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Principles of Mathematics 170-1, for Economics

PREFACE

The course Principles of Mathematics 170-1 is an introduction to more advanced mathe-
matics specifically designed for Economics and business students. Wherever possible the
mathematics has been evolved from an economic situation, developed and then illustrated
by reapplying it to further economic situations. None-the-less, a prior knowledge of Eco-
nomics is not assumed. The economic situations chosen for consideration are relatively self
contained and are developed within the notes.

The course is normally taught at the rate of three lectures and one practical class a week for
a thirteen week semester. To complete the course in this time the following work schedule

should be adhered to.
Week 1 Chapter 1, 2.1, 2.2, 2.3, 24
Week 2 2.5, 2.6, Chapter 3
Week 3 Chapters 4 and §
Week 4 Chapter 6
Week 5 Chapters 7 and 8
Week 6 Chapter 9, 10.1, 10.2
Week 7 10.3, 10.4, Chapter 11 to end of 11.1
Week 8 11.2, 11.3, Chapter 12
Week 9 Chapter 13

Week 10 Chapter 14, Chapter 15 to end of 15.1

Week 11 15.2, 15.3, 16.1, 16.2, 16.3



Week 12 16.4, 16.5, Chapter 17
Week 13 Chapter 18

The course will be assessed by one three hour examination held in the November exami-
nation period. The whole semester’s work is examinable.

Submission of assignments is compulsory. Failure to submit at least eight of the ten
assignments may lead to a failure in the course being recorded. Performance on assignments
will be taken into consideration if your exam result is borderline. Late assignments will not
be accepted unless a satisfactory reason, such as illness certified by a Doctor’s certificate,
is provided.

For internal students attendance ai practical classes is also compulsory unless special ex-
emption has been granted. Failure to attend at least nine of the practical classes without
acceptable reasons, such as illness ceftified by a Doctor’s certificate, may lead to a failure
in the course being recorded.

The reference book

MATHEMATICAL ANALYSIS for Dusiness and Economics, by Jagdish Arya and
Robin Lardner, Prentice-Hall

is & good source of additional problems, worked examples, and an alternative approach for
much of the material in the course. Chapters 4, 5, 6, 9, 10, 11.1, 12, 13, 14, 15, and 18
are particularly relevant. This book is especially recommended to students with a weak
mathematical background. For such students working through chapters 1, 2, and 3 would
be good preparation for the course.

Students with a strong mathematical background who wish to pursue in greater detail
topics introduced in these notes are referred to the book

Mathematical methods in Accountancy, Economics and Finance, by Daniel Leonard,
Prentice-Hall of Australia.

Remember, Mathematics is a doing subject and can only be mastered by practice and
perseverance. If you can't do a problem (we all experience this) go back and look at any
similar problems you have done or that are done in the notes, reread relevant sections of
the notes, then try again. If you still can’t succeed leave the problem aside and go on to
something else. Come back to it at a later time. It is important that the study you do is
effective. Without looking at nates, ask yourself “what did I study yesterday (last week),
what type of problems did I do and what did I use to do them?” If your answer to any of
these, or similar questions, is negative, revision is called for, otherwise the work you have
done will be wasted. Learn from your mistakes, malke sure you know what they were so
you can avoid commiting them again.



If you have any specific questions concerning the work, or the course in general, please write
directly to me at the Department of Mathematics, Statistics and Computing Science, or
phone me on (067) 732118.

Wishing you enjoyment and success from your studies.

Dr Brailey Sims
May 1989
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1. INTRODUCTION

1.1 Concept of a Function

Central to models of many economic situations is the concept of a function.
For each value of a quantity z, a function f assigns a unique value f(z).

For Example: If ¢ is the number of units of a certain commodity sold in any one day the
net profit from one day's transactions may be a function P of g. For any day in which
10 units are sold the profit will be $/(10).

In mathematics functions are usually denoted by the letters f, g, h, ..., letters at the end
of the alphabet; z, v, 2z, u, v, w, ,1 etc. are used for variables and the letters a, b, ¢, ...
are used to denote constants. In the particular context of an application we will often use
more meaningful symbols; P or p for profit or for price, R or » for revenue, i for time,

W or w for wheat production (in tonnes, say), etc. ~

Typically, for a general function f we will write y = f(z) and refer to z as the
independent variable and to y as the dependent variable (its value depends on
those of x). The allowable values of = constitute the domain of the function f. Unless
otherwise stated we will usually take the domain of such a function to be all real numbers.
In applications, the domain may be smaller; for instance, in our example where g is the
number of units sold in one day, the only economically meaningful values that can occur

are positive numbers.

The domain of a function may consist of things that are not numbers. It might for example
be a list of stock exchanges with the function assigning to each stock exchange the value
of some appropriate daily trading index. In such a case the function would usually be
specified by means of a table. In simple cases when the domain and function-values are

numbers, a function may be specified by an algebraic formula.

For Example. The net prolit function in our earlier example might be given by the
expression
P(q) = 85¢ — 0.9¢* — 10.

If for a particular day, ¢ = 10, we can readily calculate that the net profit is

P(10) = 85 x 10 — 0.9 x 10* — 10 = 850 ~ 90 — 10 = 750.

1.2 Graph of a Function

Graphs provide a particularly effective way of displaying interesting features of a function.
This is accomplished through the introduction of Cartesian coordinates into the plane.
We select two perpendicular lines as axes and prescribe an appropriate scale on each
axis. This enables us to establish a correspondence between points P in the plane and

ordered pairs of real numbers (z,.,y,), as illustrated in Figure 1.1.
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Let f be a function whose domain is an interval of real numbers. Each z in the domain
determines a point (z,y) of the plane with y = f(z). The set of all such points forms a
curve which we call the graph of f. Since for a function there is a unique value f(z) for

each z, each vertical line cuts the graph of f at most once.

For Example. The function P(g) = 85¢ — 0.9¢% — 10 has the graph illustrated in IFigure
1.2.
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Figure 1.2. Graph of y = 85p — 0.9p* — 10

Being able to sketch the graphs of important types of functions is a major compenent
of this course. In many cases, a sketch enables us to see “at a glance” important and
economically significant features of a function. Much of this course is devoted to the

analysis of such features, some of which we will now brielly review in a qualitative way.
1.3 Important Features of Functions

Continuity

A continuous function is one for which there are no sudden jumps in the value of the

function. A function with jumps is said to be discontinuous.



cost of \share price
production A /]
o
—
litres o
> of oil Ztime

produced

A continuous function. A discontinuous function

IFigure 1.3

Intuitively a continuous function is one whose graph may be drawn without lifting our

pen from the paper.
Smoothness

A function is smootl if there are no sharp corners on its graph, or more precisely, there is

a unique tangent line at each point of the graph.

For Example. The function of figure 1.2 is smooth, while the function depicted in figure

1.4 is not.

no unique
tangent

>
Figure 1.4

Monotonicity

A function y = f(z) is increasing if its value is larger at larger values of z. A function
is decreasing if its value is smaller at larger values of z. A function which is either

decreasing or increasing is said to be monotenic.
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Steepness

The ‘steepness’ or slope of a function measures how rapidly it is increasing (positive slope)
or decreasing (negative slope). Economists often speak of slopes as mmgz"nal guantities.
For example, if y = f(z) represents the cost of production for x litres of oil, the marginal
cost of production will be the slope of the graph. {Some books use ‘gradient’ in place of

*slope’.)

For Example.

A A cost
negative B
positiv
slope
A
ZETO
slope
> X
L——""\f'_‘d’ /'.
slope ~ oil
increasing produced
(2) (b)

Figure 1.5
In figure 1.5(b) the marginal cost of production at B is greater than at A.
Asymptotic Behaviour

It is sometimes important to know low a function behaves for large values of the variable
z. We refer to this as the asymptotic behaviour of f(x) as z tend to infinity, or in symbols,
as x — oo. It is also sometimes useful to know the behaviour as 2 tends to minus infinity,

or in symbols, as z — —o0. ‘

For Example. Tor the function in figure 1.6 the quantity @ of a good sold appears to

approach a (saturation) value s as the quantity of the good available for sale ¢ tends to

oo,
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Figure 1.6
Maxima and minima

If at a particular point the value of a function is greater than or equal to the values at
all nearby points, the function has a local maximum at that point. Similarly a local
minimum is a point at which the value of the function is less than or equal to its value
at all nearby points. If the value is greater than or equal to (less than or equal to) the
value at any other point then we speak of 2 global maximum (minimum). Thus f(z) has

a global maximum at = = z¢ if for all =, f(z) is less than or equal to f(zg).

