 1ran
Y
: The areca of the Cardioid r = 1 + cos f in the positive
¥
A
./—'—_‘“—“-.__‘
J_// T \\__
A n AN
/18 ==
/ 2
\
Curoe ( -
: q : r:R(G) ;.
! \ ! y::f (X} ]
t ! given E ) > 5
II metricd 8 =0
|
1 »x ;
i
x g
0 ) 1 e




| =

b

ioid is
Similarly the total area enclosed by the Cardioid

HENEe]

9.2 Yolumes of Revolution

184 185
i :; Building on our intuitive view of areas as the sum of infinitaoly
2 (1 + cos 0)2 de ' T many infinitessimally thin strips, we may consider our solid to he
/9 -
. composed of an infinite number of infinitesimally thin circular
2 1+ 2 cos 8 + cos?® @ dé

lamina ecach perpendicular to the x-axis. The lamina centred at x
0
. having volume TF(x)2dx - see diagram below. The volume of our solid
(2 s 20 ae
3/2 4 2 cos @+ 1/2 cos is then the "sum"
‘0 X2
VvV =7 f F(x)2 dx .
. )

If our curve is given Parametrically by x = X(t), y =7Y¥(t), inverse

substitution gives )
ta2

2m 9 3w v =1r( Y{t)?2 ax dt
I(1+cose) a8 == - t dt

2
0

f r X = X = X:; we I’Otatc a urve Y - f( ) u -

0T example: The volume of the ellipsoid of revolution obtained by

Y
Totating the ellipse
, i revolution. 2
we obtain a so called solid of Ei + X 1
2 2
a h*=
~a
out the X~axis, is 0
a
)
v = nbgf 1-%ax = 24p2,
~a a” 3
y = £(x)

[Note the particular case

of the sphere, a = b

ﬁérnatively, we may regard our solid of revolution to be composed of

flnitessimally thin

\’

‘cylindrical shells'

each of volume

i

21 % length of cylinder x y ay

Alagram below. This sometimes leads to more tractable integrals.

The volume of the solid of revolution obtained by rotating

axis the curve ¥y = x<

T



length
2 - x=2-"7y
186 ¥ i ! I
ﬂ\ - ' _ 187
1 4 ' YA
27 J y dy + 2r J(z - )y dy
G 1'
L
= 2 _ 2.5/2
=1 + Zﬂ[g 5 Y . - chdrd of length
_ 3 SOy = X 12 (F(x,) - 2
Sﬂ’ 1 ‘ 2) f{xl))~
REMARKS: ;,
|
(1) In setting up the volume integrals, particularly when using the i :
cylindrical shell approach, it is bost to work from a good ” | "
xoza 1 x, i .
3 x=b X

diagram.

: Accordingly we define th
e arc length of th
e curve vy = f{x) betwe
ween the

(2) Similar formulae {obtained by interchanging the roles of x and

y) apply for the volumes of solids obtained by revolution about points {a, f(a)) and (b, £(b)) to be

the y-axis.

b
b
S = TR
9.3 Arc length of a Curve [ Lo+(en”

For a continuously differentiable function £ and real numbers

a, b (a < b} if we let x,_=a + kib - a}/n, it can be shown that REMARK : 1f .
' ' k we defin
© S(x) to be the primitive

n-1
limit ) /(x
n -+ o k=0

n

-1 £(x,_, ) ~ flx)
- %
- limit 22§ V/{/+ R
oo e U k=0 Ml T Tk

exists and equals

X
5 () =fm

~ - 2
Xk)z + (f(xk+l) f(xk)) N

h+1

1
I(Sf ((55)2 = (§x)? + (6£)2
oxr
8s .,v// §E)2
§= “Wt &EJ

b
f 1T + £'(x)* dx

From the diagram below (with n = 4) we see that it is reasonable 9

interpret this 1imit as the length of the curve between the points

(a, £(a)) and (b, £(b)).

-EDI' the
o arc length between th i
| 2 points t t X(t t
(X( ])ry{ ]))r { ( 2}rY( 213.))
3

L B
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x(t2) 2
. L ay’ ax is tho curve traced : i
Stl _ N 3y out by a point on the circumference of g cirecle
. radius r, as it rolls along the x-axis. o
P y ‘
. - A
_ [, [a]? 8%
= dx dt
ta |
(making the inverse substitution x=X(t}):
t2
5 2
- ax)®, 4y 9XT g
= at dx dt
Tty v
S0
It"] — 2
by ax
S'_l - (1t Th 1
) e length of one arch is given by
27
dx|?2 dy)2
: @) * |a]

in particular, for the Polar curve

2m
= a f/(l - cos 8)? + sin2p gg

r = R(

0

have 3
we 7 ax)? | féy 2
ax ax = a s/.é(l ~cos 8) do
0
dRr 2 4 (Rcos B + o5 sin 8)2 -
- (-Rsin9+_—cose) a9
de - sin 3
2a sin = dQ
0
>, {ar}®
= R aa o
- o !
= | -4 a cos 5;1 = Ba,
S0 U
02
Bz =
o Surfa i
, _ ces of Revolution
We ipy i
estigate the surface area of the sclid of revelution generated b
> ne y

y=£f(x), ascxzx b, about the x-axis.

e ically by '
l . . clo’l,d iven parametrlca LS50
EEEEE&E: The oy g Start (not to be learned)
. - a(@ - sin @, y =all - cos & Bet |
cti
on 9.2 we regarded such a solid as the union of ;

L

-SISl'Inal lamj - 2 X
na, each lamlna has a surface area of h‘iif{") dx
L
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o the surface EXAMPLE:  fThe are
thus we might imagine using 2“[ f£(x) dx to compute the & : area of the surface generat
u =
a

v = r ed by rotating gne arch of the
in fo cycloid
area. Applying this to the curve Y x 0 < x <1, weobtaln v

the surface area of the cone generated v = x X = alo - sin 8) S
1 YA\ about the x-axis is
2m [ x dx = 7.
0 2
2
. - * ~ 11 1 2Tr Y /"d_x dY 2
However, as is easily verified L} (ti (ét ax N
{do so) such a cone has a .
= 24a2 _ -_—
Purtace sree ¥ e > (L cos 8) V(1 - cos 8)? + gin2? 0 ds
i c
X
2%
= B8ma’ f sind &
0 n 2 de (SEE Page 188) "
T
- e f sin? ¢ g 8
0 (¢ = 5.)
infini imal bands 1
i to be composed of infinitessima )
Our error was regarding the surface | . e w o . - )
with area 2%f(x) dx obtained by rotating the "horizontal" segment of i
04
' anis = — a2,
length  dr  about the x-axis. -
The Correct Lxpression | o the o
i i § bands obtained by rotatin
We need to view the surface as & union © i
i L 52 = 2
the infinitessimal segment of the curve at (%, £(x)) with Length . f F(x) ds .

a

= V1l + 2 — he ba i then areas are 51 ad
1 £ (x) dx about the x axis. The area of the nd is th assign : . . .
ds

surface generated by
of the curve wh
ere
arf(x) ds and we have for the surface area _

fx i
(x) < 0. 1o obtain the actual area we shonld

1l

b
SA 27 { flx) ds

b
21rf ]f{x)f ds .
p a

il

36}
2% J F(x) V1 + £r{x)2 dx
) i

or for the curve given parametrically by

2
L x? - 3x + 2 dx

x = X{(t) , y=7Y({) we have € of the function ,

e average yaly

= f(x) over the interval
15 defined tqg be

.1 P
b-a | £

a

i

P T e

d 't
he average value of fx) := x2

- 3% + 2 over A 91
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Give a geometrical interpretation of F .

(c) Find the area
2

A= f |x2 - 3x + 2| dx
¢

{2} By evaluating

r
f Yr? - %% dx
0

deduce that the ratio of a cirecle's area to the sguare of its radius

is # , where g- is the smallest positive solution to cos x = 0
(see 86.5).
(3) Find
(i) The area bounded by vy = sinh—'l ¥x, x =0, x =1 and the x-axis.

(ii) The area enclosed by the curves y = 2%, y = 2x3 - 3x2 and the

. 1 1
lines x = - 3 X = liu
(iii)The areca enclosed by the ellipse x = a sin t, v = b sin t.
{iv) The area cnclosed by one arch of the cycloid x = a(d - sin 8),

y = a(l - cos 0) and the x-axis. (see p.l188)
{4) Derive the polar relationship for each of the curves described in thef
table on p. 179, 1In ecach case; sketch the curve and find a Cartesia
equation for it.
{5) Find the area of one petal of the rose curve r = sin 38 .
(6) Find the volume of the solid obtained by rotéting:
(i) The curve y2 = a?x/{2a - x), 0<x<a
and

{ii) One arch of the cycloid

x = a{t - sin 0}, vy a(l - cos 8)
about the x-axis.
(7) (i) Show that the perimeter of a circle of radius r is 2ur.

(ii) Find the total length of the cardioid r = (1 + cos 0).

(8) (i) Find the surface area of a sphere of radius r.

axis the Segment of the

¥ = coslt, Yy = sinJe

which Corresponds tg the range g < t =

is rotated about

ST

the x-axis,

REC T
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CrapTER 10

POLYNOMIAL APPROXIMATION

mating & Function by a polynomial

a
10.1 Criteria for approxi

| | (0
1<
in this chapter we address the basic du

: 3 tas a
' hich approxima-es
ified degree n, W
ial p, of specl
Po]_ynomla

i int Xp-
f in some neighbourhood of a given poin 0

(1
specified function

5 G y g p ppl Ed
Ll

4 Or Xa ]1] Q 1a Y ]aVL' made use 0[ LIIC
X 1 F} I am surce tl t ou N
matl‘l(_matlcs-

appro ximations

(3)

for values of X near

- h
.

[= t}lat thl?. glven [_JOlnt 15 XU O By tlle ('.'ha! gae o varila
We wlll assun

v c l tIaIleU m th-e polxlt Of lIlteIeSt ln-tD tlle Orlgll’! 4
t :

X X - Xp

g t of -
ity. In the statemen
tion leads to no loss of generallity
so this assump

agise in many
" imates" could be made prec
' ®
our problem the word "appro

50
different ways.

O"
i £ for = neaxr

1d for example take "Pp approximates
We cou

+o mean for some £ > 0 that

[3 15 Cllosell tD minimize tlle la ge od lffeIEIlCe in Ualues etwe‘ en-
b .

that is p

N -g,E):
- in the interval [-€,

£ at any point 1n

p and

ict
polynomial (of degree n} for which

Maximum lf(x) - p(x)\

we will settle on the following more

and translating the above criteria into

195

Both of these lead to useful theories of d@pproximation, however

"heuristic" criteria for p being

good approximation to £, namely that we reguire:

) p and f

should have the Same value at 0; that is, the two

graphs

Y = p{x) and vy £{x)

should coincide at the point x

0.

}  The two graphs

Y = p(x) and vy f(x) should have the same slope

at

X 0.

Thinking of the graphs as pathways, the two paths should

head in the same direction at 0.

The rate of change of direction for the two graphs should be the

same at x 0. That is,

our two pathways should "curve" in the

Same way at x = 0.

The rate of change of the rate of change of direction for the two

graphs should be the same at

X 0.

-4

etc, as far as possible.

Setting p(x)

= apg + ayx + agx2 + a3:~:3 RPN anxn ’
o n—

p'ix) = a, + 2a,x + 3a4%° + ... + na x

2 . n
R (x) = Za, + 3.2a3x + ...+ n(n-l)anxn"

e — n-13
pP'"(x) = 3.2a3 + ... ¢ n(n—l)(n~2)anx
),y _
P" (%) = n(n-1) (n-2) (n-3) ... 2.1.an '

statements about derivatives

—E£X<E we have:
(0) p(o) = £(0} so ag = £{0)
is a minimum;
(L) p'(0) = £' () s0 a; = £'(0)
OF (2) p"{0)= £ (0) 50 ag = £ (0)/2
e ;; is chosen so that
(3) PIII{O) = f”l(o) s0 8.3 - fl!l(o)/3.2 -3
(E(fud - plx))? dx :
—E ...
is a minimum.

oy
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In general it is not possible to maintain agreement:for any higher

{m}

derivatives, since after m =n (the degree of p) we have p {x) = O.

Summarizing: Our criteria give, as the n'th degree polynomial

approximation to £ at x =0

" (n) \
+f (D)X3+---+f |(0) xl’l

fll (O) 2
X 3! n:

f(O) + £ (O)J{ + '--"""'2'-—‘

f(k)(D) xk

k!

1
| o383

k=0

where k' = k(k-1)(k-2)...2.1 is the factorial function of k.

We will refer to this as the n'th degree MacLaurin polynorial for f.

EXAMPLES:(1) For £(x) := sin X we have:
£(x) = sin x S0 f(0) = 0
f'{x) = cos x S0 £'(0)y =1
£ (x) = - sin X 50 "0 =20
£ (x) = - cos X 50 F7(0) = -1
£V (x) = sin x so0 £ (0 =0

the above pattern now repeats itself indafinitely.

Using these we have as the MacLaurin polynomials for sin x

degree polynomial
1: py{x) = x
2 = pz(x) = u
3 pylx) = x - x3/30 = x - x3/6
4 py(x) = x - x3/31
5 : ps(x) = x - x3/3! + x5/50 = x - x3/6
+ x2/120
G : pgix) = x - x3/3% + x5/5"
7 : pr(x) = x - x3/30 + x%/5! ~ x//7!

197

(and in
general, the Polynomial of odd degree)

2m+ 1 ;: p ( x93 5 %
) X) = x-S X _x 2m+
il R T S TLE sl
m . ' (2m+1},
= 7 k _2k+1
(-1 ¢
k=0 )" x /(2k + 1)

The fi isti
first four distinct approximationg
" r

togeth . ,
~graphed below. gether with sin x are

successive MaclLaurin A I

PRroximations To Sin(x)

X—axis

(2 x
} For f(x) := @ we have for a1 n
(n)
£ = ¥
(x) =@ so £ 0y o
q the i
: Successive MacLaurin Polynomiaig for x
e are

R T
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(and in general )

n : PL(x) = ~(x + x"/2 4 xi/3 4

1

=-0.692 {c.f. In{0.5)

.. + xn/n)

1
r
r(r - 1)

rir ~ 1j)(r - 2}

= -V &
k=1
Evaluating these for , - 0.5 we obtain ag Successive approximationg to
ln(O.S);
-0.5, —0-625, -0.667, -0.682, —0.689, —0.691,
r
(4} For f(x). = (1 + x) we have
o) = (14 F so £(0) =
E' (%) = r(1 4 yF1 so £'(p) =
— )
B = rir - 1)1 4 2 so £'0) =
B = rir - 1)z <2y (g . )73 so gy o
If r ig 4 Positive integer, r=nm

the m'th step with

{m)

f (%)

= m{m - 1) (m - 2) ...

and all subsequent derivatives are @,

However, for values of r

continues indefinitely with

(n)

F (0) = x(r_ Li(r -2y - {r-n+73),
In the case when r = g 4 positive integer we haye as the Successive
MacLaurin Polynomials Foy (1 + "
degree Folynomial
1 Pilx) = 14 mx
1 {m-1)
2 p2(x) = l+mx+ﬂThx2
- ~1) (m~-2
3 Pylx) =1 3 my 4 Eiﬂ?ll x2 4 Mim 3g(m ) x3
. ' - — m
M (and all higher values) . pm(x)= 1+ mx + E£§Tllx2+ ...+mxm 1 + x
=1 + mx + x? 4 [M

say, then thig terminates gt

other than 5 pPositive integer the Process

é—0.693).
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where Cﬁ} is the combinatorial coefficient "m choose k" sometimes
m
denoted by Ck v
ml m(mrl)(m—Z)...{m—k+l)
k) k!

