


2. BOOCLEAN ALGEBRA

This chapter is devoted to the study of Beolean algebras and their applications. As we
shall see, an algebra of subsets is a prototypical exarmple for any Boolean algebra. Before
formally defining a Boolean algebra, it is therefore appropriate to review some basic set
theory. '

2.1 Set Theory

A set is a collection of objects specified by a rule which allows us to decide whether any
given object is, or is not, in the set.

We will usually denote sets by capital letters; A, B,C,---. The objects comprising a set
are its elements (or mernbers). Elements will normally be denoted by lower case letters;
a,b,c, . We will write a € 4 to mean a is an element of the set 4, and a € A4 to mean a
is not an element of A.

Typically the rule specifying a set will take one of two possible forms.

(a) The set is specified by listing all of its elements. For example, the set V of vowels has
elements a,e,1,0 and u. We indicate this by writing

V = {a,e,i,0,u}.

In general, we will use braces, { }, to indicate that the objects described within them
are to be regarded as the elements of a set.

{b) A characteristic property P is given. For example, P might be; is ¢ prime number
less than 20. The set then consists of all those objects with the property P, and only
those objects.

We will indicate this by writing

: z has P },
AN
read as: = N

The set of guch tha? T has P.

For example;
P := {z: zis a prime less than 20}
= {2,3,5,7,11,13,17,19}.

Other examples of sets specified this way are:
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= {1,2,3,4,6,12}.




S = {m: \/m E Z}
= {0,1,4,9,16,25, - }.
R = {z: } —z?4+z-1=0}

A useful concept is that of the null set (or empty set), which has no elements. We will
denote the null set by 0.

Given two sets A and B we say A is a subset of B, written 4 C B, if every element of
A is an element of B. That is, A C Bifandonlyifz € A => z € B. The null set is a
subset of every set.

EXERCISE: Let A be a set with n elements. Show that there are 97 distinct subsets of A.

Two sets A and B are equal, written A = B, if A C B and B C A. That is, two sets are
equal if and only if every element of each is an element of the other; z € A<=z €B.
As a consequence of this we note that the order in which the elements of a set are specified
is unimportant.

Thus,
{a,b,c} = {bec,a}.

Also, it is redundant to specify the same element more than once;

{a,a,b} = {a,b}.

For the set R := {z: 2% —z%+z -1 = 0}, defined above, it is unclear whether we should
take R = {1,i,—i}or B = {1}.

In any given discourse only relevant objects need be considered. The set of all such relevant
objects forms a universal set U for the purpose of the discussion. All sets entering into -
the discourse will be subsets of U.

For example:
If U is the set of real numbers then R = {1}.
If U is the set of complex numbers then R = {1,#,—i}.
If U is the set of Pterosauria, then R = {.

When the appropriate universal set is clearly understood from the context it may not be
specified explicitly.

‘We now define some basic operations on sets.

Given two sets A and B their union, written AU B, is the set of all elements which belong
to either A or B. That 1s,

AUB := {z: x € Aorx € B}.
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The intersection of A and B, written A N B, is the set of all elements which belong
to both 4 and B. That is,

ANB = {z: z € Aand z € B}

-

The complement of A (relative to the universal set U) is the set of elements in U7
which do not belong to A. We denote this complement by A’. That is,

A= e zeU and z ¢ 4).

The set theoretic identities listed below are typical of the relationships which can be derived
from the above definitions.

1) AUB = BUAand ANB = BN A [Commutative laws.]
2) AU(BUC) = (AUB)UC

and
AN(BNC) = (ANB)NC. [Associative laws, as a result of which one can
unambiguously write AUBUC and ANBNC\|

3 AuA = Aand AN4d = A [Idempotent lows.]

4) AUl = 4 [0 is an identity for U]
and
ANU = A [Uis an identity for N).

5) AN(BUC) = (ANB)U(ANC)

and

AU(BNC) = (AUB)YN(AUC). [Distributive laws.]
6) AuA" = U

and

ANA" = 0. [Laws of complements.]
N (AUuB) = A'nB

and

(ANBY = A'UB'. [De Morgan's Laws.]
8) (4') = A.
NU =0

and

O =U.