If the function-values represent profits, we usually seek maxima; similarly, we usually aim
to minimize losses. The most desirable value, whether maximum or minimum, is called the
optimum value. Determining optimum values is obviously of considerable importance in
economic theory.

YA
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Local maxima
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maxima Local
maxima

Local
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</
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is also a global minima

Figure 1.7
Convexity

Many functions considered in economics are convex, A function is convex if all chords
(lines joining two point on the graph) lie above the graph; tangent lines then necessarily

lie below the graph. I'or a convex function, any local minimum is a global minimum.

A function for which all chords lie below the graph is said to be concave.
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Roois

The roots of a function f(z) are the points at which its graph cuts the z-axis. They
correspond to solutions of the equation f(z)= 0. The location of roots is often important
since they may give the boundaries of the regions where an enterprise operates at a profit,
(H f(z) represents a profit, positive values correspond to actual profits; negative values
will represent losses.)

Y
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Figure 1.9
Intersections of Two Graphs
L]

Often the points where two graphs intersect are particularly significant.

For Example. If r(g) is the revenue and ¢(g) the cost of production when g units are
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produced, the points of intersection of y = r(g) and y = ¢(g) give the break-even points.

+
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Figure 1.10



2. LINEAR FUNCTIONS

2.1 Linear Maodels

The following example is typical of those Economic situations which may admit the

simplest type of mathematical description.

We wish to estimate the annual cost of supply for commodity, to be specific electricily, to

community. This cost my be broken into two parts in the following way:

fixed annual cost _
variable cost ]|

for the maintenance .
depending on

the amount of

= | generating equipment, | +

l: annual cost

of buildings,
of supply jl

I electricity
ower-lines, etc., .
P ' supplied in
including the cost of

| labour.

| the given year ]

The variable cost results from factors such as the cost of fuel needed to supply the
generators and so is likely to be directly proportional to the amount of electricity produced
(producing twice as much electricity will require twice as much fuel which will cost twice as
much). If the cost of producing one unit of electricity is ¢ (the marginal cost of electricity),

then the cost of producing F units of electricity will be ¢k

We therefore have
C=F+cE,

where:
C is the annual cost of supply,
I is the fixed annual cost, and
E is the number of units of electricity supplied in the given year.

This is one instance of a function y = f(z) described by a formula of the form
y=mz+b

where m and b are constants. In our example m = ¢, b = F', and the variables = and
y have been replaced by symbols £ and C which are more meaningful in the particular

context.

Tunctions of this form are referred to as linear functions. For example: y = 2.1z - 3,
y=z+4, C =23850004+087E, y=7~ %m are all linear functions.

Fitting such functions to data is an important aspect of elementary econometrics. They
are the simplest functions to work with. For example, il y = 2.1z — 3, then it is an easy

caleulation to see that when z = 1.7 we have y = 2.1 X 1.7 -3 = 0.57.



2.2 Graph of a Linear Function

The graph of a linear function is a straight line. Since a straight line is determined
by any two points through which it passes, fo draw the graph of a function of the form
y = mz + b we need only plot two points on it and then draw the straight line through
them. Although any two points will do, the points with z-coordinates 0 and 1 are usually

the easiest to calculate.

For example. To graph y = 2.1z — 3: substituting = = 0 we see that y = —3 so (0,—-3)
is a point on the graph. Similarly, when z = 1, we have y = 2.1 x 1 -3 = 0.9, s0
the point (1,—0.9) is also on the graph. Plotting these two points and drawing the line
through them we obtain the graph.

0l

.1

/ {0,-3)

2.3 Vertical-Intercept

Putting = = 0 in y = mxz + b gives y = b; thus the point where the graph of y = mz +b
cuts the y-axis (z = 0) has a y- coordinate of b. The value of b is referred to as the y-
intercept of the line y = mz + b. The point is below the z-axis if b is negative, as in the

graph above where b = ~3, and above the z-axis when b is positive.

For example. For y = 1.1z 4+ 2 we have

I\}r

A :
1 - ! y-intercept

|

Y
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Keeping m fixed and changing b gives a family of parallel lines:

1
~
[=al = i -
[
[T o TS
[ I A T U I NG R ¥ 5

The family of lines y = 0.6z + b

The y- intercept often has an important interpretation, for example in our cost of supply

model it represents the fixed cost F.
2.4 Slope of a Line
Varying m changes how steeply the line y = mz + b slopes.

For example:

g\ =2

The effect of changing m in y = mz +1
We call m the slope of the line y = mz 4 b.

Lines which slope upward from left to right have a positive slope. Sloping downward
from left to right corresponds to a negative slope. Thus a linear function y = mz + b is

increasing if m is positive and decreasing if m is negative.

If = is increased by 1, from =zp to zp + 1, y changes from mzg 4+ b to

m(zo+1)+b= (mzg - b) + m and so the change in y corresponding to a unit increase
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in z is equal to the slope m.

.

unit
increase

y=mx+b

v

/ Xg

X0+l

In Economics the slope therefore represents a marginal quantity. For example, in our cost

of supply model the slope ¢ was the marginal cost of electricity.

2.5 Intersection of Lines

It is frequently important to determine the point where the line ¥ = ma + b cuts the

z-axis. This may be found by putting ¥ = 0 and solving mz -+ b =0 for z.

For example. For y = 2.1z-3, when y = 0 we have 2.1z—3 =0 and so z = 3/2.1 =

Thus'y = 2.1z — 3 cuts the z-axis at z = 1%.

10
-

More generally it is often important to determine the point (zg,yo) where the graphs of

two linear functions, y = myz + by and y = myz - by, intersect.

AY

S|

(XU :Yﬂ)

y = mpX + bap

b

e

Since (zq,yo) lies on both the lines, we have that

Yo = mizp + by and yg = mazp+ by .

y = myx + by
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Subtracting these two equations:

Yo = m1To + b
- Yo = M) Tp 4+ b

0 = (ml—mz)fﬂu 4+ by — by

we obtain an eguation which may be solved for z9. The corresponding value yg of y
may then be found by substituting the value zo for = into either of the two equations

y=maz+by or y=maz+ba.

For example: to find the point of intersection (zo,¥o) of the two lines y = 1.1z 42 and

y = 2.1z — 3, we have
Yo = 1.11‘0 + 2

- yg = 21zy - 3

0 = =T -|- ]
s0 zp = 5 and then yo = 1.5 X 5+ 2 = 7.5. Thus the point of intersection is (5,7.5).
To see how such a calculation might arise in practice, suppose our electricity supplier sells
each unit of electricity to the community for a price p. If in a given year E units are sold,
then the electricity supplier’s revenue for the year is pE. Combining this with our model

for the annual cost of supply we see that the break-even point, where revenue equals

costs, corresponds to the point of intersection of the two lines y = pE and y = F + ck.

Y

Revenue
y = pE
Cost of

supply
y = F+cE

Break-even point

Lo
o

0

|
|
}3

Subtracting the two equations gives F + (¢ — p)Eg = 0 and so the break-even point is at

Supply and demand provides another example.

For a given commodity the demand function D(p) equals the quantity of the commodity

which will be sold when the price per unit is p. Typically it is a decreasing function of p.
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The supply function S(p) equals the quantity which supplies are prepared to sell at a price
per unit of p. In general, it will be an increasing function of p. Market Equilibrium
occurs when supply equals demand. This corresponds to the point of intersection of the
two graphs g = D(p) and ¢ = S(p), and so to the point of intersection of two lines when
D(p) and §(p) are both linear functions.

Aq Supply
q = 3(p)
Market equilibrium
Demand
q = D(p)
> D

2.6 Equation of a Line Given Two Points on it.

If we know the coordinates (z1,11) and (z2,y2) of two points on a line we have enough
information to determine its equation y = mz + b, that is, to find m and b. Tor the

points to lie on the line we must have
ypp=mz;+b and Y =mzy4b.

Subtracting these we have

h o= ) + b
_ 2 = MIn J+ b
1~y = mz; —T2)
and so
m = h — U2 ‘
] — Iz

(We may assume that z; # z» as otherwise the line is vertical and so is not the graph of

a function.)}

Substituting this value for m in either of the equations y1 = mz1 + b or y2 = mz2 + b

allows us to find b, and hence the equation of the line.