1
m!

I B
X'(m - k}:
e last line of the above raple as the Binomial

vou should recognise th

expansion for (1 + x)m.
as the n'th degree

integer we have.

is not a positive
he general

When XY
MacLaurin polynomial for (1 + x}r. the truncated result of t
Binomial Theorem, namely
L b+ r(gjl) xﬁ ) r(r—él(rﬂz) I T r(r—l;Ei.(r—n+l) xn
MacLaurin

for example, the fifth degree

putting © = l‘, n=5,
2
polynomial for ¢T1; is seen to be
|2 ) 4 7 5
b o R - 3
128 2506

|
o= X - o %

1 2 8 s

as theso pxamples i{llustrate, oneé advantage of our criteria for
in polynomials) over other

{which 1ead to the MacLaur

"approximation"
rt of the gectia

ntioned at +the sta

possbile criteria me
jon has been calculated,

ynomial approximat

m all the coeffic

ave to be

n'th degree pol
jents do not h

f higher degree

imations ©
n .
recomputed- The terms up to * remain the same. we O
the higher degree terms.
ate the errolr committed when a fupction is

1t remains to investig

y its n'th degre

e MacLaurin polynomial.

approximated )=}
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10.2 The Er i

- i

| or _in Approximation by MacLaurin Po]
olynomials

e bQC_] S C‘ 3 ;

(-) - f{
x)
R X D t 0 X 2. ]-..! f (O)X /I‘)

between a
function
f and i
its n'th degree MaclLaurin
polynomial

n is that, after the

to find approXx—

nly need to add on

The "trick" is to consi
nsider for i
a given (fixed) wvalue of
% the inte
gral:

X
L £'(x - t) at,

Us i n i
| t icn u X -t we flnd

fx

0
f'ix - &
NPT

£'(u) 4
§ u
) .
= L £'{(u) du
= f(x) - F(O
(0) (by the Fundamental Theo
rorem

of Calculus).

On the other hand writing

fh
F'{x - ¢ ®
D )dt :fl-f'(x__t)d
+ & t
v u

~and int i
egrating by parts we obtai
n

[tf'(x - t)];{ - f:t[:—f" (x - t)] dt
x

£'(0)x +
tF" (X -t
[Note that, —o0— ¢ 0 ) de.
dt {x - t} = E" (x 6
S by x -1

fl

x
f £'(x - t) at
.

it

:OIltlllulllg in tllls wayl lIltegIE"tlllg

J’X
t . £1y
0 oot
vy ) dt, by parts, etc. we

vl u . Obtaln:




n!

203
202
X
1 +
= 57-[ Jtnf(n l)(x - t)] dt [Thinking of the integral as
T 2 sum, we note that thig ig
* ' (x t) dt ol 3% - Just a reflection of the facr
4 o - . oy
= (Mx + f i that the absolute value of 3
Jf'{x -6 dt 0 x *2 . - t) dat Cupm SUM 15 less thap QX cqual to
0 $2 Vix - t) ’+.[ jgf (x e the sum of the absolute vales., ]
= £(0)x 4[5 ENx g
X, L _ dt N
o[- <[l ),
E'(O)x + £ (OxT/2 4 X - o
= 3
£ t) x+—f-E§ £ et at 1 (n+1) Yo
1] (O)x2/2 + [3——2— Foor (x 03- < i'l—"_ - max if (S)I.f t dt (s X oor )
= f'(0)x + £ : X3 ) at T Ossoy 0
M-t
2/7' + fnl(o)x3/31 +-L 3! t 1 / {n+1) ] . n+l
= f'(0)x + £V (O)yx=/2: = I‘T.'— - max £ (s} .‘—'I;-l—-—
O<s<y ,
A n K
= . t (n+l)(x—t)dt' n+l
oo n = £
2 s ™o me +L1“! = "%%?IT“ - max ’f(“+13(s)!
= £'(0)x + E" (0)x*/2! + .. ' Ogany
x btain
"(x - t) dt we o S
ions for f Bix 0 el '
lternative express n e egyar
Equating these two a 201 4 + £} (0)x /nl]) 4 on! :
/2_ PR
T{oyx + £V (O)x . . .
f(x) = [£(0) + £'(0) A similayp analysig jip the case when x o« g leads tq the general rosult .
n '
or PPN f(n)(O)X /nt] _q_*__w__‘__‘__h__ﬁ___‘__ﬁ__ﬁ__m‘_ﬁ__ﬁ__ﬁ__m_h
[£(0) + £'(0)x + £ (0)x~/2! Error Estimate.
= £(x} -
R (x) _
]'Jh P gy ael
= "—‘“n :

/f(x) - IE(0) + £

(M x + 02 0 e f(n)(o)xn/n;]
n+l
(§+1). . max ]f(n+l)fSJI
d " —IX'SSSIX’
inder.
of the Remain
is known -as the integral form
sion is
This last expres

*x~-t ranges
0 to X,

rom

0 note that, as t ranges f

> *

In case X

o
from x to 0 and s

(x - t)] = max lf

the

ﬂ’th dEgree MaCL

durin bolynomial is:
Thus:

1 - 0 4 E' 0 -+ E" 0 X + .. { f (D)X /H-l‘
/2.

2 [xtn ) gy at]
- Iat

Precise
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n+l
§L—ﬂr- max l e

()| e s<]x|

¥ - 1+ x b ox /204 .. F xn/n:]\ s‘ ol

=™ x|

{n+l):

We may use this to:

¢ +to any given accuracy

(1) Detexrmine

= 1 we have

pPutting X
1 1 1 <
lex 2+ g gt - Fanl S

(*)

have some Upper pound on the value

se this is only useful provided we
(*) becomes

0f cour
note that for n = 1

To obtain such an estimate,

of e.
e
e - < =
le - 2| =3
or e e
- = < - < =
27 € 2 2
. . e _
and so, in particular 5—5 2 or e < 4,
(What lower bound for e do we get from these inequalities?)
phus, using € = 4 in (*) we obtain:
1 1 1 4 '
- 2 _— _— vee T < emaamae s k)
le - 2+gy 30t T e (*%)

To obtain the value of € accurate to say five decimal places it is there-

to determine a value of n for which

fore only necessary
4
< 0.000005
(n+1)! 0.0

and then add up 2 + ;L-+ jl-+ . L for that value of n.
21 31 n!
ute the following table

n is to comp

One way of determining such an
{preferably using a calculator or table of factorials).
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ha

B

th

e
Correct
digits

= 2.71828(15

2/3

1/6

1/30

1/180

1/1260

1/10080

1/90720

1/907200 (<0.000005)

Ea]

25)

dccuracy.

(2) i
Prove e jg irrational

It was k {
known to the early Greek
s,

a0 irrationg] number

and 1 8
hope also to you, that 2 ;
is

NC now [.’IOU@- tllat e 1s also lIIathI]al- I]iﬂt 1s tllOIQ do IIOt e](lSt
r

who
le numbers gz and b such
ch that e

= a/b.

ASSUH[E t]llS were IIOt tlle Case t at 1s for Some
r 'h palz G‘f LullDle 'qu“]:SIE

8 and p
we have a/b =
€ , then from (*#) e have f
€ for any n
that

/a (2 + 1 1
a _ .
b ar fart

nla
)
b n!

.

+V - [2 x n!
n.+‘2_.,+

e “%‘ 2
e (n+lyr -

- Choosip
g n 0
to be greater than p and 4
we therefore h
ave

nl

EXRER S B B

< 1.

AL,
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Now all the terms in o _
3 Rn(x) = ,f(x) -

nia n!

[£(0) + £'(0)x + EY (0)x2/2)
- lzxm 2r .

fu

st g

k

l

- + l] iS Zerg.

(%)
v

(0)x"/n!1]

-

are integers [n > b means the whole number b OCCUrs as cne of the We can usually determine
a range of x-

n!

m

=n(n - V...n-m + 1)}

values . .
factors in n! and for m= 2,3...,n for which this is the

.-

Thus k itself is a whole number with \k[ <1 and so the only possibility

For exampie:

is k = 0, but this is impossible as we would have for the fixed number % that (1
) fRepresentation of %

& Dy its MacLari, .
2 = 2 + _].'_ + _l_. + + ..1’_ Since for R ALy Empa?l.S'lO?l
L 21 3! st n! any given value of
4

X
o , L
15 a finite number and

lim lfﬂjiti

for infinitely many different values of 1.

. It ) T 0 (convince yo
Thus no such numbers as 2 and b can exist and so e 1is we have that- yourself of this!)
jrrational. 1im[ex
-1+ X + x2 1
e 7204+ i my = g
That is, th '
€ sequence of .
partial sums
10.3 Power Series Representation of Functions
s . S =1t xoxfar g I
our work with Maclaurin polynomials suggests associating with any converges to e~ o x /n

and s0 we @
ay express e>
(infinitely ai fferentiable} function £ the "fFoymal' power series e as the infinite series
x -
e’ =1 3 .
X+x2’2l n
7er e+ x/nlot

£(0) + E'(0)x + £M(0)xP/21 + g (0)x3/3 + Lt £ 0yl o+ e

n
x /n!

I
Il t~1 8

Il

oo

E f(n)(D)xn/n!

n=0

whose partial sums are the successive MacLaurin polynomials for E£.

(2)

T 24 ! I r
j "L JE.L NS (Rt [#] ¥ v

We have

We will refer to this series as the MacLaurin Expansion for f.

The expansion need not converge, and even when it does the sum need
fa ¥

In {1 - x) ~ - Z xk/k

not equal the function value (see exercises). In general we will therefore
3 -
. . . . — with the error estimat =
use the symbol ~ to relate a function and its expansion, reserving = or = e
£ he information is ilable [1n (1 - ook ntl
or cases when more information is avali >, ) + Z 5 /k[ B lth__
k=1 {n+1) ! max n.
. . : - 2
We could analyse the convergence of the above power Series using the which |X1555|x' {1- 1X,)n+l
certainly converges to 0
results of §4.5, however it is more useful to know when the series convcrge a8s n -+ w

provided 1
,x' s 5 (as then,

: le/(l - [x]) < 1).
to the function wvalue. From the definition of convergence this happens whel!

. . — Thus we have, for l ,
the partial sums converge to f(x}. '"TFhat 1s, when the limit as n + = X

A
|

t+he remainder
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DI =) ar f‘] an f -t ta ]Shes the con"fergence fDr
oY cC e a )’ 15 1n al a5 bl h
S .

i itional.)
2 is condl
£ % = -1 the convergence to 1n .
{Though for 7
-1 £ x < 1.
[==]
n
for
i a x
i r series Z 0
i £, if there exicts a powe L
tion f
given a func
which E a . N \x\ B
T 0" N n ]
n= .,
%)
< p limit{EG) - L 3p
this means: For \x\ ' i L
[remember

- for
on of £
. resentat1
5 ' as a power SerXQSzreP
will refer to L2, |
we n=0
\Xl < H.

|1t pIODf St tL. tkl t:
R anel res t h 1 W a (=] W!,t'. 10 a >S5 a
ul wht
g a

< e

: that is, if
. . LqUc 7
sapntation 18 1L
@ n . ,3, + pQPPLSLHba =@, eeen-
I then tha _ ... b n
a X (4] = d b
E e n then b = aﬁ' bl ]! n
n=0 £ix) = y bnx ' ] :
we also have X

R . tsn)_
. cocfficien
n=y0 {fied “equating of
his as a sort of glorl
v think of this
(you may

g p p 11a5 a

‘hc 51 n]f]can(:{} ()f this [e] Q oS 15 t“at 1f f

# we C n earll a OWEeY sexr ies Ye IESEIU:'
MBCLaurln e aIlEJ-OIl an.d

re l-‘ ese 1t P -
r f tllL.:Il tllat enres I atlotl 15 lts MaCLalJIlIL eXx aIISlOIL
a| 1OnNn EO

For example:

fral

n, , have
X= x/n. we i _ 2)
(1) From @ nzo -2 L s 1_;7_— toanan
2y ¢ —— -
e—x2 = 1+ {(=x7) 2
2 .o
S (-l)nl'i"n/nl T
= 1 - Xz + ET

X
i ' ion for E .
s the MacLaurih oxpansio
a

. a2 have
(2) since for |x| <1 we

n2n+-___ '
1 A e
ERBEN

1 + %%

O teg[at g W & U.Ii“. e Xpa.‘llsion
i
“ir‘ 2

n 2n+l +1) F e
x3 x® .+ (-L)x /{20
tan—l?‘-:x_—'f e
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Here, some justification for the

"term by term" integration of the
power series is necessary.

This is easily done using the error estimate for the Binomial

expansion derived from the work in §9.2

{(sce exercise 5).

The general Taylor expansion of f

If we expand the function

f about a point X, {other than the
origin} then we obtain

f{x) ~ Tlxg) + £ {xp) (x - Xp) + "%} (x - XO)Z/ZI .

+ f(n)(xg)(x - xo)n/n! S
a result easily derived by expanding the Ffunctien

g(X) == £(X + xp) about the origin to obtain
TH~ gl0) + g (ox + g xZ/2t v v g™ oy
and then making the substitution x = X 4+ g, SO X = X - xp.

