Department of Mathematics PURE MATHS 211/311

ANALYSIS IN METRIC SPACES

Assignment 1 Solutions

1. We define
$$d(x,y) = \begin{cases} 0, & \text{if } x = y \\ |x| + |y|, & \text{if } x \neq y \end{cases}$$
 $(x,y) \in \mathbb{R}$

To show d is a metric on ${\mathfrak K}.$

- (M1) Clearly $d(x,y) \ge 0 \quad \forall x,y \in \mathbb{R}$
- (M2) If x = y, then d(x,y) = 0 by definition. If $x \neq y$, then at least one of |x| and |y| is greater than zero; hence d(x,y) = |x| + |y| > 0. $d(x,y) = 0 \Leftrightarrow x = y$.
- (M3) If x = y, then d(x,y) = 0 = d(y,x). If $x \neq y$, then d(x,y) = |x| + |y| = |y| + |x| = d(y,x). $\therefore d(x,y) = d(y,x) \quad \forall x,y \in \mathbb{R}$
- If x = y, then for any $z \in \mathbb{R}$, we have $d(x,y) = 0 \le d(x,z) + d(z,y)$, since d(x,z) and d(z,y) are both non-negative. Otherwise suppose $x \ne y$. If $z \ne x$ and $z \ne y$, then $d(x,z) + d(z,y) = |x|+|z|+|z|+|y| \ge |x|+|y| = d(x,y)$ If z = x, then $z \ne y$, so d(x,z) + d(z,y) = |z|+|y| = |x|+|y| = d(x,y) Similarly if z = y. Overall, then, $d(x,y) \le d(x,z) + d(z,y) + d(z,y) = R$ Since (M1) (M4) hold, (R,d) is a metric space.
- (a) $\frac{d(x,0) = 1 \Leftrightarrow |x| = 1 \Leftrightarrow x = \pm 1.}{d(x,0) = 2 \Leftrightarrow |x| = 2 \Leftrightarrow x = \pm 2.}$ $d(x,0) = \lambda: \text{ If } \lambda = 0, \text{ then } x = 0.$ Otherwise, $|x| = \lambda$, i.e., $x = \pm \lambda$.
- (b) $d(\mathbf{x},1) = 1 \Rightarrow |\mathbf{x}| + 1 = 1 \Rightarrow \mathbf{x} = 0$ $d(\mathbf{x},1) = 2 \Rightarrow |\mathbf{x}| + 1 = 2 \Rightarrow |\mathbf{x}| = 1.$ BUT, if $\mathbf{x} = 1$, then $d(\mathbf{x},1) = 0$, as $d(\mathbf{x},\mathbf{y}) = 0$ if $\mathbf{x} = \mathbf{y}$.

 Hence $\mathbf{x} = -1$ is the only solution to $d(\mathbf{x},1) = 2$. $d(\mathbf{x},1) = \lambda: \quad \text{If } \lambda = 0, \text{ then } \mathbf{x} = 1$ If $0 < \lambda < 1$, then $|\mathbf{x}| + 1 = \lambda \Rightarrow |\mathbf{x}| = \lambda 1 < 0 \text{contradiction}$.
 If $\lambda \ge 1$, then $|\mathbf{x}| + 1 = \lambda \Rightarrow |\mathbf{x}| = \lambda 1 \Rightarrow \mathbf{x} = \pm(\lambda 1)$.

 \therefore those x for which $d(x,1) = \lambda$ are given by:

$$\begin{cases} x = 1, & \text{if } \lambda = 0 \\ x = -1, & \text{if } \lambda = 2 \\ x = \pm(\lambda - 1), & \text{if } \lambda \ge 1, \lambda \ne 2. \end{cases}$$

If $0 \le \lambda \le 1$, there is no solution to $d(x,1) = \lambda$.

(c) We fix y, and solve $d(x,y) = \lambda$:

If $\lambda = 0$, then x = y.

If $0 < \lambda < |y|$, then $|x| + |y| = \lambda \Rightarrow |x| = \lambda - |y| < 0$ - a contradiction.

If
$$\lambda \ge |y|$$
, then $|x| = \lambda - |y| \Rightarrow x = \pm (\lambda - |y|)$

Note that if $\lambda = 2|y|$, then there is only one solution for x (ie, x = -y).

 \therefore those x for which $d(x,y) = \lambda$ are given by:

$$\begin{cases} x = y, & \text{if } \lambda = 0 \\ x = -y, & \text{if } \lambda = 2|y| \\ x = \pm(\lambda - |y|), & \text{if } \lambda \ge |y|, & \lambda \ne 2|y|. \end{cases}$$

If $0 < \lambda < |y|$, there is no solution to $d(x,y) = \lambda$.