For example. To find the equation of the line passing through the points (—1,3) and
(4,—2), we have

S=mx(~1)+b and —2=mx4+b,
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Subtracting
3 = -m + b
- -2 = 4m b
5 = —-bm

so m= —1 and then 3 = —(=1)+b=1+b. giving b=2. Thus the line has equation

y=2—-1z.
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EXERCISES 2.7

(1) The cost $C of hiring a car is given by

C =204 (0.1)d

where d is the distance travelled in kilometres. Find C when d = 300 and when d = 450.
Draw a graph of this relation, including the above values of d.
(2) Sketch a graph for each of the following:
() y=2x-5
(b) y=08z+05

(¢) y=4—-08z

For each case state the slope and y-intercept of the line.
(3) (a) Find the slope and y-intercept for each of the following
() y=-z+4

(ii) y=3.2z-0.1
(b) If 3z + 2y = 6, express y as a function of = and hence find the slope and

y-intercept.
(4) Find the equations of the straight lines satisfying
(a) slope 1/5 and y-intercept 7
(b) slope —8 and y-intercept 0
(5) (a) Find the slope of the line joining the points (2,7) and (4,3);
(b) Find the equation of this line;

(c) Tind its intercept on the y-axis.

(6) Sketch the graphs of the following demand relations where p denotes the price per

unit and g is the quantity demanded:

1af—

(a) =19 —3p

rafon

(b) q= 3 - P.
(7) (Break-even Analysis) The fixed costs of producing a certain product are §1000
per month and the variable cost is $4 per unit. If the product sells for 56.50 per unit, find
t

(a) The break- even paint,
(b) The number of units that must be produced and sold each month to obtain a

profit of $5000 per month.
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(8) Find the point of intersection of the two lines

T

i

Il

tal= —

Y
Y T.

caf—

(9) (Demand Analysis) A manufacturer can sell 3000 units per month at $5 each but

only 2000 units per month at §6 each. Determine the demand law, assuming it is linear.

(10) (Market Equilibrium) At a price of $150 per tonne, the demand for a certain
commodity is 2500 tonnes whereas the supply is 2000 tonnes. If the price is increased by

$50 per tonne the demand and supply will be 2200 tonnes and 3000 tonnes respectively.
(a) Assuming linearity, determine the laws of supply and demand.
(b) Find the equilibrium prices and quantity

(c) If an additional tax of $5 per tonne is imposed on the supplier, find the increase

in equilibrium price and decrease in equilibrium quantity.

(d) What subsidy should be given to the supplier so that the equilibrium quantity
increases by 100 tonnes?
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3. QUADRATIC FUNCTIONS
3.1 Quadratic Models

A manufacturer finds that if & certain commodity is offered to the market at a price per
unit of p then the quantity g sold each month is given by the decreasing linear demand

function
g=M — Kp,
where M and R are positive constants.

When the commodity is sold at a price per unit of p the monthly sales revenue will

therefore he

R = (price per unit) x {number of units sold)
=pXaq
$0
R=p(M - Kp)
= Mp— Kp*.

The graph of R as a function of p is a parabola, which cuts the p-axis at the points
where p(M — Kp) = 0; that is, when p =0or M — Kp=0 and so p= M/X.

My

vertex
i
|
i
1

M/K

The value of p at the vertex is important. It is the value of p at which the function is a

mazimum and so corresponds to the selling price at which the sales revenue is maximized.

The function R = Mp — K'p* is particular case of the general quadratic function
y=ar®+bz+e,

where the variables z and y have been replaced by the more meaningful symbols p and
R,anda=-K,b=M, c=0.
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The graph of y = az? 4+ bz + ¢ is also a parabola. Our principal concerns will be to:

(i) locate its vertex; that is, the location of the function’s maximum or minimum

value; 1
(ii) sketch its graph;

(iii) determine its roots; that is, the points where the graph cuts the z-axis, which

correspond to the solutions of the quadratic equation az® 4+ bz 4+ c=0.
3.2 Completing the Square

The single most important computation we can perform on the expression azx® bz +c s
g P P

that of completing the square.

Multiplying out (z + a)?, we have
(m+a)2 = 2% + 20z + o

which we can rearrange as

= + 20z = (:n—i-cr)z —a.

Replacing 2a by 8, so that « = §/2, we have
z? + fz = (z + B/2)* - /4.

For example: z? — 3z = (z — 3/2)* — 9/4.

Applying this to the general expression nz“\-i- bz + ¢, we obtain

az® + bz +c = a(z® + bzfa) + ¢
2 b

and so

et bz te=a(st ) + (- o)

When az®+bz+ ¢ is expressed in this last form we say that we have completed the square,
For example:
93 — Gz 4+ 5 = 2(z® — 3z)+ 5
=2z -3/2)* - 9/4]+5
=2z~ 3/2)° +5-9/2
= 2(z —3/2)* +1/2
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3.3 Locating the Vertex

By completing the square we have

w=az?+brdc
q 2

o) e )

When z = —b/2a, the first term vanishes leaving y = ¢ — b*/4a. Thus

(50 52)
o — c — At
2a’ da
is a point on the graph. It is in fact the vertex. To verify this we distingunish two cases:

(I) When a is positive. For z # —b/2a, we have
y = a(z + bf2a)* + (c — b* /4a)
= (strictly positive) x (non-zero square) + (c — b*/4a)
= (strictly positive) + (¢ — b* /4a),

and so for every value of = other than —~b/2a, we see that y is greater than ¢ — b*/da.
Thus (—b/2a, ¢ — b?/4a) is the lowest point on the graph and we conclude that the
parabola opens upward with vertex at the point = = —b/2a. The y-coordinate of the
vertex is given by ¢— b*/4a. This alsc may be calculated by substituting z = —b/2a into
the equation y = az® + bz + c.

—6

.For example: y = 2z° — 6z 4 5 has vertex at z = — = E, at which
v %2 2

9 3 1
y-—?)(z—ﬁ)('i-l-ﬁ—-i.

(1) When «a is negative, a similar analysis shows that
Y= az’ +bz +¢
is a parabola opening downward with vertex at z = ~b/2a.
Example. For the parabola of our revenue model
R=Mp-Kp*

the vertex is at p = M/2K, at which value R = M?*/2K — M*[4K = M*/4K . Thus the

maximum sales revenue of M?/4K is achieved by selling at a price per unit of M[2K .

Thus for both cases we have:

The parabola
y=az®+bz+ec

has vertex at the point with z-coordinate

—b

= —.
2a




3.4 Graphing y = ax® -+ bx + ¢

Knowing the general shape of a parabola and the fact that it has a vertical line of symmetry
through the vertex, to sketcht y = az® + bz + ¢ we need only locate the vertex and one
other point on it. The calculations are particularly simple if we choose to locate the point

where = = 0 {or ¢ = 1, if the vertex is at = = 0).

For example, we saw in the previous section that the parabola y = 22% — 6z 4+ 5 has
vertex at (3/2,1/2). When z = 0, y = 5, so (0,5) is also a point on the graph and we

can now draw:
NY

Line of
symmetTy

{ >

X

As a check it is worfh noting that the prbola should open upward if a is positive and

downward if a is negtive. It is also sometimes useful to observe that increasing the

magnitude of a makes the parabola sharper.

/\y

The effect of changing a in y = az” -~z +1

3.5 The Roots of y = ax?+bx+c

We seek the value(s) of = at which the graph cuts the z-axis. That is we seek those values

of = for which az? + bx + ¢ = 0. Completing the square, we have



and so bz g
a(m—:—b‘—qz) “Ea—c
l (’H'QPE)“—;:;?_?E
:bz--tiac
4’

Taking square-toots,

and so
b+ VI - 4dac

2a

=
Thus, if b2 — dac is positive, there will be two roots =, and z2 given by

—b 4 /% — dac and oy = —b — /- dac
2n - 20 '

4 EA

T =

Tor example: The parabola y = 2% — 22 — 4 has roots

24 /1432 . 29— /A¥ 32
T = an Ty =7

that is, 1 = 2 and z2 = —1.

If b* — 4ac = 0 the two roots of ¥ = az® + bz + ¢ coincide. This corresponds to the

pa.raBoIa. having its vertex on the z-axis.

If b2 —dac is negative, our expressions for the two roots involve the square root of negati\;e
quantity and so there are no real roots. This corresponds to the graph lying entirely above

or below the z-axis, and so failing to cut it.

Tn practice the need to find roots for a quadratic function arises when we seek the points

where a straight line intersects a parabola, or where two parabolas intersect.