APPENDIX 10.4  The Error in Simpson's Rule

We neglect errors due to round-off in computation.
Assume the function

f has a bounded fourth derivative with
~h £ x £ h, Then, from §9.2 we have for ~h s x < h
that

]fv (x)[ <M for

L Yy

X 1
ERSIE ar M
where p3(x)

is the 3'rd degree MacLaurin polynomial for £

and
R (x) = f{x) - pa(X)-

h
Now, if we denote by SIMp(£f) the approximation to f

f given by
Simpson's Rule;

-h
namely,

Simp(f) =

%[fhh) + 4£(0} + f(h}]
then,
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\ E £ - simp(f)\
~h h S'm ( + R )
_ \f o, + RB)" mp P3 3
—h3
h .
_ S R, - S1mp(R3)\
-h

2 Ct
e 15 exa
Sjmpson's rul

h
- = P !
(as Simp{py} {_hs cor cubics)
1 .
Al - s

h
I
5 hi| 2h -]
2h = =— M
< *5:?“*3[4-

a COﬂStant)

= Q)
(using R4(0)

-’ (k

5
e of the order of D )

. impson's Rule 1 &
the error in Simp hf with 2n stTiRSe
bh-a

p—

n

(Thus,

Usi [I.g S L![li.l.qotl 5 [C)I mu La tO L’btlmate g
- H . . -3 [] 5 —
- Ru v oW =
Y 111 Yes u il 1ic ]]]] 1 S Pbon =] o
1 51 .llL.aLlU] 5 Uc ] ]“_
5 1 ]
'"q ~ ] ]th h

i or 1s
thus the maximum erT

K(b-a)®
= Iy
n
1
f order T - duce the
an error Q n . shDUld re
trips
ﬂ____f——d_*_—ﬂ_’—F mbher of s

. nu
In other words, doubling e 14 be about 6%
shou
£ 1 45 the new error
5
error by a factor 2"

1
Driginal one.

of the

APPENDIX 10.5 Newton's Method

Given a function £ e seek values x, at which f{x_) = 0; that

is, x, 1is a 7Zero {(or in the case when £ is a polynomial, a root) of

the function.
If we start with a quess. ¥p for the value of x it seems
reasonable to take as a3 "hetter” estimate for x_ the root ¥1 of the

lst degree (Taylor/MacLaurin) polynomial approximation te f at  xg:
pl(x) = Elxp) + £' (xg) (x =~ xg) .

That is _ ¥ £(x)

X3 = %xg - £(xg) /£ (xg) py (x)

[Note: Xy may be interpreted as the

point where the tangent to y = £{x)

L N

at (xo, f(xo))cuts the x-axis.|] F=goy =

8
=~
o

Newton's method consists of iterating the brocedure; using x 45 a new

1

initial estimate to obtain
%, = Xy - f(xl)/f (xl)

25 a second approximation for x_  etc.

This leads to the general iterative scheme

0,1,2,....)

xn+l =x - f{xn)/f‘(xn) (n

for successive approximations to X, -

For example: If F(x) := (x + 3}?  (where the actual root is x = -3},

starting with the initial quess Xp = 4 we have

S

X1 = Xg - Hxg)/E' (%) = x5 - (xg + 3)/2

X2 =

|
SN

- (l + 3)/2 = - 1=
2
X3 = - 2%‘ 5

eto. {eme M1 omram e T oot
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approxima
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and provided B

(and this ™

produce

positive numbe

required de

tions derive
our basic T

Provided

d by Newton

pending upo

rerested in a

&

ay have to be

Pe<l.’

a from Newton'
egult 1S the

initial estim

etermining

follQWlng .

ate xo

very near in

for ¥y

n g) we have

undex what conb

s method cO

us at the 2er0 Fe

deed) 5 then
converge v0 ¥’

sufft

uccessl- i

gitions the S

£f.
Lverge +o a Zero of .

of £ and £ (%]

y near 10  Fw

i3 sufficientl

the suceessty

¢ iteratt

Tndeed, given any "
uneaj:"p
ciently near to X (the
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Thus provided £ satisfies the conditions of the theorem, choosing

E = —

and starting with x

10 1

appropriately near to Xy we obtéin an

i . :
mprovement in accuracy of one decimal place at each iteration

PROOF (of the theorem)

From the continui ! ici
nuity of f at ¥ . for any x sufficiently near to

X owe have that f£'(x) # 0 and so we may form x - f(x)/f'{x). Now
for such an x
[x - £(x}/E'(x)] -~ x
= - _ £(x)
X~ X F'{x) (x - x_)
_ 1 , f(x) '
T n) [£'(x) - ;jj;——]
) 1 fix) - f{xm)
= ETT;T [£'(x)} - a— 1
(as f(x_) = 0, by assumption)

In the limit as “» is last i
§ X x, this last expression bLecomes

F(x) - F(x )
[£'(x ) ~ limit ]

X - X
XK 0
@

N S
f'(xw)

= {by the definition of a

l 1
TN {f (x ) ~ Bl x )]
@ . derivative)

and so we conclude that

[x - £{x)/£'(x)] - x

limit = = 0
N X - x_ ‘ )
(e
In particular then, for all x sufficiently near x we have
aa
[x = E(x}/£' (x}] - X
X - X cE
[= ]

or f{x - f(x)/F (%)) - xm| < EIX - X |.

[va]

Th ; . .
us provided x, 1is chosen sufficiently near to x we have
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| xg - £Gegl/E (xg) 1 =3} < elxy - x_|

|2 - x| =
while
0 - x| = | xg = £ /€G] = x| < elxy - %)
< EZ'XU - xm| .
similarly,
X3 - xml < Elx2 - xm| < E3lx0 - X, .

Repeatinq this arqument

REMARK:

and is bounded by M

n times establishes the result.

If f satisfies the additional assumption that £" exists

in a neighbourhoed of X then inserting

the "error estimate"

into the above argument we obtain for xj5

|£(x) = [E(x) + £7(x ) {x - x 1| < M|x-x_|2/2

sufficiently near x_ the

faster {gquadratic) rate of convergence

several possibilities can occur:

(a)

(b}

{c)

Without assumptions on

The scheme may converge, put possibly at

lxn+1 - xmt < K‘xn - xm

where K is any constant greater than M/]f‘{xm)l.

£ such as those of the theorem any of

a slower rate than

suggested by the theorem.
y from the zero, no matter

The successive iterates may diverge awa
how near our initial approximation may be. They may, of course,

eventually approach some other zero of I.
The successive iterates may "nseillate” about the zero without

either approaching or receding.
To illustrate these possibilities it is only necessary to caonsider
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relatively ‘-[
. blm)l@ f'LlnC i
t
lons of the form Y (
X o > U).

E:a(:]l s'(!(:]] El][lct 10 (o] y das 2 S5im 1@

calculation
will
show, for this ¢lagg of £
unction 2
5 Newton's Mothod

becomes

lterate ¥y We have as the n'th

a EOI a a pOSlter llltegEI 15 bet“\jeell O
r
r

.  The
Brror after each iterati
on

. a-1 I F I
is ’ , tha or e v choosin
o - —
Previous estimate. Y t g
1 i led ar
B ] ge we may

make — =
a5 near
o to 1 a5
5 we p[
ease,

f
C v 5 Q ” ]J()f d O b
X 2 1.5 I?{ell ] l:i o fl}]l(:l;l()ll arn cann t e

v, 1 d =] the - 1n thg abO“- ti [e) - (e} t =3 t th,
¢ (@] alllp e In
e

starting value

oo .
CGuires 23 lterations

(b)  Choosi 1
in -
9o 3 we have -1

— = -2 and
( - S0 the sequence of iterates
X = (=2) Xy fails to Converge t I = |
o g

h 0. Or example with x 1
n 0 we

X = = 4 _

1 roX, 1, x3 8, =x 16 X

2 = . =
4 . 32 ete,
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20 - |
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/1 A |
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LA |
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e :
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20 g S S ST T
} I . . . J‘L 2 O 2 '-i'
”2“511 12 -10 -8 6 v

bt 1 y U. & ChODSE
C 0o 0 Tl ] i ator be
i wl‘licl1 e}d‘\iblts OSClll 1 Wh -‘
= | = ¥ l(:t .I.C)ll to the Oll..
aimn a fu.rlc
- tan
and CXtL}I‘d L]lC func
[§ “,;

It y

/; for X
-/ x  for x

v
o

£(x) =

1A
Q

217

ety

In this casge Eéi—= -1
+ -
XD and X

and so the iterates are alternatively
For exampie with Xy = 1 we have 45 Successive
"approximations” to the zero 0; 1, -1, 1, -1, 1, -1, 1, -1, etec.

for a great many functions, however, as
the above examples illustrate it is fallible ang Care must p

when applying it.

Newton's Method worksg well

€ exercised
For more complicated functions the

method can "misbehave"
1N mere diverse ways than thoge Suggested above.

for example, the sequence

Usafyl error estimates.

The ”half—interval method" ig g useful, though
Often slower,

alternative Procedure which overcomes thig deficiency.
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EXERCISES:

(1) By successive differentiation, find the 3rd degree MacLaurin

polynomial for the following functions: 1n (-l“Liﬁ = Q1
- x° 7 + X) o 1
- Use t] n(l ~ x)
(a) f(x} = tan X e firgt
EWo non-zerg terms of
-1 to this 1 ;
(b) fi{x) = tan "X estimate the value of 1n¢ a5t Series witp o L
n{l.s). ¢ 5
(2) Determine the n'th degree MacLaurin polynomial for f(x) = cos X. of (b). Ompare the result with ¢p
ose
(5) (i .
(3) (a) 5how that ) Since pn(x) S 14y .2
: <3 (_l)n x2n+l ) 2n+2/(2 \ o2y Of the Mact. ‘ S xn’ the fifst
|fx =37 % -0 T 7@+ )T ] - sin x| < || " ) AUrin expansion for " fexms

—_—

L;; Progression, dedyce the 1 - %’ 15 a geometric
g' {b) How many terms of its MacLaurin expansion will be sufficient at
b
: to obtain a valuwe for sin {0.5) which is accurate to five E 1 - xn+1
1 n(X) ==X (
3 a-r.ld - x » 'y l ]
decimal places? hence that the remaing T
er
[Hint: To obtain the first n for which 1
I-_.___ xn+1
s L < ©0.000005 Replacs ~x T B 0x) = e
- a
2°MS (2n+2) ! cing x py - 2 _
- this gives;
I suggest you evaluate the expression for n = 1,2,... using — . ,
1+ x? T - x6 n_2
a calculator.] e B =1y n] - (qun+l x2n+2
o™ e
. n 2n+l Notin - .
(c) Deduce that for each real x the series E {(-1) x /(2n + 1): g that tapg t .« - X 1 1+ x2
n=0 0 1 L .o 4t
converges to sin x. conclude that et
(4) (a) Determine a number of terms in the MacLaurin expansion of tan—l X - [x «3 5 -
S L
. : 3 - =+ (—1y8 _2n+l
F(x) = ln(l - x} which will be sufficient to obtain a value 5 7 .o lin x ]
< -+ l
= x ,2
5 - : 3 decimal places. = (-1)7*l gente
for 1n{l.5} accuarate to at least ccimal plac £ 4
. . 01+t2t"'--a._
(b) Compute approximations to 1n(1ll) wusing the first 2 terms, (ii} From 1< N
Sl +t?2 o5
. . . = fo
3 terms, ... up to the number of terms determined 1in (a}) of its 2n+3 T 0<t <1 geg
-1 uce that for g <
. : 2(2n+3) Sj{tan “x - [x _ X 5 5 S x<1
MacLaurin expansion. EAR S - n
S SR G VR s 2n+3
T Ty x
lc) (Improving the rate of convergence) (5] 2n + 1 1 <« x_ 7
1) Using (ii). 2n+3
By substituting -X for x in the series for 1n{l - x)} write ,
a
) Deduce that the )
down the series for 1In(l -+ x) . Series
B ini i ite down a series for 1 -1 1 1
y combining thece two series write dow T+ =-1,
700 e T gy o
COnvErgeS to :]l e ow .
4 [
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p g f q e)
convergenc
(Improvin +the rate © it e
o -t 1y =tan T Ty
ity tan %+ tan —
i t+he iden — l
Using N 3 l N
ul can T 1 =4 tan g =
" -1 (1% and
tan g
imate both
it in (ii} to approXima
| N es-
ysing the T e
LY d accurate to 4 decl -,
o - i the I1
- (239) o determine

h
[

for themselves. !

few digits of T
] in n+l
. by -t X
ng ¥ .
(6) Replacind R Ea FYsiE
x v ox b ¥2/20F
e - 0
2n+t3
a  2n+l % — - €
show that y (-1) ¥ ; s (2n+3) (n+1)
o % v ... Y Toptl)nt
X 2 - =4 7 T 7.3
-t - | 5.2
dt 3 .
e
0 SR S %3 R

ms of the sum VU3 10 1 'tzdf

ne how many ter ) 1ue for € '

Honce, deteymine : spt to obtalb avalu 0
ien

be suffic
(-1)"/ (2n+l)n! would
+ to 4 decimal places.

lat
Sxe‘tz ac is closely T€

. istics.
1 importance 1B stats
enta

1

| the norma
hich is accurate .
| l it 18
.. The integra

[Remark.

jch is of fundam

distribution wh annot be eXPTe

integral ¢
fact of 1ife that the in
also a 1Iac

i .

fm Ct lDl‘S 31c1

s of the clomentary econd degret
rm

r) deducﬁ‘_ that the S
1 5€ 8.1(.‘) r
£ eXGrClEQ
(J) Trom the results [} / |
i f(x) = =]
Laurin )01. nomlal for
Mac I Y ]
}_32(1{) = 0 .

d so the
n an
(.n) (D) = 0 for all

that ¥
e can Show . ZETYO-

In fack o7 £(x) 1is identically
ion for

MacLaurin expans
le of a funct

ri
. he Macl.an
jon for which ©

. am , .
simpte S £ to the function value
no

ut
a4 eonverges, b

esed finitely 11

. a
This provides

(9)

{10)

(11)
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Starting with an initiai approximation of Xp = 1 use

Newton's

method to obtain 4 successive approximations to the value of x for

. -x
which e = x.

By means of a sketch, or otherwise, deduce that the Ffunctien

£f(x) = tan % - %Lx

i

in the interval

has a zoro X T < x < 37/2.

Show that the cenvergence of Newton's method to  x

. is ensured

provided our initial gquess is sufficiently near teo x
(L4

For the intial guessés 4.3, 3.58 and 3.5 Newton's method produces

the following iterates,

Initial guess 4.3 3.58 3.5

Iterates 4.27627
4.27478

4.27478

5.41544
7.46999
7.66016

5.84803

9.06152
1e6.68127
19.264613
32.50537
35.94775
36.35737
37.546139
73.68B813

Bricfly cxplain how these results arige {a sketch of the function

Y = £f(x) should help).