If we now draw the sets $d(x,y) \le \lambda$ for fixed y, and various $\lambda \ge 0$, we obtain:

(2)
$$0 < \lambda < |y|$$
:

(3)
$$\lambda = |y|$$
:

(4)
$$|y| < \lambda < 2|y|$$
:

(5)
$$\lambda = 2|y|$$
:

(6)
$$\lambda > 2|y|$$
:

In Ql of Tutorial Sheet 2, the sets $d(x,y) \le \lambda$ were squares centred on y, and there were no isolated points like above. This irregular behaviour above suggests that d is not induced by any norm. This is in fact the case, although the proof is slightly tricky:

Suppose $\| \ \|$ is a norm on the vector space $\mathbb R$ with "addition" denoted by θ , and "subtraction" by θ , such that

$$d(x,y) = \|x \oplus y\| \text{ for all } x,y \in \Re.$$

Put
$$k = 2 \Theta 1$$

Then
$$1 = d(1,0) = || l \theta 0 ||$$

 $= || (l \theta k) \theta (0 \theta k) ||$
 $= d(l \theta k, 0 \theta k)$
 $= |l \theta k| + |l \theta k|$
 $= |l \theta (2 \theta 1)| + |l \theta k|$
 $= 2 + |l \theta k|$
 ≥ 2

i.e., $1 \ge 2$, which is a clear contradiction. Hence d is not induced by any norm.

2 We have
$$\|p(x)\|_{\infty} = \max_{x \in [0,1]} |p(x)|$$
, for

 $p(x) \in P[0,1]$, the linear space of all polynomials of degree 1.

Define P.(x) = 1 +
$$\frac{x}{n}$$
.

(a)
$$\|P_n(\mathbf{x})\|_{\infty} = \max_{\mathbf{x}} |P_n(\mathbf{x})|$$

 $\mathbf{x} \in [0,1]$
 $= 1 + \frac{1}{n}$ (from the diagram)

$$\begin{split} \|P_{n}(x) - P_{m}(x)\|_{\infty} &= \max_{x \in [0,1]} |P_{n}(x) - P_{m}(x)| = \max_{x \in [0,1]} \\ & |(1 + \frac{x}{n}) - (1 + \frac{x}{m})| \\ &= \max_{x \in [0,1]} |x(\frac{1}{n} - \frac{1}{m})| = \max_{x \in [0,1]} (|x|| \frac{1}{n} - \frac{1}{m}|) \\ &= |\frac{1}{n} - \frac{1}{m}| {\max_{x \in [0,1]} |x|} = |\frac{1}{n} - \frac{1}{m}|, \end{split}$$

(b) Let $\epsilon > 0$ be given, and choose N to be any integer greater than $2/\epsilon$.

Then, if $n,m \ge N$, we have

$$\|P_n(x) - P_m(x)\|_{\infty} = \left|\frac{1}{n} - \frac{1}{m}\right| \le \frac{1}{n} + \frac{1}{m} \le \frac{1}{N} + \frac{1}{N} = \frac{2}{N} < 2. \frac{\varepsilon}{2} = \varepsilon$$

i.e., if n,m \geq N, then $\left\| {{P_n}(x) \, - \, {P_m}(x)} \right\|_\infty < \epsilon$

Hence, by definition of a Cauchy sequence,

$$\{P_n(x)\}$$
 is Cauchy.

(c)
$$\|P_n(x) - 1\|_{\infty} = \max_{x \in [0,1]} |(1 + \frac{x}{n}) - 1| = \max_{x \in [0,1]} |\frac{x}{n}|$$

 $= \frac{1}{n}, \max_{x \in [0,1]} |x| = \frac{1}{n}$

Since $\lim_{n\to\infty}\frac{1}{n}=0$, it is reasonable to assume that $P_n^-(x)\to 1$. To prove this, let $\epsilon>0$ be given, and let N be any integer greater than $\frac{1}{\epsilon}$. Then if n>N, we have $\|P_n(x)-1\|_\infty=\frac{1}{n}<\frac{1}{N}<\epsilon$

i.e., $\|P_n(x) - 1\|_{\infty} < \varepsilon$ whenever n > N. Thus, by definition, $\{P_n(x)\}$ converges to the constant function 1.

3. For $x,y \in X$, the class of all finite subsets of \mathbb{R} , we define $d_0(x,y)$ to be the number of elements in $x \triangle y = (x \cap y') \cup (y \cap x')$

The shaded part is $x \triangle y$.