For example. We saw that if a given commodity is sold at a price per unit of p, then
a quantity ¢ = M — Kp will be sold each month, yielding a monthly sales revenue af

R = Mp— Kp*. Il the cost of supplying ¢ units of the commodity is
C=F4ecg=IF+c(M—-Kp)

then a break-even point occurs when the selling price per unit is such the cost of supply

equals the revenue received. That is, at a value of p for which ¢ = R and so
F4elM—Kp)=Mp—Kp*.
Rearranging, we see that a break-even point occurs at a root of the gquadratic

Kp* — (M +cK)p+ (F+em)=0.
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M2/K T

F+cM =

Z-break— even

points (F + cM}/K

>0

M/ K

Only roots at which p and R = C = F'+c¢{M — K p) are positive correspond to meaningful
break-even points. Depending on the values of the parameters M, K, F and c there

may be one, two, or no break-even points in this model.
3.6 Factorizing a Quadratic
If z; nd =z, are the real roots of ¥ = az® + bz + ¢ then we have
y=az’+br+e
= a(z — z1)(z — =2) .
[This may be verified by multiplying out the last expression, using the formulas for z,
and =, obtained earlier.]

When az® -+ bx+c is expressed in the form a{z —z1)(z ~2z2) we say it has been factorized
and refer to (z — z1) and (z — z,) as factors. When expressed in this way, it is easy to

see that z; and =z, are the two values of z for which y is zero.

Yor example. We saw that the quadratic y = 2z° — 2z — 4 has roots z; = 2 and
23 = —1. Thus we have

y=2z"—2r—4

=2(z-2)(z+1).
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EXERCISES 3.7

(1) (a) Sketch the graph of jhe given quadratic function after finding the vertex.
(i) y=2* -4
(i) y= —z> +4z -3
(i) y=2? —z—1
(iv) y=2z*> -4z +5

(b) Find the roots (where possible) of the above quadratics.

#(2) Tor the quadratic function y = az? + bz + ¢ verily that for any value of ¢ the function

b b . .
has the same value at z = 5 +1and z = 5 —1. (Note that this proves the vertical
[23

line £ = —b/2a is indeed a line of symmetry for the function.)
Hint: The calculations may be easier il you first complete the square.
+(3) In the notes it is stated that a similar argument to that for the case when a is positive
shows that when a is negative, the parabola y = az® + br 4+ ¢ opens downward and has
vertex at z = —b/2a. Give the argument in this case.
(4) Tactorize each of the following quadratics:
() y=xz*+4z -5
(i) y =22 — 2z — 12
(i) y=—2z*+3z—1

(iv) y=12z> + =z — 1.

+(5) Given that b* — dac is positive verily that

—b+M)(I_ —b—M).

2a

a$2+bm+c:a(m—

2a

(8) The fixed costs at the Armidale Widget Manufacturing Company are $500 per day,
and the variable cost $v per widget is a linear function of the number ¢ of widgets
produced. When g = 100, v = 4.00; and when g = 500, v = 2.50. Find v in terms of g,
and then find the total daily cost €' as a function of g.

(7) The daily demand for widgets ¢ is a linear function of the selling price $p per widget.
When p=5, g =300; and when p=7, ¢ = 200.

(a) Find g in terms of p, and then find the revenue R as a function of p.
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(b) What are the maximum revenue and the corresponding value of p?

(8) From the first to the tenth day of the month it was observed that the Dow-Jones

index on the tth day was given approximately by the formula
2% — 561 - 2442,

Assuming this model continues to apply, at which day of the month will the index have

jts minimum value?
(8) Find where the graph of the quadratic function y = —z? 4 6z = 5 intersects the

graph of

(a) the linear function y ==z + 1, and

(b) the quadratic function y = z* — 6z + 11.

In both cases sketch the graphs of the two functions involved.

(10) If a certain beverage is sold at a price p per litre, then g = —10p + 120 litres will
be sold each day. This gives a daily sales revenue of It = —10p® + 120p. If the cost of

supplying g litres of the beverage is C = 160 + 2q, find the break-even selling price per

litre, i.e. at what price {or prices) the cost of supply equals the revenue received.
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4. POWER FUNCTIONS

An important class of functions sometimes encountered in economics are power functions
of the form y = Az®. In the gxpression Az®, o isreferred to as the exponent (or power).

For example: y =z, y==z'/2, y = 2/?, y = z (astraight line), y = z* (a parabola)

3

and y = z° are all power functions.

When working with these functions it is important to keep in mind the conventions:

T =z
2 =1
_ 1

= —

Iﬂ

and for p and g integers with ¢ greater than 0,
277 = (5)".

2

Yor example, y = g3 =

and when z =19,

Q0| =

Sowhen z =4, y=——5 =

(Va)°

(vz)®
y = 1/27.

Negative values of 2 are rarely meaningful in applications; further, for such values, some
of the above expressions may not be defined. Consequently, in what follows we will

concentrate on positive values of .
For all values of A and o the graph of y = Az™ passes through the point (1,A4).

Typical graphs of power functions with both 4 and « positive are sketched below.

My ¢ =3

0 1 X

y=z% for e =1/3,1/2,1,2and 3

In this case each of the functions is increasing. For a greater than one the slope increases

as = does, while for o between zero and one it decreases. It should also be noted that



for = greater than one the graphs for larger o lie above those with smaller a. For z

between zero and one

with smaller .

When A is positive and o is negative, the function y = Az® is decreasing. When z =0

the function is undefined with the y-axis as a vertical asymptote. Some typical examples

are sketched below:

26

, the reverse is the case; that is, graphs for larger e lie below those

]

AY
1 e
a=- L
2
o = -1
o= 72
1 .
0 1 X

The graphs with A negative are the reflections in the z-axis of those for A positive:

NY )
bR Ag =2
\ 7/
~ Fy
- 1L
\\ // -‘?u,,z
~ -
1™ T
- ~
—— s ~ o
- e ™~ y =X
-~ y S~
-
-~ s =
- Ve ¢ = -1
e rd
// ///
Lo="" !
0 == >
1 X
a = -1
-1
o=l
a = 2

y =2z for a=-1/2, —1 and -2

y=—z% for a = -1, 1/2 and 2
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1

. . . . - 1
Of particular importance is the case when « = —1; that is, when y = 27" = — and so y
Iz

is inversely proportional to .
Yor example: !

1) In our electricity supply model of Section 2.1, with a fixed annual cost of supply of F,
the fixed cost f per unit of electricity varies inversely with the number of units supplied:
F
f=%
2) Because D = A/p is a decreasing function of p it is sometimes used as a model of the
demand function for the sale of a commodity at a price per unit of p. One consequence

of such a model is that the sales revenue

R = [price per unit] X [number of units sold]

= pD(p)

A
= p—
P

=4

is constant regardless of the selling price. Such a deduction may be used to check the

reasonableness of the model in any given situation.
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EXERCISES 4.1

(1) Express in the form z® for appropriate exponent o:

3
VE e e e YR 5, RS (@)

Nk /T’ z/3’ zd’

(2) Sketch the graph of ¥ =z for a =

b3 [

y =2, o0 = -2,
If o is increased from 2 to 10, how does the graph of y = z® change?

(8) Sketch the graph of y = 1/z and find its intersection with the straight line
y=-—2z + 1.

(4) (Revenue) A firm has a total revenue of $2000 per day regardless of the price of its
product. If p denotes the price per unit of the product and z the number of units that

can be sold at the price p, express p in terms of z.

Complete the following table:

z | 50 | 100 | 200 | 250 | 500 | 1000

Plot these points on a graph and join them with a smooth curve.

(5) By considering graphs of the power {function ¥ = =% for z positive and for various
values of o, determine for which values of a the function is convex and for which values

of o it 1s concave.
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5. GENERAL POLYNOMIAL FUNCTIONS

Linear functions, quadratic functions and power functions with whole number exponents

are all special cases of the general polynomial function
y=p(z) = ap + a1z + aaz® + - 4 apz™ .

The constants ag, a1, ..., @n are referred to as coefficients; thus a; is the coefficient
of z; ap which may be described as the coefficient of z® is usually called the constant

term.

The degree of a polynomial is the highest power of the independent variable which occurs

in it. Thus p(z) is a polynomial of degree n, assuming an £ 0.

For example. Linear functions are of degree 1, quadratics have degree 2; y = 13z% has
degree 8; and y = z° — 3z + 2z is a polynomial of degree 3 (sometimes referred to as a

cubic).