By applying Newton's method to the function Ff(x) = x2 - 2 {a a

positive number) derive the iterative scheme {known to the ancient

. 1 o
Babylonians) Xal = E(xn + E—-} for approximating v,

[Show that thig schome converges for all values g » 0.}
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C
-HAPTER 11

COMPLEX NUMBERS
T TBERS
11,1 The System Of Com lex NUIT]bEP'S

The

Greek ldeals about rigor) For
&xample, it a2lloweg eQuationg Such ag L2 _ 2 =0 ¢4 be systematically
50lveq "algebraically" rather than "geometrically” as the Greekg hag done,
In many situations 4 usgfyi furth

of the form z - @ + bi, where 4

and j are regl Numbersg, which
Satisfy the Same ryjeg (for additiop and multiplication) as the fierq of
real numberg with 7 - ~l.  That isg
additiop H (a + bi} 4 {c + di) -= (a + c) 4 (b + dji
multiplication:
————--Cation

(a + bi)(c + di}

= {ac

a and p ¥
rESpect:Lvely 8% the real apg imagi

and denote tham 1-..
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Re z and Im z. For example; if =z = 3 + 4i, then

225
Re 2 = 3 and Imz = 4. Glven the complox —
2 = .
Note: We will not distinguish between the real number a and the con - B ye define jrg
u -
complex number a + 0i. Note also, that the imaginary part of a complex and Jugate Zor=a o opy
number is the reagl number b, the "coefficient” of i: 1 itself is not modutys | I'= é;:—
: z . .
included. We will say that the complex number bi =0+ bi is purely fote: geomEtrically z — Vg?h:ﬁ;?
is

imaginary. AX1S, while fz] : the reflectiop of the Polnt i

i

Tt is frequently useful to regard the complex number =z = a + bi as " the reay

origi

representing the point in the Cartesian plane with =x-cocrdinate a, roin

and y-coordinate b.

(y-axis) Imaginary-Axis

Tm 2

Real-axis
{x-axis)

g on =m e - - -— =

|

When points are interpreted in this way we will refer to the plane as the
complex (or Argand) plane, the x-axis as the real-axis and the y-axis as
the jmaginary-axis.

Note that in the complex plane the addition of two complex numbexs

For 5, , tdemic of reg)
1 and z and imagj
] _ . o 2 Complex ginary pars
zl = al + bll. z, = a, * b21 correvsponds to vector—-addition'. (i) Numbersg we havye s
e Fan z + z _ :
( 1 2 = 22 4 zl
ii) = (comple X
Z = €T Qdcfz ;
2 T 2,2 ( tion {g COmmutatipe)
Bo4D. feeecmacicscsssamanmmn-canmmZ, +7 (iii co ]
172 (7% -T2 Y z(zl tz)) o= co;pzem MULELpTicatin, ;
2 - +
N - i : 2 B+ 2z it ative ) on s
2T 0 (iv) 2 F 2 o — 2 (dlstpibuti
: ’ Co RN ve Law)
: : (v) 2o . - - 2
' L “1 2 z
' z ' , 172
]
b H--4- SISV S o (vi) |z 2 | =
. > Alsg 1520 = [z [z
: : i useful gre the 2
0] a, a; a,;+a, tdentitieg
- fVii) Re o - i(é /
35k z) Z




and the inegualities

226 :
227
i + < + \z triangle inequality) ——
(ix) |2y + 2z,] < lzg |+ fz,l (triang quality £ el Ly
(x) |re z| = |z] and 8 is such that
oy fam el 2 1o o 0~ /e~ e o)
=51 =
. ) . in § = b/r = Im z/'
civen z = a + bi the complex number -z := —2+ (-b)i and usually written z]
., . . the
-a - bi is an aqdditive tnverse for =z, in the sense that = + (-z) = 0. Il we have the
Iepresentatiop
We will write zy ~ %o for =z, (ﬂzz).
2 = r(cos o
. + i sin 0)
If =z 1s a hon-zero complex number then from Isﬂmﬂfimes it e .
15 convenient "
- o abbrev;-
22z We refer tg g Feviate this to
=1 as an ar
2 gument r
lz\ n=1_» 3 or the COmplC\( s
rerdye ., the an L) umbear
gles 8 4+ o zZ.
we see that the complex number T 207 are alge arqun
i Chts for -
- z arg z = '
z 1 - 2 0 + 2ny (Ffor
|z|* When we wigh t any of the valgpeg n=g,1, o
O refer tg Vel 2,000
. . . . -1 the uni -
is a multiplicative tnverse for =z, in that =z 2z = 1. we will write Ap e value of g satisf
Z z styin
: -1 172 J (note the capit 9 0 =06 < o
We will take zl/z2 to mean 22, 7 —_— - al).
|2 |2 For example.
2 P E, lf
- . . 2=1- )33
For example: If =z, =1 -1 . 257 3 + 4i  then, while arg z ;g » then r |z| = 2
values
z, = 2z, = -2 - Bi = —(2 + 5i) el :gl N
3
while s 3 - 4i 1 '
2 Jo. = o =1 PR Bl LS S R Y
172 3+41 32 4 42
(Wote the cluse similarity between the last calculation and the procedure
for rationalizing a denominator) .
The Polar Form for Complex Numbers
complex plane;

that is

if (r,8) are polar coordinates for the point

z =a + bi

X

NOte that;
in the

the conjugate of

2]

zZ

and the inverse by

and

is characterized by

arg z =

12“1{ = [z["l

"Argz
ary z

L

T T Arg z

£

and we write

= 'I' cis 0‘}

Note that, fup
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Geometric Interpretation of Complex Multiplications

If the polar forms for two complex numbers are

z, = rl(cos 81
z, = rz(cos 82

then we have
2122 = rlr2 [{cos Bl

+ i(ecos ©

rlrz[cos (81 +

Thus, for the product of two complex nurbers we have:

EFEN R ENIEN

and

arg (zlz arg

2

cos 82 - sin Bl sin 62)

+ 1 sin 81)

+ i sin 62)

1 sin 82 + cos 82 sin Bl)]

92) + i sin (61 + 82).]

(zl) + arxg (zz)

That is, when the complex number zZ,

is scaled be a factor of |zl| and its

angle 8; = arg (zl}. Note in particular that multiplication by i

effects a rotation through % .

is multiplied by 2y its modulus.

"direction” is rotated through an
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EXERCISES:
(1) 1, -
et gz = a + hi z a
+ b4
Numbherg l e |
o 5 + b
( erify 2ach of the foll 2 21 -
b OWing.
I “1
3 (ii z
(ii] SRR
111) =z (z + oz} = —_— -
2! < zz. +
1 =z
= {iv) z 7 z
. _— 1 =g 4y
2 13
(vi) {z 2 [= |z f]z ]
(vii) | o
Z /= ] =
17230 = |z
(' l[/]zzl (viii) arg(z_ s '
%) Re z = 1,- T
Z = 5-—(2 + 2) ( ) 2 q Zl
X Imz = X3
(2) |
Expregs in the forny
a + hji
(2) (2 - 3i)
1+25
(b) (2 + i) (2 + 31)
{c) the L —_
s .
oluLlon 2 of the
o £ equatignp %~3¥—- 1
Cor the comple ¥ o - .
¥ Numberg u = 3 l i
(i) ¢ o -
¢ the i o l/ |
Y Conjugate of y . (ii o
e | 11}  the modulusg of
v
(iv) 3_3! ’
{4} N
(i) Plot, jij, the u !
compl ey
Pla
o e d e, the Numhersg 143 1+3
Oduli R
d and Arguments . Fing | .
) o N o also the modul g

that arg(z")
: = n argq
(lV} F g(z) n 3 f .
ind the . Positiye
Modulus ang Arqument integer]
orf -
fience fing Re z : (1 - V3 1)23

R

e

Comples
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lane,
l1ot, in the complex p
; d r '

Find an

{5) For

ers then
and b are complex numb
(£ a

ve that 1
{(6) Fro

2 4 2)'
la + b|2+ |a - b|?= 2(|al i

= 1lEDIEI!l COIIESPDI!dlIlg tD tllls Equallty.

} Prove e inequalities \ ‘
7 th 1it z
| \Zl z2\<lzl\ 2
(i) +
and B \.
| ret lzwl l l < \ 1 2 side lengths of
3 “ i of the
geometricall in terms
hese
Interpret € ¥

a triangle.

s )
+1Sln0"
= r(cos @
. nd a
(cos b + i sin ©) &
t =z = pic
iven that
(8} Giv

l al? in terms of
£ jz -

e O

mbers, Find the valu
[ad v

lex nu

> two comp

are

that
Deduce
b, c-
. ¥, 0Dy 4
O Gy -
uantitie
the real q

3d2- [z -al2= - 2|2y a - laf®)-
|1 - a4 |z

) s l‘;y: 1 ‘2'
rus tdenti . - Ix + y)
(9) Prove the Appolor | yl2 = %ﬁx - y|?+2lz -3
2+ z -
|z - xl

and V.
bers Z, X

y three complex 1
for an
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Curves in the Comg]ex Plane

By imposing TeStrictionsg on

11.2

"Re z, 1p z, [z[ Or arg gz
("inequation") in the compleg variable

Z =
relation between the reaz bart

X+ iy may lead +g a

and the imaginary Part vy 4f

and so COrresponds tq 2 half-linpe

an equation

Z and
€ compley Plane

EXAMPLES'

(1) For fixeg complex Numbeyr zD = a + hi and Positive number r, the
equation ]z - 30 r or equivalently {(z - 20)(5 -z ] o= 2 is
Satisfied jf and only jf

(x~a)2+(y~b)2~r2
and so Correspondsg to the Clrcle of fadius Centred g+ zD.
Similarly the tRequation
z - zof = r
COrresponds to the "digkn
of radiys I centreg at ZO'
Note that geometrically) (z - zol Tepresents the distance between o and Zg-
2} Jor fixed Complex numboy 29 and real numbe - UO the equation
arg (z - , ) = 80
15 Satisfieg i1f ang enly irf
z - zO = roeig g or zZ = zO + r ocig BO .
whereg r is any bositiye real number,
from zo:
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the
C,

, eal number
=a+hi and r
z_ = a

lex number 2,
fixed comp

(3) ox

. c
equatlon

Re(ZOZ)

to a
rresponds

- and so cO

d only if ax - by =€
i isfied if an

is Satlsfle

defines a half-plane

RE(ZOZ) sc

a i
.

For example.:

Z-plane

Y

6 the

umber B,

and real n

lex numbers 2, and ‘1
fixed comp

(4) For

equation

arg

= B
2 ) - arg (z-zl) 0
or arg (2 - 2,

. le 9.

eet at the fixed ang 0 For example-
to Zz m ‘0T

lines from =z, and “1 ies either on the majo
. i lie
implies Ehe heorem of geometry 2
wn theo
a well kno

and so by

Z. -
and 1
z
. through
c of a circle throug 0

. r ar
or minor

If w = iz}

transformeg toe the boint

For a curve C in the z

of all tpe points aon ¢ unde

Under the

to the circle,centre

Zp  in the "2-plane" to a point Wy = f(zo) in

i= z—l r then the Point =1+ 4 is
W, o= E—%hz-— 5{1 i), pictorially:
W-plane
Ds"_—ﬁhﬁ\\ K
—f o
TTT—ay

“Plane we tan ask-

What ig the image jip the W-plane
r the transformation

-

inucrsion W o= z‘l
1

(——

2c

the line Re transforms
+ 0)  ang radiusg l/2[cf
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l —
c =Re g = E{z + =z}
] %{1/@ + 1/w) , as =z = 1/w Sh 235
OW that gg
F ra 3
ot SatlSTYlng the ap
| 2( : ) ove relatlonshl
o B we have
§ Zq - 20z~ )]
So ww - ——(w + @) =0 (i) Find tha l o
he image of the line 1
' mz= )
and “"completing the sguare” W= 1/z, Show thay thi . s
1S curye ; . .
. | | | o . =] lnteI‘SECtS the j
(w - =W - 3= = 2 o N
2c 2c dc : ‘
» at rlght—angl
Dr etch thege Surves r N
= ‘o 8
(w — E;)(w - ELC) = L (i1) I severay Values of
| 20 2 . Fing the ipg L i
9¢ OFf the Circle I I
formatlo o 3
. n und
3 r the Lrang
1] 1
o | W o=
2C 40 /= - 3) + 17/3
oxr
1y 1
w - e B zlcl .
Thus w is constrained to lie on the spectfied circle [see Bxamie :
abovel. -
- a 3equencea of cn
The notion of complex transformations led to the development OI a o
. " o ) Converges ¢, zZ = ]
theory of complex valued functions of a complex variable - one any e s g we ) o e -
* Can fipg a o N
‘ - at ig, if gj
deepest and richest branches of modern mathematics. /Zn - ZI <E . no Such thap n >np [ o
Ty Implieg
P
rom the 1nequalltles
la, ~ aj I
’ b -
bl <
a < -
[zn 2| = s aj2 4
. (b - pb)2
]

EXERCISES: |
or regions, described by the following.

sketch the curves,

(1)
12

I

RE - - v
i [ - g (= -
(.(9?2?}{: e e ?’:[j Z +

lz + 3112— |z - 31]2

(1)
(ii) |z + i|%+ 2z - i]2 =4
(1if)  Im[(3 + 28)z] 2 4 of ang Only 1 7
e
. ' 1| =2 WO ragy Seques
(iv) {2z + 1)/z + 1) Conve pge ees a -,
i respectiveyy 4, no €A ang po_
is purely imaglnary. : & and L = Im z
icular then
’ SlnCe th
€ real apg imaginary
Parts of £l
glcl Parﬁial

{z - 1)/(z - 1)
describe the curve

(v)
(2) For distinct complex numbers 2z, and Zq
specified by i s
2 "“'f'z +
- |z B L n "tce are the ;

i
F
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[

ceal)

(1 + r, o+ rf?2: N N
Tt v r/n:
L
1 LRI N 4 R r, + rz/j
]
o +
2 T rn/n: N

es of real and imaginary parts we have:

partial sums of the seguenc

COROLLARY 11.3.2  The complex series
i + i i - + i) + ...
(a0 + bol) + (al bll) + (a2 + bzl) + . + (an bnl)
=28 14

y a_ converges to a and {Ii tr,) o+

n (Ii tr) S2!
I+
[Alternatively SR € S A
1 One coulq v 1 5! /n! oy
eri . ..
see QXErCiSES ] fy thig hy dir

if and only if
n=0

converges to a + bi
[»=]

b converges to b.
n
ba |+ b | = lag + 210,

n=0
As a further corollary we note that, since
hoth the series 2 a, and z bn are absolutely convergent if
§ | \ n=0 n=0 ‘
z converges, and S0 we have equai - '
) [} -r2 are conpl
COROLLARY 11.3.3  The complex serieés ¥ 2z converges (absolutely) X numbers, gng
@ n=0 ezl+22 2 ’ 50
$ \zn\ is eonvergent. e 1g%2 . for
In partj any tw
icular, ¢ O comple
ubstj ; X Numbe
tutlng z = x 4 i rs zlr -22.
Y (%, y
X+i Teal)
e ¥ . ve hav
= g% ply €

1f the real gseries
n=0
L
n
converges

§oa z
. n

the complex power series
n=0
ratio test therefore

— X
= a _
(I + iy + (3y)2
yicsar 4 {iy) 3
YI=2/73r 4
cell)