To show d is a metric:

- (M1) Clearly $d_{0}(x,y) \ge 0$ for all $x,y \in x$.
- (M2) If x = y, then $x \cap y' = \phi$, and $y \cap x' = \phi$, so $x \wedge y = \phi$. \therefore the no. of elements in $x \wedge y$ is 0, i.e., $d_0(x,y) = 0$. Conversely, suppose $d_0(x,y) = 0$. Then both $x \cap y'$ and $y \cap x'$ are empty sets. Since $x \cap y' = \phi$, it follows that x must be contained in y i.e., $x \subseteq y$. Similarly, since $y \cap x' = \phi$, it follows that $y \subseteq x$. Since $x \subseteq y$ and $y \subseteq x$, it follows that $x = y \therefore d_0(x,y) = 0 \Leftrightarrow x = y$.
- (M3) Since $x \triangle y = y \triangle x$, it follows that $d_0(x,y) = d_0(y,x)$
- (M4) Let x,y,z be 3 elements of X as shown, and let a,b,c,... denote the number of elements in the regions shown.

Then
$$d_0(x,y) = a + f + c + d$$

$$d_0(x,z) = a + b + d + g$$

$$d_0(z,y) = b + c + f + g$$
Hence $d_0(x,z) + d_0(z,y) - d_0(x,y)$

$$= 2(b+g) \ge 0 \text{ (as b and g are non-negative integers)}$$

(a) Suppose $\{x_n\}$ is a sequence in X that converges to $y \in X$. By definition, then, given $\epsilon > 0$, there exists N such that $d_0(x_n, y) < \epsilon$ for all $n \ge N$.

Now take $\epsilon=1$. Then there exists N such that $d_0(x_n,y)<1$ for all $n\geq N$.

But $d_0(x_n, y)$ is the number of elements in $x_n \Delta y$, and must be a non-negative integer. Since $d_0(x_n, y) < 1$ for all $n \ge N$, we must have $d_0(x_n, y) = 0$ for all $n \ge N$, and so $x_n = y$ for all $n \ge N$ (by (M2)).

That is, the sequence $\{\boldsymbol{x}_n^{}\}$ becomes constant after a finite number of terms.

(b) If
$$x_1 = \{1\}$$

$$x_2 = \{\frac{1}{2}, 1\}, \dots, \frac{n-1}{n}, 1\}, \dots$$

$$x_n = \{\frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}, \dots$$

then the sequence $\{\boldsymbol{x}_n^{}\}$ cannot converge, as it does not become constant after a finite number of terms.

Let $\{x_n\}$ be a Cauchy sequence in (X, d_0) . Then, given $\epsilon > 0$, there exists N such that $d_0(x_n, x_m) < \epsilon$ whenever $n, m \ge N$. Now, as before, take $\epsilon = 1$. Then there exists N such that $d_0(x_n, x_m) < 1$ for $n, m \ge N$.

As previously, this means that $x_n = x_m$ for $n,m \ge N$ and (taking m = N), we see $x_n = x_N$ for $n \ge N$.

Therefore, $\{x_n\}$ becomes constant after a finite number of terms and hence is convergent i.e., Any Cauchy sequence in (X,d_0) is convergent, and so, be definition, (X,d_0) is complete.

METRIC SPACES - TUTORIAL SHEET 4

1. Show that for any set X with the discrete metric,

$$B_{r}(x_{0}) = \begin{cases} \{x_{0}\} & \text{if } r \leq 1 \\ x & \text{if } r > 1 \end{cases}$$

2. (a) In \Re , with metric $d(x,y) = \begin{cases} 0 & \text{if } x = y \\ |x| + |y| & \text{if } x \neq y \end{cases}$

Show that the set $A = \{x: 1 \ge x > -1\}$ is an open set with respect to the metric d. (Look at the open sets $d(x,1) < \lambda$ for various λ .)

- (b) Show that A is neither open nor closed with respect to the metric $d_1(x,y) = |x y|$.
- 3. In the set R with the same metric as in 2(a), show that almost all single point sets are open ({0} is the only single point set that is not open).

Which single point sets are closed?

Show that any set not containing {0} is open.

Find a set (other than {0}) that is not open.

What are the only possible non-open sets? Are they closed?

- 4. Is the set Q of rational numbers an open subset of \Re (use the usual metric d(x,y) = |x-y|). What is Int Q?
- 5. In the space C[0,1] with metric || .|| as defined on Sheet 3, Q2, is the set P of polynomials an open set?
 Is the complement of P an open set? (Q1 on p19 of notes may help.)
- 6. Show that every single element subset of (X,d_0) (defined on Sheet 3, Q3) is an open set. (Be careful to remember that elements of X are finite subsets of R, and that d_0 is a distance measure between such finite subsets.)

Describe the set $\{x: d_0(x,x_0) \le 1\}$ where $x_0 = \{a_1,a_2,\ldots,a_n\} \in X$. Is it open?