Higher degree polynomials arise as approximations in more advanced economic models.

We will concentrate on some general features which help in sketching their graphs.
5.1 Asymptotic Behaviour

When the magnitude of z is large, the value of p(z) is dominated by the highest degree

term a,z". Indeed as the magnitude of z increases, the ratio 5(21 tends to 1.
For example. When p(z) = z¥ — 3z 4 2z, we have:
z m3 p(z) p(z)/=*
10 1000 720  0.7200
100 1000000 970200  0.9702

1000 1000000000 997002000 0.9970
10000 1000000000000 999700020000 0.9997

Thus the larger the magnitude of z, the more nearly the graph of y = p(z) looks like
that of the power function y = a,2™. The lollowing diagram shows the different kinds of

behaviour that can arise.
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a, positive and
n even
or a positive
a, negative and
n odd

v

a positive and

n odd .
a_negative

or n

ay negative and

n even

For example. When p(z) = z* — 3z% 4 2z, we have the following behaviour:

J\y

5.2 Hoots

A root of the polynomial y = p(z) = a9 + a1z + -+ -+ a,z" is a value zp of = for which
p(z) = 0. That is

ag +a1zg+ -+ apzg =0,

Tg is a root of the polynomial p(z) precisely when the graph of y = p(z) intersects the

r-axis at T = zg.
If =y is a root of p(z) then the polynomial may be factorized as
p(z) = (= — z0)q(2), (+)
where g(z) is a polynomial of degree n — 1 of the form
gz) =gzl 4 b bz -}-'bg .

The polynomial g(z) may be found by long division of p(z) by (z—=zq), or by multiplying
out the RHS of () and equating coeflicients with those of the LHS.
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We lave already seen how to find roots for linear and quadratic functions. In the case of

quadratics, the roots were given by the formula

b+ /b —4dac
Z2a

More complicated formulas exist for the roots of cubics and quartics (polynomials of degree
4). Tor polynomials of degree 5 and more it has been proved that no general formula for

the roots exists.

A polynomial of degree n can have up to n roots, and finding them can be quite

difficult.

Remember when finding a root we are trying to fiud a value of = at whiclt the function
vanishes. In simple cases by trying values of z such as 0,1, -1,2, —2, ..., it is sometimes

possible to locate a root by trial and error.
For example. When p(z) = z° — 3z? + 2z:
for z = 0, we have p(0) =0, so 0 is a root,
for £ =1, we have p(1) =0, s0 1 is a root,
for z = —1, we have p(—1) = -2, so —1 is not a root,
for z = 2, we have p(2) =0, so 2 is a root.

Since p(z) is a cubic and so can have at most 3 roots, we conclude that the roots are 0, 1
and 2. Combining this with the asymptotic behaviour noted above, we see that the graph
of y = 2% — 3z% + 2z looks like

A\Y

y = x3 - 3x% + 2x

As this example illustrates, between any two consecuitive roots of a polynomial,
we have either at least one local maximum or at least one local minimum.
Another useful observation is that if the values of p(x) at two points x; and x; are

of opposite sign, then p(x) has a root between x; and x».
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For example. If y = 8z — 13z? — 112 + 10, we have
p(0) =10
p(1) = -6

p(—1) =0, so —1 is a root,

} of opposite sign, so there is a root between 0 and 1;

p(2) =0, so 2 is a root.

The graph will therefore look like
Ay positive

e

Y

nepgative

Graph of y = 82° — 13z — 11z + 10

Provided we have enough information about the roots, it is usually possible to sketch the

graph of a polynomial.

For example. Il y = p(z) = 2% — z? — 2z + 2, we find by substituting values of z that 1

is a root. Thus p(z) may be factorized as
p(z) = (& — 1)(z? + az + b)
for some constants a and b. Multiplying this out we have that
-z —2+2=s"4+ (e~ +{b—a)z—b,
{from which we see that we must have b = -2 and ¢ =0, so
pz) = (z = 1)(=* - 2). »

Since the quadratic z? — 2 has roots at £ = /2, we conclude that the roots of p(z) are
—\/5, 1 and \/i, and so the graph looks like:
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//2— 0 iﬁ-__‘/ﬁ}x

y = x3 - x%2 - 2x + 2

For example. If y = p(z) = 4z® — 82% 4 5z — 1, we find by substituting values for =
that z = 1 is a root, Factorizing gives
y = (z —1){dz’ — 4z + 1)

= (z — 1)4{z® -z + 1/4)

= 4(z — 1)(z - 1/2)
and so in this case p(z) has roots at z = 1 and z = 1/2, with the root at z = 1/2 being
repeated. Since these are the only points where the graph can cut the z-axis, we are able
to infer from the asymptotic behaviour that the graph must look like one of the following
possibilities:

Ny

0.11

That it is indeed the heavy curve and not the broken one is easily confirmed by noting
that p(3/4) = —1/16 is negative.

In general, at a root which is repeated an even number of times, 2 polynomial will have a
local maximum or minimum and the graph will intersect the z-axis without crossing it,

as illustrated in the last example.

In our work on differentiation, we will also see that al a root which is repeated an odd

number of times, the graph crosses the z- axis, but has lhorizontal slope at the root.

For example. y = z? — 2% = 2%z — 1) lias roots at 0 and 1, with the root at 0 being

repeated 3 times. The graph looks like
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Ay
~0.1
0 5 X

When the roots are difficult to find, or provide us with insufficient information, we must
seek alternative methods, such as locating the local maxima and minima. This will be the

subject of some of our subsequent work on differentiation.

For example, the polynomial y = 2z 4 z is easily seen to have only one real root, at

z = 0, and so its graph cannot readily be sketched using ihe above methods.
5.3 Expanding (14 x)"

Expanding (1 + z)* by multiplying 1+ z with itself n times, we obtain a polynomial of
degree mn:

(1+z)* =c+erz+ - +eqz™.
Foréxample,
1+ =1,
(14+z)l =14z,
(1+2)?=QQ+2)l+z)=142z+2%,
(1+2P = (1 +z)(1+2)* =143z +32° +27,
(1+z) = (1+32)(1+2)° = L+ 4z + 627 + 42 + 2°.

The coeflicients in these expansions can be conveniently found, at least for relatively small

values of n, by using Pascal’s triangle:

n=_0 1

n=1 1 1

n=2 1 2 1

n= 1 3 3 1
n=4 1 4 G 4 1
n= 15 10 10 5 1

n=20 1 6 1a 20 15 6§ 1
n= 1 7 21 35 35 21 7 1
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etc.

The numbers in the nth row are the coeflicients in the expansion of (1 + z)".

For example.
(1+2)° = 1+ 6z + 152% + 202° + 152" + 62° +2°.

Except for the bordering 1's, each number in Pascal's triangle is the sum of the two
numbers immediately to the right and lelt of it in the row above. Using this pattern, the

triangle may be extended indefinitely allowing the coefllicients to be found for any given

value of n.

Although you will not be expected to know it, for larger values of n, the formula

m [actors

'n(n—-l)(n—QY---(nw—m-i— lf
m(m—-1)--+2-1

for the coefficient of z™ in (1 + z)" may also be used.

For example. The coefficient of z* in (14 z)® is

6-5-4-3
4-3-2-1_15'



36

EXERCISES 5.4

(1) Express the following functions in polynomial form, i.e. as sums of multiples of powers

of z:
(@) (z—1)(z - 2)(= - 3)
(b) (z-3)}z—2)(z~1)
(c) ((z ~ 6)z +11)z — 6
(d) (-1 -3z~ 1)2 + 2(z — 1)

(2) For each of the following polynomials p(z), sketch the graph of y = p(z):
(2) p(z) =(z~1)(z - 2)(z - 3)
(b) p(z) =(z + 1)(z —2)*

(c) p(z)=2% - 22 -3
(3) Expand (z — 2)* in powers of = and check by evaluations at 2 =1 and = = 3.

(4) Factorize the following polynormials:
(a) 622 — 19z + 15
(b) 3 -2 -3z -1
(c) 2" — 223 4 22 — 1
(d) =t —32% — 72% 4 27z — 18
(e) z* — 1223 + 5122 ~ 922 + 60
#(5) Let f(z)=12%~32>+2z = 2(1 —2)(2 - z) and g(z) = 2z(1 — z). Show that for
0 <z <1, f(z) < g(zr) and deduce that the maximum value of f(z) for 0 <z < 1 is

less than §. Ilustrate by sketching the graphs of y = f(z) and y = g{z) on the same

coordinate system.