In particular then,
E 1a llzln does. The
n:D n

if the real power series
assures us that i a, -1 will converge for all =z with
n=0
o] la, |
z] < lim T————T .
n-re an+l
which ,
’ USing our Fify - 53,4,
TeSUlts on Macyaygs Y3+ yhysr
The Complex Exponential aurin eXpansion se-l )
SI
ussion we see that t+the complex power series
: .
e

e the complex exponential

From the above disc
Using'this the
Polar form of g
CoOmplex
nu
mber can be re-ex
Presseg
as

Z z"/n! converges for all z. We defin
=0
or explz) to be the sum of this series; that is
e” = 2 z/n (for all complex numbers Z)j
n=0 '
: r
. e - (cos 9+ 5 sin g) o 19
For real numbers T and r. we know € 1l g*2 = e 172 ample; for re
! 2 the compiey
. . Numbe
ries representations (510.3,Ip.208 r omo=q _ e
: we haye
2
= 2(cos 2T ,
This last ay * i osip 30y, _ pedfi/3
Pone -
ntial form ig ext .
remely yg
eful

i,

and so by the uniguencss of power sc

we must have that the product
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Demoivre's Theorem: A exprose; 239
San fOr Sin 6
4 cony
Tor any real number s Wwe have parts 1d be foung Slmllarly by copes
. - nslder
i8.s ing Iy i
[r{cos 6+ i sin B8)15 = |[r e '] [You ~s dinary
: might 1ix
ish 1lKe tq
= r e ' Compare the work involveq j,
eXpI‘ession for Y calculatln
co 9 the
i si 5 = r®(cos s8 + i sin s8) s 66 USing the Multiple angy Hhove
S6 [r(cos ® + i sin8)] = COs 2x = 2 cos?y 1. 9ie formulg
Tor example; The p '
57 .. Eﬁﬁ]a n'th Ioots of a_compley n
(1 -/3iP = [2(cos 5+ 1 sin 3 The Hiber
g AQT . . QDW] ulmbe rr 2 ig repres
=32 [pos —— * 1 5in ented by an
3 3 r(cos Y OF the polay Forme
C5(8 4+ o .
A L 4ﬂ) kwl 4 3 sin{g 4 2k ,
= 256(cos —|/ + 1 sin -7 k
3 ; APplying p 0, 41, 42,
i iples of 2n) CMOlvre's pp, o
{removing multiple Orem witp s = 1 i
T n Yives
n
LY i1
= 256(— 5 0 ) zn = rn (COS 5] + Zk'ﬁ
n + i Sln[? + 2k
= -128(L + V31) n
t the following Here rrjf- for x - 0 41
feati this last identity we presen Means the pog; ' rE2, .
As further applications of this oy Tive e TOOt of the real nupy
‘1‘.15, ﬂny one ofF er r
the com
Plex
- ic Tdentities 1 Humbers
Trigonometric Identi " cig 8= 2n
: tee cls(—_ 2T, o 0 1
; - le formulae for sine and - ¢ oeig (D T .
Using Demoivre's Theorem the multiple-ang @ x Cls(g“l_jﬁh ' rﬁ'ClS(G + 4
) - ; is ap n -
. ; ties, are readily n'th n ¢ e
cosine, as well as many other trigonometric identi ! POt Oof a. gpjg list contaip
S exact] .
. . Nunberg . Y n dige
. . ng example: : SEinct op
deduced. We illustrate this with the following example %_ Mplesy
-
: T cis(dy r 6 + 2 1
. . ci m
Express cos 68 as a polynomial in cos 9. ' S{_hﬁh““q Torrer U ocig8t 2n-17,
thE ar It r
Jument gf a
We have . Ty other Number jp the 1jigt diff
. . rom the ers hi
cos 66 = Re(cos 60 + i sin 60) Argument of One of the abo !

= Rel{cos 0+ 1 sin )b {Demoivre's Threorem)

= Re % (6) COSG—n g (i sin 8)n (Binomial Theorem
n=p 1

i the n d . .
; - gin ist
= cos®8 - 15 cos sinZ@8 + 15 cos20 sin'g 5} inet

8re the Numbe e

]
Bth rogtg of 5 -

. . . )
{the odd powers of 1 sin 8 are imaginary

I'(COSH.f_ i sing)

&
T (cos |2t 2kn |
n * i sin| 8.+ 2Ky

for x =

2 —cos
= cosba - 15 cost8 (1 - cos? 8) + 15 cos<@({il-co

3
- (1 - cos? 8).

Or l, 2’

Sty D=1,
29 -1,
= 32 cos® @ - 48 cost 8 + 18 cos” @
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.“)
. il i sin =
— 4 1 3
. Sy cos
ror example: .8 /3 i) = 16{ 3
° hroots of (B

. fourt
The four

197

(13ﬁ , 2 cis (957

: TN 2 cis (5
are: (ﬂ) 2 cis (ig ' 1
2 cis 357

1d be
nce wWou
in seque
1 the next number
e;
2, for examp
[NOtCr

257
12

il 1
. — 4+ 2%} .

s ( ) = 2 cis {]2

2 cl

(” )a!‘.l(:l.l ax nte {Est are th Il h !OOt 0[ Ulllty.
t S
l 1. t r - e
l

N are:
f unlty
roots o
3 cube
0 + i sin 0, the
. - l = COS
- Since
le:
For examp

ois 4“/3
0 cis 2u/3, &1
cis 4

5. L6,
or 1—_+-—2'—il —2 2
1 + T 7

S
Remarks

£
ial in terms ©
ential 1in

ex expon
f defining the compl
: we used O
technigque
1. The

ex may be
ion for
tion
. resenta

he power series rep
. the

ion of
lex VErs

the comp

p ! r
'IISE(! l:() [ m [~ =] tenslon o ()‘.het [L}IlCthIlS fDI Gxaﬂlplﬁ

e . e
z /3! + z7/5!
. = Z =
sin 2

\zl <1,
z - 22/2 + 23/3 T
) =
in (1 +2

. £ a
tions O
. a theory
ible foundation for
0SSl
idL‘S one b
and prov

complex variable.
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ig . .,
2. From ! o Cos 0 + i gip & we gat
e-l8 T eos8- i gip g i
and so
cos § = %(ele + eqlo)
. Ll ig -ig
8 = _= -
sin 2i(e g™
which Suggest that
. ~{)
Cos i} = %&![ + eo) = cosh
, . -0 : .
and 5in ig =-£ (e - eD) = 1 sinh g
21 '
or
cosh 0 = cos ig , sinh & = ~1i sin ip
This explains Osborne ' 5 Fule {Exercige 8.1.7, P-154) and the Sign change
for products of Sinh's; (-i)? = -1.

COMPLEX NUMBERS

Complex Numbers Introduced

(1Gth contury)
REAL NUMBERS

Inclusign and Symbolic Manipulation of
Irrationaj Numbersg ( ~ 12t

= carlie
RATIONAL NUMBERS

centupy
r i India)

Introduction
of
Negative
Numbers
(thh century)

Whole Numbeps
1,2,3,.

{from antiguity)
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i
il
il

Aot
AR

EXERCISES
EXERCLoRS

ries z
(1) Show that the se L

f i St
]' ShOW
(c—) ( )

k=0

. ion
from the discussi
r

[ ser) (1 25

. ; sum.
: nvergent and
1, 1 i} is co
(—=* %

a3
roduct
s ofthep
four term

re those expected
a

on page 237.

1t
al resu
the gener
lgebraic argument

an a
e Prove bY
(i)

k=0 k=

.) ‘
(l 4+ 1

in terms
} Express sin 90 1n
(4 :

oo k k:
- o k k‘l - E (rl + Iz) /
[ ) r?/kll( ;Orz/ " k=0

sb - : 0/ 2]
of sin ® and coO ‘n[(n+l)e/2]51n[n0/
si

in nH = 5in[e/2]
+ si

. 29 +oaa

that sin 8+ sin

(5) Show

iate "Geometric
ropri
¢t of an app
, the Imaginary pa
int: Consider
[Hint:

Progression -

tan {).
. ms of
i in ter
ession for tan 5
AXr =
"ind an GXD
(6) Fi

i ‘I!l‘i our lSt.LI!(:t UaLueS iOI (l t '3 )
f u d 1

/4

f unity.
5+h roots ©

y (i) Find the 5th

(8

S v
(i i ) 11()\'\] tlh‘l t Llle] e 1
] r : ' ) -

+w
and prove 1

1t
. such tha
h root of unity W
s an n'th

of unity
distinct roots

n- l are the n
W

T

n-1 _ 4.
3 LW =0
+owt oW F ..
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APPENDIX 17 4

The Fundamenta Theorep ofwﬂlgggfg
Given any (non—ccnstant} bolynomiay

n
..+ oa x
2 n
n{n »

9 compler pogy z

= zo we have p(zo) = D;

From thig it Teadily follows that P(x) = (yx - zOJq(xJ, where g{x)
is & polynomial Or degree n - 1. Repeateqg application ef thig Tresult
establishes tpe fhﬁbopizabion: .

b(x) = 4 {x - Za)i{x - 2 Joii(x - zn)
whera ZD’ zl...,z are the g ooty gof 1y not a3 Of which need ho
distinct,
[Note. in what follows it ig not @5sentia] that the coefficients
ao, al, a2, ey, an are regaj, They could L compley Whon tho coefficients
are real we 5ee that plz) = 0 ir plz) = @ and sp i ol lows that if z
is g Yoot, thaen S50 tob is z i that jg Complex Toots ooeyr in ¢onjugate
Pairs,
Proof
Since a 0 (otherwise

P woulg Not be of degree n) it g
and sg 255ume that P has ¢} Torm

!p(z){ has 3 minimum valye
z and that this minimygy Value jg d,  Ffar then p(zo) =0
as Tequireq
inece
[p(z)[ = [2" SN 2L, e taz o+ a, |
2z ’znf = ’anhl 2L + .. 4 alz + aDI ;
-1
2 27 - g Y I
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we see that \p(z)\3>\p(0)\ for all 2 with \z\ - R, for some
sufficiently large R. Then
Now let Zy pe a point where \p(z)\ has & minimum value in the disk [q(aw), - [l
- + h am m -
|2| ¢ . That cuch a point exd £ h tinuity of R T
< R. poln axists follows from the continud y o P s m+1 w
ces + b gy"
= v
although it will not be proved in this course- {as the function 1/=z }l - a4 b M1 el n ,
m+1® W +
shows, the existence of such & point need not follow without some < 1 m see bnanwn
s . . . '+ b M mbl
restrict1on such as \z\ < R.) Slnce 0 belongs to the disk \z\ < R m+1 W + 0
cee + b oglwh
n
we have, DY itg nature \p(zo)\ < \p(z)\ for all \z\ £ R and {provideg o< 1)
5
lp(z )\ < \p(O)\ < plz) for all \z\ > R. 1-a"y Ib m+1
0 ,a m+
m [w] .
-« F |k n
Thus \p(z)\ ig a minimum at 2% Z g < 1 -4y | n{” wan
(,bm] + .
- Ib |) o™, m
We shall prove that p(zD) - 0 by assumind that \p(zaﬂ?; g (the ( n Iw, '
bProvided
only other possibility) and deriving 2 contradiction, thereby showing that 2 1s sufficient] |
¥ small
. . alw 50
our assumption must have been false and SO p(zo) = 0 as requlred. = 1 m ‘ I £ 1; that is hat
| - o™ - wos w7t
. b )
Thus, assume p(zo) # 0, then we may define a new polynomlal of degree B [ m, RN |b ,)’ m-+1
Ut, then for n W! 0’.]

(o

N, suffiei
{z + } Positive (its 1 ently small we sQ
z Z - o
q(z) EL*_”-SD imit as o + o ; that
P(ZO - is 1} and
d so
2 n .
if glz) = bo + blz + bzz + ...t bnz , then since Gglo) =1 we have fQ(uw)] 1o, .
* !-1(3‘(..,',: _‘_. ,
p. =1 and sC Fiuge:
0 1
# L
(z) =1 + b2 * bz
qflz) = lz . JZ

Also, since P is non—constant so too is and at 1cast oné of the

b must be non—zero. et W 1 be the smalles

coefficients b ; et
2 n

l.r

index for which bm # 0, then
m n
= _,.+bZ.
glz) 1+ bmz + a

From the choice of Zq we Ssee that \q(zﬂ has 2 minimum value of 1
at z = 0- We now derive & contradiction by proving the existence of

numbers Zy with \q(zl)\ ; 1 thereby completing ghe proot-

: 2 : L3 1
Let 2z, = W where ® 15 @ positive real number and w 1is an m

the

roesult.




247

CHAPTER 12
.t

DIFFERENTIAL EQUATIONS

In 58.1 we say how a number of simple situations led ta the cquation

12.0 Introduction
=~ ~Tltroduction

Y' = ky.
"Models" for many other situationg broduce 3 relationship between g

function Y and itg derivatives:

Such relationships are referred to a4 differentia] equations. a
say the differentia} eJuation ig gof order n if the highest derivative
invloved ig y(n). For example; (0.1) jig 4 second order differential

edquation while (0.2) ig first order.

12.1 Fipst Order Differentia] Equations

. d . , .
(even the equation a% = ky required us to "invent" 3 hew function, the
eXponential function, in order to “salyaen it.) For example: it jig not
pOSSlble to find an e]ementany Solution fop the spread of an epidemic ip

an exponentially growing Population, described by

Eg = ay(pePt V).

£
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where no explicit solution is

In the great majority of cases:
ch lie at the heart of the vrheorV of

possible, the key questlons whi

quations“ are:
+ion satisfying

differential e
(1) Does 2 golution exist? T+ may happen that any func
the equation would have tO have self-contradictory properties, in
which case there can be 1O golution.
5 a solution: how can we detexmine its properties (that

e differential

(2y If there i
is, build up a “picture“ of it) directly from th
equation? Here questions cuch as 'id the solution andque?’s hallert
docs the solution panish?! are jmportant.
A partial answer to {1) is provided by the
EXISTENCE UNIQUENESS cusoreM:  If for values of * ad y near %o and
yo e have E£(x,¥} ig a continuous function of % and
\f(x,Y1) - f(X,yg)\ < klv1 - yal, Tfor some conatant K then int @
neighbourhood of *0 there exists @ unlque solution of
dy
& = [0
dx (% v)
satisfying yixg) = Y0 -
&y - £(x,v) involves, in some sense, an integration.
- .

Ty constant.