We will prove the first De Morgan law given in 7); proofs of the other identities are left as
exercises.



Proof that (AUB) = A'nB'.

-

r€(AUB)Y < x¢ AUB
—z¢Aanda ¢ B
<rz€A andz e B
= zec A NB.

Venn diagrams, in which each set is represented by the interior of a simple closed curve,
provide a convenient way of illustrating relations such as those listed above.

For example, the left hand side of the distributive law for N over U; AN(BUC) =
(AN B)U(ANC),is represented in figure 1,

B U C corresponds to the whole of the shaded area.
Dark shaded area represents AN (B U C).
Figure 1.

while the right hand side is represented in figure 2.
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Proof that (AU B) = A'NnB.
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Venn diagrams, in which each set is represented by the interior of a simple closed curve,
provide a convenient way of illustrating relations such as those listed above.
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while the right hand side is represented in figure 2.
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Area hatched to the left represents AN B.
Area hatched to the right represents AN C.
(AN BYU(ANC) is represented by the total hatched area.
Figure 2.

And, it is visually clear that AU(BNC) = (AUB)YN(AUC).
You may find it instructive to similarly analyse each of the identities given above.

NOTE: Venn diagrams for general situations involving four, or more, sets are not quite so
pleasant. (Try drawing such a diagram in which all of the fiftcen sets 4,B,C,D, AN D,
AnNnC,AnDBNnC,BNnD,CND, AﬂBﬂC,AﬂBDDAﬂCﬂDBﬂCﬂD
AN BNCND are represented by distinct nonempty regions.)

EXERCISE. Show that A € B if and only if AN B' = 0.



2.2 Definition and basic results for Boolean Algebras

A Boolean algebra is an abstract system consisting of a set S = {a,b,--+} on which two
binary operations; (a,b) —+ a + b and (a,b) — a - b, and one unary operation a a’,
are defined and satisfy the following axioms:

Al) fa,be Sthena+b€ S, a-b€ Sandd € 5. Thatis, Sis closed under the

operations of +,-, and ’.
A2) a+b=0b+aanda-b=b-aforall a,b€ S. Thatis, + and - are commautative.
A3) If a,band c are in S then
() a-(b+c)=a-b+ a-c
- and
() at(b-c)=(a+b) (ate)
That is, each of the binary operations is distributive over the other.”

A4) There exists 0 € S such that for all @ € § we have 0 + a = g, and there exists I € S
such that for all a € S we have I - a = a. That is, there exist identities for 4+ and -,

A5) Foralla€ S we have a+a' =T and a-a' = 0. The laws of complements.

At this point you may wish to glance ahead to section 2.3.1 to see some examples of
such a system. In particular example 1) should help make the results which follow more
transparent. You might also note that if S is the set of integers (or real numbers) and +, -
are interpreted as ordinary addition and multiplication with 0 equal to zero, and I = 1,
then axioms Al) for + and -, A2), A3) (i), and A4) are satisfied, but A3) (ii) does not
hold true and it is impossible to define a unary operation satisfying A5). Thus, ordinary
arithmetic does not provide an example of a Boolean algebra.

Observe, that if we interchange the operations + and -, and the symbols 0 and I throughout
the axioms of a Boolean algebra, then we obtain precisely the same list of axioms. This
symmetry leads to the principle of duality: '

Every statement or identity deducible from the azioms of o Boolean algebra remains valid
if we interchange the operations + and -, and the symbols 0 and I, throughout.

As consequences of the axioms we may deduce the following theorems, which are therefore
true in any Boolean algebra. In each case the enunciation contains both a statement and its
dual (obtained by interchanging + and -, and also 0 and I). Of course it is only necessary
to prove one of these two statements. The dual statement is then valid by the principle of
duality. Indeed its proof may be obtained by making the above interchanges at each step
of the proof given.
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2.2 Definition and basic results for Boolean Algebras

A Boolean algebra is an abstract system consisting of a set S = {a,b, -} on which two
binary operations; (a,b) — a + b and (a,b) — a - b, and one unary operation a — a',
are defined and satisfy the following axioms.