(6) A revenue function has the form Aq® + Bg where A and B are constants. If g = 2
the revenue is 36, and when ¢ = 3 the revenue is 51. Find 4 and B and hence determine

the revenue for g = 4.
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6. COMBINING FUNCTIONS

The description of many economic situations requires us to build a new fumnction by
modifying and combining known functions in appropriate ways. In this section we look at
some of the more commonly occurring ways in which this can happen. We will also see
that the task of graphing a complicated function is often made easier if we recognise the

function as a combination of simpler functions whose graphs are known or readily found.
6.1 Multiples of a Function

Given a function f and a number ¢ we can form a new function, which we denote by cf,

whose value at = is ¢ times the value of f at z; that is,
(ef)(z) = c- f(z). (+)

For Example. If the demand function for a certain commodity is g{p) = 150 — 0.2p,
where g(p) is the number of units of the commodity which will be sold when the price per
unit is p, then the revenue from sales will be R(p) = p(150 — 0.2p). If a sales tax of 30%
30

= R(p) and the net income

is imposed on the commodity, then the tax payable will be 55

from sales will be %0
I(p) = R(p) — {55 R(p)

= 0.7R(p)
= 0.7p(150 — 0.2p) .
Thus I = 0.7R, which is a particular instance of () with f= R and ¢ = 0.7.

If we already know the graph of f it is relatively straightforward to construct the graph
of ¢f from it by scaling vertical distances from the z-axis to the graph of y = f(z) by a

factor e.
For Example. I I(p) = 0.7R(p) where R(p) = p(150 -~ 0.2p) we have
A

10,000

v

/
/

/
¥

where for any point zg on the z-axis we have the distance 4gCy = 0.74¢ By . Usually it is
adequate to determine the point Cp approximately, In this example it would be sufficient

to locate Cp as “a little under three-quarters of the way from Ay to Bp”.
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When ¢ is negative the point on the graph of cf corresponding to a point above the
z-axis on the graph of f will be an appropriately scaled distance below the z-axis, and
vice versa. In the case when ¢ = —1 the graph of y = ~ f(z) is the reflection of the graph

for y = f(z) in the z-axis.

For Example. When f is the function f(z) = z® — 3z + 2z, the graphs of y = f(z)
and y = —2f(z) = —22° 4 6% — 4z are as illustrated below.

Ay
Ly = £(x)
| 7
-~ /
i e /
0 SN/l / o x
Vs S e o
/
s S~/
/
¥
y = -2£(x)

6.2 Sums of Functions

Given two functions f and g, we can form a new function, the sum of f and g, denoted
by f+ g, whose domain consists of those values of z commen to the domain of f and
the domain of ¢, and whose value at such an z is the sum of the values of f and g at z;

that is,
(f +g)(=) = f(z)+9(=)

For Example. A retailer is prepared to purchase all the stock he can at a price of §p
per item. If the supplier is prepared to sell a quantity g at this price, where ¢ is given
by the supply function ¢ = 5p — 10, then the purchase of stock fram the supplier will
cost the retailer an amount P = pg = p(5p — 10). If in addition each item of stock
purchased involves the retailer in a transport cost of $3, and hence a total transport cost
of T' = 3(5p — 10) = 15p — 30, then C, the total cost of purchase for the supplier, is the

sum of the two functions P and T':
C=P+T.

Thus '
Clp) = P(p) + T(p)

= p(5p — 10) + (15p - 30)
=5p° 4+ 5p-30.
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The graph of a sum f + g may be constructed from those for f and g. The vertical
distances from the z-axis to a point on the graph of y = (f + ¢g)(z) is the sum of
the vertical distance {from the z-axis to the graph y = f(z) and the vertical distance
from the z-axis to the graph of y = g(x). Thus, in the illustration below the distance
AD= AB+ AC. The addition of these distances can be done in many ways, for example;
by “eye”, by marking them on the edge of a piece of paper, by using a pair of dividers
(or your fingers as dividers), or by using a ruler. You should aim to become practised
in doing this. Particular care should be taken at points where the graph of one or other
of the functions y = f(z) and y = g(z) lies below the z-axis and so the corresponding

vertical distance is negative.

For Example, graphs of the functions y = P(p) and y = T(p) considered above together
with the graph of y = C(p) constructed from these are illustrated below:

AY
y=(T+C) (p)
y = T(p)
L 10 >y cc
/?’B‘ _
5. >
N p

The difference of two functions f and g, f — g, can be similarly defined by
(f — g)(z) = f(z) — g(z). Alternatively, it may be regarded as the sum of f and —g.
The graph may be constructed by taking away rather than adding the appropriate vertical
distances. Again, special care should be taken when one or other of the graphs is below

the z-axis.

For Example, by offering a certain product at a price per unit of p, a manufacturer sells
a quantity ¢ each month according to the demand function ¢ = M — K'p, and so receives

a monthly sales revenue of

R=p(R-Kp).

If the total cost of production for ¢ units is F + ¢q, then the monthly cost of production
is

C=F+c(M-Kp).
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The monthly profit P is therefore the difference K — C, and so
P(p) = R(p) - C(p)

= p(M — Kp) — (F + (M - Kp))
= —Kp 4+ (M + K)p— (F+cM).

Thus the monthly profit is a quadratic function of the selling price whose maximum value
occurs at a price per unit of (M + K)/2K . It is interesting to note that this is different

from the selling price for which the sales revenue is maximized.
5.3 Products

Given two functions f and g, at those values of  common to both the domain of f and
the domain of g, we can form their product fg whose value at = is the product of the

values of f and g at =z, that is

(fo)(z) = f(z)g(=).

For Example: At time ¢ (years) the population of a developing couniry is given by

100,000,000

Plty= (1—0.1t)

If the per capita income varies linearly with time according to the formula
I(t) = 1000 + 40¢,

then the national income is given by the product N = PI, thus

N(t) = PI(D)
~100,000,000(1000 + 40¢)
- 1- 0.1t

To graph the product fg from graphs of f and g, it is necessary to perform “approximate”
multiplications (mentally, or otherwise) of f(z) and g(z). In doing this use should be
made of simple observations such as: the product of two numbers larger than 1 is bigger
than either of them; the product of a number larger than 1 and a positive number less
than 1 lies between them; the product of two positive nux:nbers smaller than 1 is less than

either of them; the product of a positive number and a negative number is negative.

For Example, from graphs of y = 1 — z and y = +/z, we see that y = (1 — 2)+/z has

the graph shown below:
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l"\y y:/\.{-
1
1
9 > X
y=1-x
y = (1 - x)v¥x

6.4 Quotients

Given two functions f and g, at those values of = common to the domains of f and g

for which f(z) # 0, we can define the quotient -‘} or g/f by

9y 98)

that is, the value of g/f at any z is obtained by dividing the value of g at = by the value
of fat z.

For Example. If at time ¢, the total number of primary school students in N.5.W. is
§(t) and the number of primary teachers is T'(¢), then at time ¢ the average class size in

N.S.W. primary schools is

S(t S
Al = % = f(t)
The quotient g/f can be regarded as the product of g and the reciprocal 1/f. When
constructing a graph of g/ f from graphs of f and g, it is often convenient to draw, as an
intermediate step, the graph of 1/f. To do this, it is necessary (mentally, or otherwise)
to divide 1 by f{z). Remember: taking the reciprocal of a smaller number gives a larger
number, and vice versa. In particular, if the values of f(z) are approaching 0 as =
approaches zg, then, as z approaclies zg, the values of f(z) will tend to 400 or —co

depending on whether f(z) is positive or negative.

For Example. To graph
T

yzl-—-:{:z‘
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we may first graph vy = 1 — 2? = (1 — z)(1 + z) and construct from this the graph of

Note; for large z, 1~ z® behaves like —2? and so z/(1 — z?) is like z/(—2*) = —1/z.

Thus, as = becomes large in magnitude, z/(1 — z?) approaches zero.
6.5 Composites

Given two functions f and g, we can form the composite function go f, read as “g of
" by

(g0 f)(z) = 9(f(2)).
The domain of g o f consists of those z in the domain of f for which f(z) is in the

domain of g.

Note: The composite of go f is sometimes referred to as a function of a function; its

value at =z may be described as g of f of z.

Tor Example. A retailer finds that the quantity ¢ of a certain item sold per month

changes according to the demand function

q(p) = 500 — 5p.