Since solving Zy
n an arbitra

Note:
ore neces sar

ion to contai
y in order

pect the solubt
is theref

we would c¥
e resultindg family of

1 condition such as
ific solution £

YU(U) = YQr

initia
to pick out a spec yom among th
se general questions.

rthexr with the

solutions.
y explicit SO

m curselves fu

We will not conce
nigques whereb

{ngtead We lock at a couple of tech
pbe obtained in a few special cases.

jutions may
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When it i
1s possib
le to
rearrange the eg
nto the
fOrm

dy

Y (y)
dx

X{x)

Whe;:c Yy .
1s a functij
ction o

is a Functi

ction of

¥ only

r

then we
s5ay the e
quation i
§ ¢eparable and mg
Y proceed
to solve i
e 1t by

in thh G
t d 1t Sled o to X ‘t() O])t
aqr e 1 es C aln

f Y(y) gz dx =

X f X({x) dx,

t
8] 1s1n ]1e EubStltthlDll fDIIllulEl

obtain an i
ilmplicit
L re i
latlonship betwesan
X which
we may (o
r may

not) be ah

le to
solve fo
r

Y as a function of

x. A sol .

uticn wil

1 then

be O# this form

For example:

If gz _ .
dx - v
we have i
Y—l dy _  x
dx -e
50
-1
dx
or
In Yy o= - X
Thus £ +cC
X
y = ec—e

dition vy(0) = 1l we ha
ve
. 1 = vy(o) = LC_ED
R |
o
and
y = ol-€" .

o

[Thi
s e .
quation ’ kﬂD‘m—] as
mPertz' F
roxmul a
+ has been used to mog
model the+

ﬂemlse 8] 4 O Q E(] = y a ecl [“(i 'V][!“a 5 =- cal y()!l S5ea Whv 7 i
-
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y £ §12.0;
ion (0.2} o
mple consider equatio
d exa
As a secon
Y _ ay(p - ¥) -
dx
1 s to
rating variables lead
Sepa
= x + C
dy = uf dx = o
y(p-y)
ions
using partial fraction
or,
= + C
. Egay = ox
Py Py
i we obtain »
from which - "
in y -
= C)
{where C3 P
= + C1
o 1n 5%§ = pax
0xX
y pux+C1 _ C1P
- i )
) - (where K =€
ke!*"

we have
1ving this implicit relationshi? for y we
vi
So P |
r 1 +;Lﬁe-pux
=g =1 we have
In case P l
-
e 1 +-% e

tant ¥
. trary COons

y determine the arbi
_ 1 we ma

: (0) = 0.

and if ¥

obtain the solution
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12.1(b) F

irst Ordey Linear Equationg

A first order equation of tpd form

Y' o+ plx)y = f(x)

1S termed lingap and may he Solved using an integ

rating faetop Ux).
The idea jg to multiply (b1) through py u

to obtain

BY' 4 upy = BE
Then Obhserve that if

(bl} ang

A e s e

(b2)

pi{x) # o for any x,
have Precisely the Same solutions.
also be chosen go that

B is chosen sg that
{(b2)

Further if U can

BYo= gp
then (b2) may be Written ag

T A e a .,

(b3)

By oty KE
or,

by the broduct ryie for differentiation.

(ky)' = uf .

An equation which may ha readily integrated to obtain

by = [ uf

¥ = E%&Tf;(X) f(x) ax.

To see that this Strategy ig Viable it is o

and so we have the 50lutiop

(b3) has a solution
to

nly necessary g show that
H which ig never zorg Now
first order equation.

{b3) is 3 Separable
Indeed (b3} be

BCome s
%-gﬁ = pi{x) so in ¢ = f Plx) ax
or
nix) = g fptx)ax
- which, as required, ig & non

integrable.

 Note:
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For example: To find the solution of

ay 2
_._-.*.__
dx xy

cos X

%2

satisfying vy(m) = 0,

multiplying through by u{x) we have

dy 2 Hcos X
3 = = A== 2
b YR MY "
and choosing U to satisfy
' 2
that is, b o= s0
2 i X
pto= =
X
2 2
Inp = In x or po=x
we have
dy 2 d d, »
—_— e — = — = —_— = C0OS5 .
wge YR MY Y oY) x

Thus, integrating, x>y

. : 1 .
fcos x dx = sin x + C and so Y = ¥ (sin x + C).
X

To complete the problem we choose the constant of integration C so that

0 = y(n) = S {sin n + Q) = —5

¥
4

bl m

that is € = 0 and so the solution is

sin x

%2

EXERCISES
(1) For each of the following differential eguations find the solution

satisfying the given initial condition.

. d 1
(1) SE=1-v : y(0) =73
Loy Ay U e¥ 0y = 1
(11) 3¢ (e” + Ny . y(0)
1i1) M y2 v ry+ 6 y(1) =0
dx !
. dy _ y( - y) -1
v} 3 7 %2 - % ) b 2
dy _ 3x? _
(V) dX - 2(\/_1) ] Y(O) = _'1
(viv L= xuy . y(o) =1
dx
3 3 d_y == —N————xy ~ y = 'J
(vii) 3¢ E— ' y (1) 2

Mmasg
of 5 Yrowing cell, ]

=l" A:l
(3) =2

Starting with Plot the S0lution
a0 initial pig 4 .
04 alc,

Commenceag . ohol 1
to imbibe a¢ the evel gf Zero,
tonstan

to a fi t r

rst R ate .
apprOX]_matiOn th of r mlddieg

Satisfigg e bloog

a
de D'Ozr"0.4g.

Fing
a -
N expressiop for

{4;

Thﬁ‘ unation dy

gy ®i  that ig
Using the gy de T Fly/x)
Stitutig
n oy =
Y/ x
as t show \
he Separah]e equat that thig may be
on rE"wIitte
n
x du
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lution

. the sO

. ons Find

: eguation

ing differential ed
followd

£ the
r each e}
(5) Fo

2 s ns .
s irial conditio
the given initial ) = L -L)
isfying yi0) = 3
sat i % y ' .
¥ - @ a4, b and ¢ are constants ang L is a known function of X. Such
(i) dx x, yl0) =0
= sin x cos X, an equation jg known ag 4 Constant coefficient second ordep Tinear
Y 4 (tan XY 1
(ii) dx , y(m = differentia] equation,
o r
A , ¥ =3 cos
(iii) dx X =1
y{®
y' - 2xy = %
(iv) =1
y (0)
AR 2xy = 1 '
(v)

would expect the genera] Solution tqo i
5 an
o (V) a .
r
r answe
have to leave you
vill n
ell you
1 goes W
(If al
. 1.)
integra

ion of
If y = p{x) is 2 solutl
i)

(&) (1

y| + Pr.}()y =0

Usually of the form ¥ixg) = Yo and ¥Y'(xg) = yé
where X0, ¥p ang Y, are known Constantg, The neeg to
Satisfy tyg such initjgp tonditiong
£
valuc ©
. for anY
on
is also a solutd
= cb(x)
hat ¥
show €
C .
the constant

be a solution of
(ii) TLet Y¥Yg

f thisg type
Newton 'y Second g for the motion of 3 Particle op g
b
Straight line Telates the acceleration, 9—; + to the forces acting op
dt
_ the Particle ang 50 leads naturally to g Second order €Quation of the
=0
Y form
ian of :
he a solutio B ' m QE_ + p 9% *ex = g
and let Y, B st ar2 dt -
LR P(x ion of ( - . dx
Y 1sc a solutl where the first order ternp b dc Topresent
is a
= Ty .
show that ¥ = ¥Yg P alir '

¥ drag) relateq to the velocity

force Proportional ¢q Position,

such
Spring ang £(t)
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is that if ¥ =p1(x) and ¥ =po (x) are two solutions then
y = Appi{x) + Bpp(x) is also a solution for any values of the constants
n znd B (you are asked to prove this in the exercises) . This corresponds
to the physical vprinciple of superposition" and it is because of this

property that the equation is termed "inear" -

gnough general theory {at least for the moment) - We now consider the
gquestion of finding the solution of

113 - T -
ay® + by' +cy = 0 hree POSSibilities
ariSe;

(1
satisfying the initial conditions yixg) = Yor y'{xg) = ya . ) The two roots 3

s Ao
are r
In this case eal and unequa

since the voorresponding” first order eguation

~ex/b
by' = -cy has y = he cx/

as its solution, it is recasonable to try for a solution of the form

VA Aukx .

We scek values of A and A for which this will indeed be a solution.

guhstituting into the differential gguation we See that this requires

A and A to be such that for example: ¢ EWo injrj
The problem al conditiang ar
@ satig
-’:L?\ZAE)\x + blAelx + cAehx = 0 g
— 5 ]
has ¢ Y' o+ 6y =
or haracterist;. ) 05 y(o) =3
- equatlon y' (O) =0
Afar? + bx + cle = 0
X ¥ -
for all values of X. With rootg SA+6 =g
gince ekx ig not zero for all values of X (even when A is
Lilitd Thus A=
complex), the only two possibilities arc: : 2, 3

(1) to choose I = 0, which leads to the tpipial solution y = 0

Y = 2x
for all X. Ae"T 4 goidx

Subst;
1tuti ,
ting thig into th
€@ initjigg

or Conditiong vielg
s

I

ng z

(2) to choose A to be a root of the quadratic equation al?+ DA + C_ﬁg ¥{0) = a4 g

o
i




258

(I1) The characteristic equation has equal roots

AgX
et Mg {necessarily real) be the common yoot, then y = Ae 0

is a solution for any value of A.

However, the one arbitrary constant
A does not give us enough freedom to satisfy a pair of initial conditions

and we are led to expect that there is a second solution with a form other

A ) R .
than Be x. in this case it can be shown {see axercises) that

y = Bxexgx is also a solution.

Thus the general solution is

y (A + Bx)ekox

and the constants A and B can be chosen to satisfy the initial

conditions.

For example: The problem

y" o+ 2y' vy =0 g 1, y'(0) =0

has characteristic equation 22 +2) +1 = 0 with egual roots of -1.

Thus, vy = (A + Bx)eax is thoe general solution. gubstituting into the

initial conditions we have

1 =4, -A+ B =20 and soO y"—6y'+l35
has cp T = 0;
-—x aractorige; Y(0) = 1, ,
y = (1 + x)e Mo cquation 4o _ Yo} = ¢
and ) = 3 - 54 P 0 .
is the solution. [Verify this by direct subsititution into the equation.] L. With roppg N
. . 2 rootg
(111) The roots are complex, and so of the form M=o + iB , Ag = 0o - ig are compley th
B ! e Solutlo ]
n 1s
in this case we have a general splution, at least formally, of the form Subst it v = e3x c Of tha form
utlng i cog 2
nto the ; <X + D gip
(a+if)x (a-ip)x initial ¢q 2x)
vy = Ae Be Nditiong e
Jlvesg.
1 =
‘e _s 50 ¥{0) = ¢
= eax(Aclfx + Bo le). 3 c
-3 ; and Yy = e
Since e iB%X .5 the conjugate of cle, if we choose the two constants 098 2x 1 p sin 2y
A and B to be the complex conjugates, Whence Vo= ‘33:)\:(3 cos -
X + 2D cos 2% 4 e
a=1ic-iD , B = Z(c + iD) - Sthe terms)
2 2 0 =
. =y'o) =
. . . :_ -dn = 3 +
[Note we have still retained two arbitrary constants, namely C and D] d the solutiog is 2D roqui res . ]
2
. _3x
Y =e {cos 2% 3

\—L

Thus, y
two arbltrary
conditiong,
Note:
®quatio

eax
(C Cosfx + p si

= Qax i
Y= e nethx + ;;EEE_
)
=~ ax
=™ ]
Re[= ,
e[g{c - iD)elﬁx]
= 0%
e (c

co
5 fx + p sin gy

b X
Y the Euler formuig 1Bx

rn]ine

2 Sin 2x).

=co .
SBx + § Sinfx]

d to sap;
satisfy the initig]

e
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12.2(b) The non-homogeneous case

We now turn to the solution of the non-homogeneous problem
ay" + by' + cy = £{x); vy{xg) = Yor y'ixp) = ¥q -

We begin by noting that if v = yp(x) is any particular solution of

ay" + by' + cy = £
not necessarily satisfying the initial conditions, and if ‘yh(x) is the
general solution of the corresponding homogeneous problem

ay" + by' +cy = o,
then ¥ = yp{x) + yh(x) is also a solution of ay" + by' +cCy = f (see
exercises) involving the two arbitrary constants of yh{x) which may be
chosen to satisfy the initial conditions. Thus to solve the problem
completely it is only necessary to find some particular solution yp(x).
The approach we shall adopt, formally known as the method of

undetermined coefficients is best doscribed as "inspired” quessing.
consideration of the form of f often suggests the possible form of a
function yp(x) which wben combined with its derivatives into
ay; + byé + cyp will simplify to £. The method is best cxplainud in

terms of an example.

PROBLEM: Solve
" - 2y" + 2y = w 5 yloy = o , y'(0 = 0.

. . . . X . '
gSince the only way derivatives get to contain € ig if we start

. . X
with it we can infer any particular solution yp(x) will involve e -

Also we will obtain texms like oo in the first and second derivatives

if we started with
2 X
yp(x) = (ax? + bx +c) e
Thus, it seems plausible to try for a solution of this form. {ClearlY
it would not help to have yp(x) contain cxpressions such as sin x oFf
1n x, though these might be appropriate if f(x) involved sin X, cos

or 1l/x.)

}:}XQA
¥ ! = x + Ce

X

+
(2a + b) xe X - .
+ ) e

15 = axze +
(da + p)ye™® + (2a
1" 4+ 2
Ypmav'+2y x b4 ¢y ¥
P T T oax e” g

+ {2a + Cjex

’

r b = l we nust havE

AT~ a4 Tt eay Ly SPonding
=0 ch ,
has roots 1+ dracteristic equat
1 ang ion
1 1 - 3
i).

o
= y{0)
So =0 +
Y = xe” ¢ pe¥ sin l.(cor 4 D.0) .
X
and thE.n H
Yy = XEX -+ ex "
50 De™ zip X + puX
& COos5
O = 1
. y'{0) =
9iving ) O+ 1« D10 4
’ j D-l,l =
ThuS D = _l l * D
Yy = x
is ¢ Xe x o
he requireg soluti & sin x
on
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EXERCISES
(1) For each of the following differential eguations find the solution

satisfying the given initial conditions.

(i) y" o+ 2yt - 3y < o ; yl0)y =1 y'(o) =0
EE7 T A D A § =0 ; vylo) =1, y'{0y =1
(1ii) y* - 6y' + 9y =0 g(@) =0, y'(® =2
(iv) yr+y vy =0 7 y(oy =0, y'@=1
(v) y" o+ 4dy' 4+ 5y = 0 y(oy =1 . y'{0) =0
(vi) y" o+ 2y' 2y = ot cos 2K y(0) = y'{0) =0

(2) Show that the genexral solution of
y" +y =0 can be written

A sin (x + ¢) where A and ¢ are

w
(7
L<
fi

constants.