A sales tax of 100t% applies to sales of the item and the retailer decides to adjust his

prices so as to receive after tax a fixed amount $10 per item sold.
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To achieve this he must adopt a selling price per item of

As a function of the sales-tax rate t, the quantity sold per month is given by the composite

{unction

10
q(p(t)) = q(i_—_t)
50
=500 — -1
A4
500 &~
q{p(t))
. . .
0

A graph of the composite function g o f can be constructed from graphs of f and g.
L

However, unlike our previous cases, it is better to use a separate set of axes for each of

the graphs, as illustrated below. In many cases, it is easier to dermine an expression for

the function go f and graph it directly {rom this (as was done in the case above).
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c
8 (£(x0))
s
T >u
f(xg)

y = g(£(x))

e
v
b

It is important to note that in general go f and fog are different functions. For example,

for f(z) =2 +1 and g(z) = 2z, we find g{f(z)) = 2z + 2, while f(g(z)} = 2z + 1.

If g is particularly simple, for example, g(z) = z* or g(z) = /z, so that we can “mentally”

estimate g(z), then the graph of g{f(z)) may be obtained from that of f(z).

For Example: The following illustration shows how we may sketch the graph of

v = +/f(z) for f(z) =5z -5z = 5(z + 1)z(z - 1).
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f(x) = 5x3 - 5x y
y = 7£(x)

<
i

vf(x) not
defined

\

vf{x) not
defined

Here we have used the observation that

for D<a<1l wehave 0<+a<1

while
for e¢>1 wehave 1<+a<a.
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EXERCISES 6.6

(1) Let f(z) =2 —da® + 5z — 2. Sketch, on a common set of axes, graphs of y = f(z),
=1f(z), vy =—f(=), and y = —2f(z).

(2) When a certain commodity is sold at a price per unit of Sp, the sales revenue is
R(p) = 10p = 0.2p* . Draw graphs of
(i) the sales revenue R(p);
(ii) the net income from sales il a 35% sales tax applies;
(iii) the net income if a subsidy of 30 cents in the dollar applies.

(3) For the functions f(z) = z° — 42 + 5z — 2 and g(z) = 3z — =, sketch graphs of f,

g, f+g,and fg on a common set of axes.

(4) A manufacturer finds he sells ¢(p) = 100 — 0.2p units of a given product per week
when a price of §p per unit is charged. If the cost of manufacturing ¢ units per week
is C(g) = 1000 + 60q, write down expressions for the weekly sales revenue R and the
weekly net profit P = R — C. Graph these as functions of p and find the prices at which
maximum sales revenue and maximum net profit occur.

(5) In each of (a), (b) and (c) graph the functions indicated on a common set of axes.

() () y=1+q?
(i) y=1/(1+z?%

(iii) y==z/(1+2%)

(b) () y==z*—-4z+3

(i) y=1/(z* -4z +3)

(i) y=z-2
. T — 2
M v=gTs
(c) (i) = f(z), where f(z)=12%—-3z%+2z

(i) y= S
(i) v=+/70@)

(6) Monthly sales for a given commodity varies inversely with the square root of the

price being charged per unit; that is,

a(p) = Ap~1/?,
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where g is the number of units sold per month and $p is the price per unit. Determine
A if 150 units were sold during a month when the price was §4 per unit. If the price per

unit increases with time according to the formula
[}

p(t) = 4(1.003)*,

where 1 is the time in months, find the quantity Q(¢) sold during the ¢*" month.

Draw graphs of Q(2) and the monthly sales revenue

(1) = p(1)Q().
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T. EXPONENTIAL FUNCTION
7.1 Interest on an Investment

We begin by examining the value V' of an investment after one year when a sum of $P
is invested at a nominal inlerest rate of % per annum with the interest compounded n
times per year. This means that the interest rate at each compounding is R/n%. Let
z = R/100 then we have:

n =1 (Interest calculated annually)

V = P+ (interest)
=P+ Px
= P(l+1zx)

n = 2 (Interest calculated semiannually)

v rfie)(1+3
20+5)

value at
half year

-2(143)

n = 4 (Interest calculated quarterly)

- P (D05 043)

value at
first quarter

- o
—

3

value at mid year

N ]
v

value at third quarter

i ~
—r

value at end of year
zy
=P(1+7)
Similarly for

n = 12 (Interest calculated monthly)
-\ 12
V=P(1+5)

n = 365 (Interest calculated daily)

z 363
V=P(1+ )
and in general

v=pr(1+ %)n



49

To get a feel for this let us tabulate the case when P=1and z =1

n (1+1/n)"
' 1 2

2 2.25

4 2.44

12 2.61

52 2.69

365 2.714
8760 2.718

525600 2.7182

We see that as n tends to oo the value of the investment appears to approach a limiting

value e. Indeed continuing the process we would find e = 2.718281828....

That is,
- Iin
e= Ir{!-IPo!ot (1+ '7;)

To see what happens in the general case as n tends to infinity it is convenient to let

m = nfz as then

Vzp(H%)“ :P(1+—;—1)m =P[(1+‘;})mr

and so, since m tends to infinity as n does, we see that 7 approaches the limit
V = Pe”.

Thus when interest is compounded “continuously” the value of our investment after 1
YEear is
V = Pe*.

This also provides a useful approximation to the value of an investment when interest is
compounded a large number of times per year. For example; after 1 year the value of an

investment of $1000 at a nominal annual interest rate of 9% compounded daily is

V= 1000(1 + %)365

= $1094.16,

while the approximation V = 10009 gives V = §1094.17.
7.2 The function y = €°

The function y = e® sometimes also written as y = exp(z) is known as the ezponential
funetion. As we shall subsequently see it is one of the more commonly occurring functions

in economic and business considerations.
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A graph of the exponential function y = ezp(z) = e®.

Note: y = &% is a strictly positive, rapidly increasing, convex function. From the basic

rules of exponents we see that

For example; il we want the value of our investment of a principal $P at an interest rate

of 100z% compounded continuously after a peried other than one year we have:
Value after 1 year = Pe*

Value after 2 years =  Pe® X e = Pe’®
St

elfeclive
principal
at start of
second year

Value after 3 years =  Pe’® X &% = Pe*
N

effective
principal at
starl of third
year
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and in general:

Value after 1 years = Pe'®,

where ¢ may be any positive number.

Thus if 2 = 1000 and the rate of interest is 10% we have
Value after ¢ years = V() = 1000e%¢.

So (using a calculator to evaluate el

Value after 18 months is V(1.5) = 10000e%® = §1161.83

and

Value after 30 years is V(30) = 1000¢® = $20085.54.

7.3 Other representations of e*.

We have seen that
. L. 1\ mz
e = Lumt(l + —-)
M=+ 00 m
= Limit(14 =) .
n—toa n
If we expand (1 +4 z/n)* we obtain a polynomial of degree n.

For Example.

(1—1—%)2214-3:%-%
(1+-§)3=1+m+3m2+§—;

(1_*_3)4—1_}_ +E+£+I_‘i
ST T Ty T

i

and in general

A" on(n=1) 5 nn-1)(n-2) 4 z"
(1+7z) =l+zt o + 3x2x%xnd R nn

Letting n tend to oo we obtain the infinite series
LI UL S
h 2 3x2 4x3x2

For any given z the higher order terms become vanishingly small quite quickly and by

ignoring them we are able to obtain useful approximations to e®. Indeed it is in this way

that computers {and many calculators) evaluate the exponential function.

For example:

11 1 1 L
T S pa
e=¢e "1+1+2+3x2+4x3x2+5x4x3x2+6x5x4x3x2.

= 2.718
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In particular, for = very small we have the linear approximation

ef =1z,
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EXERCISES 7.4

(1) A sum of §5000 is invested at a nominal annual interest rate of 13% compounded

monthly.
(a) What is the value of the investment after 1 year?
(b) What is the value of the investment after 3 years?
(c) Draw a graph showing the value of the investment over the first 10 years.

(2) Sketch graphs for each of the functions y = 3e%2%, y = 337, y = 3e=05%,
y= 302z _ 0.5

(3) The same as (1), but with the inlerest compounded continuously.

(4) Which is better for the investor, continuous compounding at 2 nominal annual interest

rate of 10%, or quarterly compounding at a nominal annual interest rate of 10.25%7

(5) The U.N. Trust Worthy Dank of Australia compounds interest weekly at a nominal
annual interest rate of 12%. What effective annual rate of interest could it use in its
advertisements. [Note: the effective annual rate of interest applied at the end of a year
should give the same value for an investment as the 12% nominal annual interest rate

compounded weekly throughout the year.]