(3) The current I in an L-R-C circuit is governed by the differential

equation 1
2
L é_%.+ R %%—+ 1.0
de” c

\
|

\
\

Under what circumstance will the

circuit oscillate (that is, have
a solution 1T(t) with an infinite number

of sign changes)?

(4 If y = ¢fxﬂ and y = ﬁz(x) are two solutions of
ay" + by' + ¢y = 0 show that
y = P.gjl(x) + 1‘132(:{) is also & solution for

any values of the constants A and B.

(5) If the characteristic equation of
ay" + by’ t &y = 0

has equal roots of Ap, then it is of the form alih - 10)2 = 0.

2ali T
Sh oy  + 2
ow that a)\uy =0

Y = xe

iS 2 g .
oluti
on of thi
. his equation anpg
solution ig SO conclude

that the gencral

(6)

If y =
yp(x) Satisfiecs th
e Hon-homogeneay
5 equat
N ion

and y = YO by 4oy < £

¥Yp(x)  is 4 Solution of ne o
] ution of the Y

- - Correspondi

Yy =y
P(x) + yh(x) is also
2 solution
of (*)_
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Supplemeutm'y Notes

Page 127-128.

function f is an antiderivative of
requires a little clarifie

In Theorem 7.2.2 it is shown that any

primitive of a cop iinuons
I Ifeel that the conv

erse, mentioned on p-128,
ation:

Theorem 7.9.3 Let f be continuous o

1 the interval (a,b), and Suppose that f
has an antiderivativ

ltive of f differs from G by a constant,
e of f. Then F' — J by 7.2.9,
)" = 0 and h

ated result.

e G. Then 4Ny prin
Proof. Let F he any primitiv

definition, Hence (F - ¢

while G/ = f by
{a,b}. This is the st

¥ Corollary 1, p.105, F — @ is constant on
Thus it is alimnost {se

€ exXereise) trye
incide in the case

of a continnons
Ezercise. Recall that by de

some ¢, Find ali primitiy
Gla) -~ tan !
Theorem

to say that antide

rivatives
Tunction,

and primitives co-

finition a primitive of f is
es of the functjoy f
b oas an anfide
2.3 8 valid for ¢

a function Flr} = f: f for
(e} = 1701 4 +*)5 aud confirm that
rivative Lhut not a primifive, Check, hnwvver, that

Page 136. The inte

gral / A1 —
U= (1~ g2 /e

.
2 dr may
3

U= (1 - ;1'3)3 *’,

also he fond

by the substitutions
o= (1~ p2)s/2

- €t and quite possibly others,
Page 142, Another reason for s
g€t an exact answer for the antider
- p.169. for example. In such cases 1t may in fact |

e easier to accurately evaluate
‘a definite integral by numerical methods, suely as Simpson’s rule. rather than by
- using the exact fornmula,
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4. Let
) 2 2
e, y) = T glr.y) = ay? | ey =22,
Write explicit formmla for the functions Fao flate.y). hir)), g{h(x), fle,u)),
hf(r. oyl ). Iy (hir). M)} where possilile, |
9. Draw the graph of the function

6. Give a geometric mterpretation of the function

k)

and draw tle graph of the function iy three-dimension

al space.

2. Limits and continuity, Here again the ireatment ig very similar to the one-
variable case. Let flx.y) he a function of two v

ariables. Intuj tively,

S TR 0 gyl o L
(ry) ~(ah) '

weans that as (£oy) gets closer to {a.b). fi
to wmake sense,

c fle y) mmst e definred pe
itself - compare p.83.)

the domain D

o) pets closer to In ord
ar o b (Bt nat nee
are talking abowt two vartales
of f confains # sguare contaiuing {a.b).

J[\\}

er for this
ssanly at (o, h)
- this is to say that

As we

7‘;
a v

OF even au arbitrary shape

would doe just as well, but the
This leads to a definition like that of
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be
variables, and let (a,b)
WO

function of t Then f has limit L
5.2.1 Let f:D - Rbea .
Definttion 5.2.1.

( )
ve L 0l l 5 a 1] \ﬁ’]_‘]t‘l'E]]

b,
(‘T'.y) - (ﬂ.,
L or fle,y) — L as
, fla.y) = ‘
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o e alb o 00
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enouglh ¢
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“ e hepm w
. s0 we beg
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AL KO W
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& - 07 so by ptiames with “if
. L li] .
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inish
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o LMy s
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HEEIANTST {1]( H]...winu”“" tIns 1ueq :
. VoS ;
H“x l)}llil )]

Yine resul
| the corresponding 1 re Lewmma, p.84)
, W ] - -

. . npa
. ‘e111. 1L je results (cos
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(1)
c

i [ 153 .
1 lllii} 'l“ lt!l]“ i]l(l (ll\ K101
1

lim  Cleoy)
(o) = (ah)
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for the constant functioy C’{.‘t',y} = ' and

lim nley)=q . * lim
(roy)—(amn

P:z(-'ffa!}) =b
(.r,y)——»(a.b)
for the

example

(2)

Projections Proand py g Il up liwits gs 5y Chapters 5 and 6. Fop
. 3ry + 1

lim Y7 =2,

(zy)—(1,1) 2 + ¥

An inferesfing example is provided by the function

where D COnt ity
we have f£(,. i)
f{.r,y) “* 1. Since w
Paths, the lim of f

e + 2 ' (3)

origin, If we take » =
I we take ¥y=0

48 (. y)
does ot €XIst .,

all points iy g2 except tle

= =10df o t]e other hap,

¢ get different results
at (0.0)

and let y -, g
and let , O they

approacheg (0.0) by different
Definition 522 Ty

{a,b)

e function f:D 5
of jts domain if

15 said to be continuous at the point

lim {r,y)
(*.yt-~(a b Y

€Xists and js equal to fla,b).

From ouy Iit
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nous funetiony

the sy, diff
ATe ag
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ut of contig.
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I Prove results {1)
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follow

P-84-85 alirogt w

2. Conside

Yo ean
‘ord fuy word, )
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have seey that if 0 and § _, g then
Tlry) — = 1. while jr Y = 0 and 5 _, ]
then fley) - 1. We cayp View tlege Imitg
as letting (., aloug diffey.

¥} approach {0.0)
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S0 plane, gq
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eus to f(
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Define
ks ) 2 (0.0
RN S “) g U s 0)
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Is f continmaong”? (Hint: 1 yt gt 2yt
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3. Partial diﬁ'erentimion. Con
f ol x and y.

diagram that
at a point

“gider a function
can he seen from the
the rate of change of f
(. u) depends not only on the pomnt

onsideration but also on the

7 of change. In this gection we

here the change

y remaln-

under ¢
directio
chall ireat the case W
the o direction,

is purely m
in the y direc-

ing constant.
fion, with @ rewa

or purely
jming constant.

e, therefore, that y 18 fixed.
is a function of » alone.

f change 1s gven by the

Suppt
Then f(a, )
and the rate o

derivative

xX

fle,y)

———

flo = h.y)

Nm ——
h-—0 h

define the purtial derivative of f

fa

with respect 1o T . notated

af
I or ——
fol.y) 3
s, the partial derivative with respect to T
as if it were a

y constant and differentiating flz.y)
e O in the last notation 18 a special symbol, and 15

if it exists. We

oT
of a function

to be the above Yimit. That 1
Fla,y) 38 obtained by holding
£ ¢ only. Note that tl

function o
w8 or au Enpglish U

not a Greek delta
the rate of change of fr.y) m the y direction. & fixed. 18

of f with respect 1o U
af
By

1n the satne wWay.
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fy = fy('!'-. .U)

Fley 4 h) - flw)

m =———
bl h
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refore cal-
£ which

In

} variables are the
es. only rememberin
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es of a function of two {or more

Partial derivativ
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culated by exactly the same Tt
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derivativ

particular we have
g _ af Og
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dr\yg e
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Warning:
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1on of » . 1at an are functi
‘ {  alope. However ; (1) we wrote 49 ctions of botl, T
The abov 1t would not he ; dr Tather than ¢ ‘ _and Y (see
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€ ruleg
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Course ot to write 29
H: M
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al ¢
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Lo ntiation with reg
5 nnking of 4 4 !
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.o R
thinking of e O.P nl -
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(since &
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e at the point (1.1} we )
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Theref . f
retore, notiy P |

point (1, 1) g that Fl1.1y -

can be s U. the direct;
e llustrared 1e direction of the surf
Slrliace - =

as bhelow,
2= fleyy) at the

z

Sinyi
ularly
] vif glu.
glr.y) = sin Sty we |
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Jr = cos g 5]'!1 y

G, = i
Hy = s cos y
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le, g {E,E)=0.
and so, for example, S

) =

" Ti i1
find seco tto i1
jvatives we can ith respect
" ordinary deriv a,hve‘ vative of fr with

As in the case of orc be the partial dervi

510 ine frr to bet
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the O notation,
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4. If g(1)

Is a function of one variable, with derivativ

e g'(t). find

e
7). if r vanes while ¥

lirertional deriv;

ay_ay'_a;,_az

5;(9(1')) ; 6__1;(9(;)) b 9(ty) a—gg(ﬂ: v).

5. Let fla,t) = glz — at), where ¢ ig 5 constant
variable such that 7"(z)

and g(z) is a function of ope
exists. Show {hat

0° f 2O f
T '-,, N I
or: O
{(This cqnatioy deseribes 1he amplitude p .4 tie 1 of o wave travelling wit},
veloeity a.)

4. The directio

nal derivatjve,
surface : = bl

T, y) as (2

*

We can Hnow,

generally, find the slope of g
»¥) changes ip any direction, Let the required direction he
given by the yu;t vector u = 4§ 4 j. Moving a dista
us from (z,y) to {

Tl gy vh)

the direction of u is

nee hoin this direction takes

;™ therefore the rat " dnke
L f(?J_ whyy 4 4 h) - flr

v i)
[T

T L]
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: ) A F T rlr)
uh T .

vh
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uf,(.r',y) : f'f_,,(.r..r/)
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ded that I+ and Ty exist and are coutinuous at
S gIVen in sectjop G.
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grad;

as b 0. provi
Proof of this ;

(v, 4). A carefyl
the no

tation V§ {
ent vector of . that

bPronounced “gej F7or “grad 17} for the
1s,

Vif= (Faifur.
1) s sinply 1he scalar prody
Iftf:p g 13

tiuuous at

Then 1] ¢

Xpression |
Theoren, 5.4.1.

tu-Vf We
Xist and are con

a funetion whose partial derivatives S+ and fy
A point (a,8), and o s ALY unit vector. they the
P {al) in te direction of U existis

and is equal tq
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Vflab).
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ut 4 pd L i

P 1. This is w

points is
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half of
- = fle.y) represents‘tlllehfffon i
. Then = = Jlx. (2.1,2) which (1.1);

ST

y) = /9 -7 7

et fle) =B

Emm{fj: of radius 3, centre (0,
sphere, -

:urlgace. Find the s
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. yoint - . =
. Consider the 11 the direction of (1) u
1 .

The pPreceding work can bhe
of a funetjoy

3 oillf 1

‘ace at this p

e surface

lope of th

used g quickly find the direction of steepest Merease
al a given pojyt. For the directiona] derivative of I at (2,¥) in the
direction of u is
.
o i the -y plan V) = ol Y ey cosp - Ve p) cos (3)
Nustrate these direction:
. Mustrat .
1.-2); (i) W = (-1,0) where § ;g the angle between u and Vf(.'tf,y). Suppose that {Vf(a',y)[ # 0. Since
(i) v ( .IFil-si. we calenlate ¥ . Ve, y) is some fixed Bumber, (3) i Breatest when cosg — yle. § = 0; it is
Solutton. . r _D__Jf ~ least when cosg - —1,1e., 8= T and is gep, when ¢ = 1. Thus we have
_ T - :
Qf - *\7—5:—]':'__ y? - Theorem 5.4.2. Lot f bea function of two variables, ap {x,y) a point at which
A . Vf (o, 0). They [ increaseg ost rapidly wle (
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. : as u i1
in the same direction &
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. 1 = N
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rface in this directic
surfa
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\/2
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. v oIS
irection of v
1 the slope in the direch
5 and the »
. v
. inularly lv}
(ii) Sinn .

(2,1} s (-2, ~-1), that is, directly
Beontetrically obvious sinee the surface » - (r,y) is
a (half) sphere With its centre at the origin. Simﬂarly, the directioy of steepest
€crease is (2, 1), or directly away from t}je OTigin: and the directiog in which f
Temains constant s =(1, —2), as found above,
. Loy 0. Erample. Let gl y) = 2 cos(y7 ). Find the direction of steepest Lerease at the
S & T R T point (1, V)L and the Tate of stecpest Hierease,
v O Solutioy, We Lave
4 V7 (f.. ol (2= cos(y”), IR siu(y:})
an ‘s
! irection of wois :
Jope in the direction and so © 1Lu7) - %2 Therefor he dippes: - T EETIP S
(111} tlie slog 1) 1. alc 50 f(1. VT (- 2¢7, ) feretore the hirection of Sterpest HICrease 1y
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e vectors a o LETCIsex.
The three he surface 1t
all that the . . .
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) ot half of & sp ETS. e
the uppet Sice U is he:uhnl;_. (11.1“. ny o o e
the origin. S the origin, it is eyt by i TGN (o) e, ).
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clear t:hdl illiu fits 1u wilh ”‘1”11“._;:_'1_ 2. Find {le derivative of Hoiy) at the point (a.b) in the direction of u, where
direction; o - directionnl derivi - ) )
tive resalt ov ‘}“1 [ Terivative iu the . (@) fle y) - iyt la.b) = (3,~1). u . 41 + 25,
. stinilarly the .. , hat . . = . .
tive. _513111 Cw 1. positive, aud t 1” ra {h) fle,y) - rlsia e L SHENN (a.b) - (T.7). u- 31 - 4y,
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are i ddl;:m the circle drawn i
]Jf.' SEe1)
diagram.
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ate of
i b), and the ra
¢ the point (a.b),
{ steepest increase of f at th
irection of steepes
. Find the direc .
! stecpest 1ucrease, it
y) = 2t -yt
(a) flz,y) .
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dy O
T4ysin g
27'((_:052 f+ 0

Zrcog g

sin? ) = 21 « sin” #)

ariableg o an

Y remembered g Lotation, ywe have
Theorer, §.5.1. Suppose that the ﬁu;ctious toand yoap. diﬂ't'rentiabIe at 1 and
that e and Fy exist and ape continuoug 4 (;:f(?‘),g/(f)). Then f(:c(l‘),y(t)) is
diﬂ'erentiab]e at 7. and
df  Of de ) af oy 3)
L P Ay ot (
Rnughly SPeaking, e simply 4 pply the ordizary chain pyle. Loweyey We must
Telember tf,, [ may depend oy ! thrcmgh hatly anel y
E'.'.r:.rzmplc. Let Flayy) = YAy, ™,y ' Fing f:f
Solutiy,, We Lave
8 3 dar dy 2w
J:y- ‘Lf“:'?_!‘zy? _l:')f- '_.“‘/:2(.“"’
O Ay dt
and therefore ‘
df - Of dy 9f dy
i g, a7 Oy ot
T 2 o9y
=21 17 )2t + 4!
Chee, .4]!01’11;11‘1'1‘:‘1)'. Flriy) ety LN
df Bf! =t 4 2721 -t Py it .
?
Now

1. They fis:
¢+ Siuce we calculate g{ by ho]ding
wrand gy o functioye of alone, (3) instantly Blveg

»and siinilay Y

L
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and sinnlarly

9 _
EL

T . ‘)H i

. = r*gin?
9% cosBsind = r sl

. S Adyurceos 8 =2

~2rrsind + 4y

101 f(:t',y)
{ a functio 1
: in the case o - ame. an
icated situation arises 11 ds used are just the s 1
lightly more mmph;a € tual fact the methods
A slightl; ) f z. In actua We have
i ction of : | head.
where ¥y is a fu;lph, if you keep a coo
: sy to a . v
quite eas;

(}f 0f v Of dy
—JZ "(:DT&_T - dy dr

. istinguish between
- distingns
v arefully ¢
than ever necessary to o
o tha
Ccase 1t 15 more th
15 sort of casen
In this 5(11’1 o
I ad d{,. .
Hr Jry - LITE
le. Let fle,y) : I
Erample. d o df}
f P Dy dr
de O y )
= 3y + (3¢ — dy)e .
=34 (3 = et — 27

Ho.