(6) For 2 years an initial investment of $2000 attracts interest at a nominal annual rate
of 12% compounded continucusly, and then for a further 3 years at a nominal annual rate
of 15% compounded continuously. What is the value of the investment at the end of the

five year period?

(7) When a fixed nominal annual interest rate is compounded continuously it is found
that the value of an investment doubles after the first T' years. Show that for any period
of T' years the value at the end of the period is double the value at the start of the period.

Use this to graph the value of the investment when T = 10 and the sum invested is $1000.

(8) A function of the form
S = Sg(l - EM)

is sometimes used to describe the growth of sales toward a saturation level Sp. Draw a

graph of § as a function time ¢ when 53 = 10 and e = 0.5.

(9) The spread of new technology through a community may be described by a function

of the form
1

T 1t Cest
 Graph this function when C =1 and a = 0.5.

A

[Note: A function of this form is known as a Logistic function and is also used to describe

the growth of populations and the spread of diseases.]
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(10) The fraction of individuals born at a particular time still alive by age t is given

approximately by Gompertz’ function

F= eu(l—e“).

Graph F as a function of ¢ when ¢ = 0.1 and b = 0.08.

[Gompertz’ function plays a role in actuarial studies.)
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8. INVERSE FUNCTIONS

We have described the demand for a commodity by a function D giving the quantity ¢
which will be consumed by the market as a function of p the price per unit at which the

commodity is sold;

g = D(p).

Often we are interested in answering the “inverse” question: at what price per unit must
the commodity be offered in order that a quantity ¢ be sold. That is, we wish to express
p as a function of g. When this can be done the resulting function is referred to as the

inverse of I and denoted by D~!; that is, p = D™(g).

In general given a function y = f(z) we are asking, for what value of z does f(z) have
a given value y? In order that this has an unambiguous answer it is necessary that each

value y of the function f come from only one value of z.

h
by Ty
Y
}f'
> X 'O -

0 x
unambiguous ambiguous
answer answer

A function f for which each value y comes from only one z is said to be one-to-one; each

z gives only one y (since f is a function), and each y comes from only one z.

For a function to be one-to-one each lorizontal line must cut its graph only once (just
as each vertical line must only cut it once in order that f is a [unction). In any region
where the function is continuous this means it must be either strictly increasing or strictly

decreasing.

When [ is one-to-one it is invertible and we can defline the inverse function

z=f(y)

which assigns to each value y of f the unique z for which y = f(z).
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y = £(x}

y=£(x) |

/ NS >y
/ 0 xzfnl (y)

By reflecting this diagram about the line y = z so that the y-axis becomes horizontal and

the z-axis vertical we obtain a graph of the inverse Tunction = = f~1(y).

A

/ 7y
/ 7 - X
y=F (x) A— /r’
k&

If y = f(z) is given by a formula we may obtain an expression for =z = f~1(y) by

rearranging the formula so that z becomes the subject.

For example, if y = f(z) = %m — 3 we have z = 2(y + 3) and so

z=f"y) =2 +6.

Similarly, for the demand {function
g = D(p)=100-0.4p
we have the inverse demand function

- 10 !
p=D"Yq) = - (100 - q)
— 250 — 2.5¢
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¢=D(p) P (@

v

o
A 4
.0

250 100

When the variables have meaningful names, such as p and g above, this is the end of -
the story. However in the general case when y = f(z) is an invertible function these
procedures give the graph or an expression for f~! as a function of the variable y. If the
variables do not have meaningful names which we would wish to preserve, it is conventional
to use  and not y for the independent variable. To achieve this for f~! it is necessary

to replace y by z (and z by y) throughout the expression z = f~(y).

For example: for positive = the function y = f(z) = z* is invertible with inverse
z=f"Yy)= y? = /¥ (obtained by solving y = z* for z)

To express this conventionally we swap the roles of = and y to obtain that the inverse of
y= flz)==2%is y = fi(z) = /.
Ay geE()=x?

0

Note: The functions defined by

o) =va

and

@)= Ve

are of course the same function; only the name of the variable has been changed to protect

the convention.

An important property of inverse functions is that

Y fe)=zand f(F7 (1) =y
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EXERCISES 8.1

(1) For a particular commodity the quantity g demanded by the market per month is

given by the demand function
g = D(p) = 1500 — 0.3p,

where p is the price asked per unit.
(i) Find an expression for, and graph, the inverse demand function p = DYq).

(i) If demand is satisfied, find an expression for the monthly sales revenue i = gp
as a function of g. For what quantity of the commodity is the sales revenue 22

maximized?

(2) For each of the following functions determine whether or not the function is invertible.
When the function is invertible find an expression for the the inverse function using =z to
represent the independent variable, and draw graphs of both the function and its inverse

on the same set of axes.
(i) y= /(=)= 5z -3.
(ii) y= f(z) = z* + 1, where z is positive.
(i) = fla) = Y(z +1), =7 -1.

(iv) 3= f(z) = < — .

*(3) If f and g are invertible functions show that (f71)™' = f and
(fog) Tt =g o ft.
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9. THE NATURAL LOGARITHM

9.1 The function fnz

We have seen that the function
y=flz)=¢€"

is strictly increasing. It is therefore invertible, with inverse f~'(y) satisfying

y= U7 W) =

Thus f~(y) is the power fo which e must be raised to obtain y. Consequently we refer to
F7(y) as the logarithm of y to the base e, or the natural logarithm of y and denote
it by

log, y
or
Iny.
By reflecting the graph of y = €® in the line y = z we obtain the graph of {ny,
A
x=1ny
1k
0 1 - y

Note that the natural logarithm is only defined for strictly positive:valueswof+y, where it
is a strictly increasing concave function. For this reason it is sometimes used as a utilily

function.

We also see that

In{1)=0

and
fn(e) =1

Other properties of fny follow from those of the exponential function.

. For example !
fnf{uv) = fn(ef" ™)

— En(eln u-kin u)

=fnut+inv
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Thus
fn(uv) = tnu+€nv
Similarly,
tn(u®) = tn((et)°)
= 1 e® fnu
=afnu
So,
fn(u®) = alnu.
In particular, taking a = -1

n(lfu) = ~fnu

and it follows that
tn(ufv) = fnlu x ;1;) = tnutins

50

tn(ufv)=Lnu—fnv

9.2 Applications

1} A sum of $1000 is invested at a nominal annual rate of interest of 12% compounded

continuously. How long will it take for the investment to reach a value of $15007

The value of the investment after ¢ years is
V = 1000e%*?

Thus we want ¢ such that
1000912 = 1500
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or

eO.l?ﬁ =15
That is, 0.12¢ = £n 1.5 and so

{nl.5

=T

= 3.38 years

1
= 3 years 4-5 months

2) If the value of an investment is to be doubled after 5 years at what nominal annual
interest rate must it be invested if interest is calculated continuously? If the nominal

annual interest rate is 100i% then after 5 years the value of the investment is
V = Pé*

where P is the sum invested. If V is to be 2P we must have

2P = P
50
9 am 65:'
and
5t ={fn2.
Thus
i= ET.;—Q = (.1386

and so we must invest at a nominal annual interest rate of 13.86%.

Remark You may already be familiar with the logarithm of y to the base 10, usually
denoted by log,qy or simply log y. It is the power to which 10 must be raised to obtain
y. That is

10°8 ¥ =y,

Since 10 = 210 we therefore have ef"? = y = 10°8 ¥ = (e 10)l5 ¥ = olr10leg v apd 50
fny = fnlllog y.

Thus
{ny = 2.3031og ¥

and

logy = 0.434 £ny.
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‘9.3 Transforming variables and Fitting Curves to data

The function y = Ae®® may be presented graphically as illustrated below, with both z

and y plotted on linear scales.
Ay

8  —

0 1 2 3 4 5
Alternatively, taking logs of both sides we liave that

fny = n(Ae™%)
= fn A + {n(e®)

50

fhy=fnd4ax

Thus, we see that £ny is linearly related to z, and so the same relationship between y
and = may be presented graphically by plotting {n y versus z to obtain a siraight line of

slope o and vertical intercept £n 4.

kln ¥
=3

Logarithmic

0.2

Note: If y were linearly related to z, say y = 2z + 1, then plotting {ny versus z would

not give a straight line, but rather a graph like the following.