= (3r - 2) +
) =
re result, f{r,
o 4 Clhecking the above
t 8L = 3y =34 37 3 T
te that ER -M.,I‘ . §
?f;’r —4)e* — 2¢77 50 y e

ouce agail.
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Partial (.

Tor SOy

E.‘rrrc'z'.s'r'.v,
1. Find e

(a} Flry) = 1 2y,
(D) fla, gy -

T =

251'11111‘, Y= cosh f:
Cos( gy sin gy,

TEL oy
' f(.r,y) =Y e el 4+ e Yy=e"t, et
2. Find Je and £ it
(@) Flrsy) = 2 TIUC s eng COST. y = s sin ¢,
(B) Fley) T s,y 274 87
3. Lot f("'~,l/) S

= vt u. 9. y) = f-all_J(y/.r-)
the cliaiy rule to fiyq Fro

- 9r and g,. o
Y is g Rinetioy of

4.

€ = reog 8,
Xplaiy

Y= rsing, Use -

Your resylis -
Suppoge that
df

de fAand if I

T For f]e fnﬂm\'ing Tunctiogs f(.?r,y}, find
oy s foustant, fiyq gj’ I terpg of o+ ang ¥,
fa) Hroy) o T+ eoy g
(h) Haoy) - Ty o, !
SN . (y/)
- Proofor the formuj, for the dlrectiona] demvative. As iy ge
Flo sy, Y+ o) Flr y)

ction 4,
h

Y eh) i ¥ iooh). f(.'r,y) 1)
H e lrd e 1o nlnnd e - RANEE.L
uly h (
Provided =0 either 4, Or g g Zero, e rHrer‘rinn;LI derivat
Hvative oy or Jr PeSpectively, AL Tl
ul, | . ol They 1,

ive reducey ¢ the
WS4 . cle
Y othe Meay, Valye The

arly true,) Write
OTCUL the fipgy fractiog (1} s
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B el oyt ) {2)

¢ hetwep, ang g Now 4. ol s O: alsa 7., . ang

fore
- Codr s Iy, (o),
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y! E tf‘] f o I I ;f o - -— . -[_ih_- 1 (1), (...). (3).
Wilich I d t ”( T U) a8 i 0 s ﬂll(l t 1ereiore also as h 0 11 g
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Page 261,

Further notes on finding a particular solution o a non-homogeneous
differential equation. ‘

The method rests on the assnmption that the derivative of a function is some-
how “like™ the ariginal function.
polynomial. and the derivative
derivative of re7 is per G et

derivative of lur is 1 [ie.)

For example, the derivative of a polynomial is a
of an expouential is an expouential. Similarly, the
which is still of el the sawne form. (However the
So if we consider the equation
" ] R

¥y -3y 42y =4 (1)
it would seem reasonable to try a particular solution of the
some constant o, Substituting into (1),

form yp(r) = 4e? for

3 s t dr
Bac™ 3w Bae® 4 oog 80 detd

whence 2¢ = 4 and o0 - 0. Thus 2¢*% is 4 particular solution of (1), and the

general solution is

y KPPt B('J.r 49, dr
(check this). Similarly, consider
' 3y 2y s, (Z2)

U we try a particular solntion ylr) asine, we hinve

casina 3gcosy o Y Sin g - sl

here there is no eos teri un tle 0 whicely

attewpt we could therefore inelude COS @& 11 our

right hand side. so we st have o

early does not work. For a second

particular solution: that is. ¥ yplr) = asing 4 beos o, This leads 1o the equations

a4 3b=1, §h  34--0

Vhich Lave t]e sulition o

b —Iaﬁ - The general solution of (2) is thus

Jd
1110

. g
v AT Bt

Tu sI1r

i.tl Cors e,
cad of making our first (finked
Ollows, The right hand side of
Cpl)
frther problems will

Fattemnpt. we could Live anticipated the prablemw

(2) 1 sina s thie derivarive of sine 15 cosa so we

a st - heos s wliere o and b oare constants. Cousidering whetlier
1x cos and the derivative
sins we already Lave tors of hoth these types iy

ork, {Ax we have

arise. the derivitive of ey r
COs s it so 1t ought
already secun. it does, )

AT another example of this approacl. cousider the equation

12 i -
Y= 3y + 2y = drcoss .
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Here yp(a) will contain an xcosa term; moreover,

(1) 34;(.11 cos ) = CO5 I ~— TSI T, SO We should put a cosa term and an rsinr term
into yu(T);
d

1= cos U

we have already got terms like these;

d

dr

(i) (rsinz) = rcosa +sina -

—sinz, so we add a sinz term, and

(1) d—d; sinz = cosa aud a sina termt has already been included.

Therefore we will try

t

yp{a) = avcosr + beasar + crsina + dsinz .

It is now routine (though. bie it admitted. rather messy) to show that in fact

First we solve the ¢
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On o .
mulliplying out it is found that the terms j
he in

a =2 . T ez
2. Hence the general solution of (5) is r cancel and we are left with

Y= AT 4 Betr oot

We conclude with a fully worked example: 5ol
3 s solve
" + 6y
¥ 6y 4 9y - I
w0)= 3, y'0)

3 =

?

Tt

haracteristie equation:

1 3 3o 17 oo
Iicose — Ycosr — Jasine — & sinw -
R0 COS X EENCER 5 ST T S AT 6N 49 = T} I— \= .3
is a particular solution of {3). therefore by EP.258 the :
; general solution of Y 4 6y 4 Gy = 0 ; .
This method will not abways work. Consider R
_ Y= Ade " L a3
y' - B30+ 2y = : 1) Our first t] |
y oo 3+ 2y = oo Our first tho :
‘ 2 as thie gu o] (ushf for a particular salution of (6) would 1
& b 5 Ter [ : . : ol he A T =1
| - o o L o o already a solution of the Lo OO . ) = ae™ bhut
Here we would like y{o) to involve 1700018 derivative - 1,07 i derivative 2727 However this is still a solution {tl Beneous equation we try y, (o) = gpe- i
. A ; . . ' it SoHplty = are U0
and so o, Tu this case it s clear that the process will never stop. and we will not be 10 1c homogene

able 1o write a (finite) expression for gy, (o). 1o fact (4] can he solved by varaiion

of parwmeters. a method which you niay learn in more advanced courses.

Omne further problen: whicl may arise is Hustrated by the example

" ;. a -
gt - By 2y = 27T )

t

. - . . . 2 - . .
Trying (according to the above ideas) a particular solution y,(#) = ac «_ we find:

ro_

L g I p
dae™t - 3 = 207" 4+ 2ac 2

is secn that tht
a4 solution of th

which has no solution since the left hand side simplifies 1o zero. I§
reason for 1his phenomenon is that our choice for yp(e) 18 already
Liowogenems equation

y” 3”* < 2y = 0. .
Tr:

The rale of thud ju this case is to madtiply our previons atienpt hy @

gula) are = owe Lave

y;,[.r) —oa(l s 2 y;:(.f') < oa(d A

aund so

H

H
1

A
|

L]

a{d + dr) - 3a(l = 20} 4 2ar

hence

.Vll]g‘h siuplifies to give g -

re o - . (1K ati . .
IJ}’ »oand fj'\ _Up(.f') - ﬂ’--?"!f . Th(.n f‘(]il:i.tl(,)]l, 50 We 11111“-1plv once

.

! “¥ e
.Up(.!') P 2.1‘ . 3‘!.- ]t' dr . q"( P) ”( 5
Jplo LA ir

120 4 8,

al(l -~ 12, + 9!,2) —3r
- Lo + Ba{2y pdy, b a .
1 6a(2r - Ba¥)e Py gaploc e

1

3 - Thus the general solution of (6) j

Yy=(4+ Ba 4 %',.2)(~ dor
A and B sulij
Ject ta the initial 1its -
348y 3 fhe auit al .(‘(.m(hmms (7). we calenlate the decnts
( Bl 0% % and e we L 1 derivative

4= y( ”) r ]'

=34 + B = y'(o) - 1
soluti . g )
on of (G} satistving the initial conditions (7) j
! 1%
L a
v (;' - '_]"rd)'ﬁ“ = :1;(1 7 .I')z( b

€. Check explicitly tliaf
2 1y that trvine (3
ot give phcitly that trying (i) Upld) = qc- B2

a particular solution of (6) - or (i) yplr) = awer,
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EXACT DIFFERENTIAL EQUATIONS. Aunother method of solving differ- s R

ential equations is based on our previous work on partial differentiation. Su})posc
that flz,y) is a function of two variables. and that y is an (unkunown) function of
x. Then

the wethod of solution given above then consists of finding a function §f whose
cxact differential, that is. the expression
df af  df dy

af af =«
Jv  9r oy ) If = —= do+ -2
de  Or Oydr | df 5 da dy .

i ay
Now suppose that we have a differential equation of the form

: is equal to the left hand side of {4). Then. as above, the solution of the equation
. 1 : df = 0 1s f = C. For this reason. equations of tle form (1) or (4) are called ezact
M)+ N SE =0 (1) |

N differential cquations.
o _ f . ar. "0 - N _then (1) reads Cousider au eqnation
I we can identify a fouction f{u.y) sueh that g o= I. %, = . then ; :

AMde t Ndy 0.

‘r .
.

f For this 1o he an exact differential equation. there mmst he a funetion § such that
dr
. : o : af . af )
and the solntion is just flreoypy - CLowhere (" is an arbitrary constaut. de " AL Oy A (8)
Erample.  Consider the differential equation _ ‘
! But to find f from (3) all we have to do is to integrate,
. dy )
TEREE 4!1") - 0. (2) Ezample. Solve
dr : :
yeasrde (2y 4 siwa)dy - 0, (6)
Let f(e.y) = ry v, (How would we find fif we weren't told? - see bhelow.)

Then

Svlution.  We seek a function f(r,y) such that

d .
dr OH _ -oyeose o - Dy 4 sl . : (T)
. . ar ay A
and so cquation {21 is simply :;E 0. whiech has solution fte.y) €. The solution

of (2) is thus We enn ntegrate the first equation with respeet 1o

-: note that since we have a
oy O . partiad derivative. no1s 1o he regarded as a constant. Therefore

an equation which cannot easily be sobved to give y in terms of o

flecy)y  psine o O
Ezample. I the right hand side. instead of lheing zero, were a function of &, the

solution would he almost identical. For instauce. the equation It st be observed that sivee ¢ las heen faken to be constant. m expression

mvolving y wmay oceur in the “constant™

To cmphasize this possihility we
o ”:._)J,u g, (3) norually write the previous equation as
) ' dr
va1l he written ) firu) R Clu) .
15 A
o

dr ;
. : . Tt ' is {herefore
where fle.g) i as in the previous exanple,  The solution of (3} 15 111:1‘1"(.}

fie.u) et - Cothiat s

We can now find Cry) by differentinting § with respect to g and wateling up the
auswer with the kuown value of :—:5 from (7}:

di . y :
._ s Clygd o 2y 0 sine
du '

"y .U.I PERYS

Notation, T is comnpon to write (1) as

liich has a solution Cu) = y°. Thus a snitable function is

M{r.yyde o Nroy)ydy - O

Fleoy) = ysina + y°

Far
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and the solution of (G) is

- 3
sima - 7 = constant .

Erample.  Solve
(o v ™) de | (et y)dy - 0. (8)
Solution.  lntegrating ::f S 4yt mves

Tlesyy = Lo 4wy = Cly)

therefore 9
L =2y + C'(y)
dy
which shanld equal » | 4 in order for us to find C{y). But this vields
Cliy) = a1l - 2y) -y .

Iy Iy

which ix fmpossible since C'(y) does not depend on w. Therefore {8) is not an
exact differential equation,

W enn test an expression Mda o Ny to see if it s an exact differential,
witliond actually having to attewnpd the above process: for 1 1l expression is the
exact differential of o funetion £ then

Doy
duyidr drddy

and therefore _ ‘
aAr - 7y a f R
Sy Opde  Owdy O

Hewuee

Theoren. W A du 4+ N dy is the exact differential of a (suitable) functiou f. then

oM dN

("f_fj {tr

Foramplo, Solve
cosgde (1 - sy dy 0

with the tmnal condition o+ 0 when w0,
Soluteon, We Liav

M ocory . N (1 - wisiny .

nueler certain wild conditions on [ see page S18,

and 1] ]‘f_‘ff' hand side of (9) is therefore exact. Putiing

of

, of
ar

y

cosy . (17 w)siny
we have
Feecuy weasy 1 Cly)
and so
af

sy b O
n 7 (4)

(1T ¢ w)siny
therefore C(y) = cosy. Hence f(r.y) = (1 — #)cos y and thie solution of (9) is
(1 —wrjeosy = C . .

Substituting the fuitial comdition + 0. ¢ 0 gives C - 1 and so the required
solution is
(1 w)eoxy -1,

Ercrerses. Determine wherlier the following equations are exact, amd if they are,
solve them (subject to initial conditions i given ). Solve the equations also by ollier
methods it possihle

() (st 2o cos 2y 2ecos 20 hde 0 2esinZydy U0y O when o 7
(b} we®de yetdy 0

() €% dr o 2oy duy = 2ee” da:

(d) 2epdr « (07 0 37y = 0, y= 1 when » - 1.