Al) fa,be Sthena+ b€ S, a-be Sand &' € S. That is, S is closed under the
operations of +,-, and ‘.

A2) a+b=b+taanda-b=b-aforall a,b € S. Thatis, + and - are commutatiq'fe.
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A4) There exists 0 € S such that for all « € 5 we have 0+ a = a, and there exists I € S
such that for all a € S we have I- a = a. That is, there exist identities for + and -.

A5) Forallage Swehavea+a =1 and a-a' = 0. The laws of complements.

At this point you may wish to glance ahead to section 2.3.1 to see some examples of
such a system. In particular example 1) should help make the results which follow more
transparent. You might also note that if S is the set of integers (or real numbers) and +, -
are interpreted as ordinary addition and multiplication with 0 equal to zero, and I =1,
then axioms Al) for 4+ and -, A2), A3) (i), and A4) are satisfied, but A3) (ii) does not
hold true and it is impossible to define a unary operation satisfying A5). Thus, ordinary
arithmetic does not provide an example of a Boolean algebra.

Observe, that if we interchange the operations + and -, and the symbols 0 and I throughout
the axioms of a Boolean algebra, then we obtain precisely the same list of axioms. This
symmetry leads to the principle of duality: '

Every statement or identity deducible from the azioms of a Boolean clgebra remains valid
if we interchange the operations + and -, and the symbols 0 and I, throughout.

As consequences of the axioms we may deduce the following theorems, which are therefore
true in any Boolean algebra. In each case the enunciation contains both a statement and its
dual (obtained by interchanging + and -, and also 0 and I). Of course it is only necessary
to prove one of these two statements. The dual statement is then valid by the principle of
duality. Indeed its proof may be obtained by making the above interchanges at each step
of the proof given.

Theorem 1. (Idempotent laws) For every element a in a Boolean algebra,

a-a=a and a+a=a.

Proof. .

g a = Ia by A4)
= (a+a)a by AbB)
= a-{a+d) by A2)
= a-ata-a by A3)
= O+a-a by A2)
= a-a by A4)

Note how each step in the proof is justified by an appeal to the axioms. You should supply
similar justifications in each of the subsequent proofs. Caution: In order to make these
proofs more succinct, the justification for some of the steps may require the use of more
than one axiom.

Theorem 2. For each element a in a Boolean algebra,

a-0=0 and a+I=1.

Proof.
0=a-a
=a-(a +0)
=q-a +a-0
=0+a-0
=a-0.
|
Theorem 3. (Laws of absorption) For each pair of elements a, b in a Boolean algebra,
at+a-b=a and a-(a+d)=cq.
Proof.
a=a-I
=a-(I+D) by theorem 2
=a-I+a-b
=a4ta-b
|

Rgts S T
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Theorem 4. (Cancellation) If for elements a, z, and y in a Boolean algebra we have
a+z=a+y and a+z=da+y
or we have .
¢ z=a-y and @ -x=4a -y

then
z = Y.

Proof. fa+z=a+yand a +z=2a +y then
(a+z)-(a +z)=(aty) (a +¥)
Now the left hand side

(a-}-m)-(a'+:n):d.-a’+a-:c+:c-a’+a:-'$.
=04z -(a+a)+=
=z-I+z
=Ir+T
=z,

and similarly, the right hand side equals y.
Therefore, T = ¥, a8 required.

Theorem 5. (Associative laws) For every a, b., and ¢ in a Boolean algebra,

a+(b+c)=(a+b)+c and a-(b-c)=(a-b) ¢

Proof (optional). Let = :=a- (b-c) and let y := (a-b) - ¢ then by theorem 4 it is enough
to show that a + = = a +y and that @' +z = a +y.

Now,
a+tz=a+a-(b-c)
=a by theorem 3,

and

a+y=a+((a b) c)
=(a+a-b)-(a+c) by A3(ii)
=a-(a+c) by theorem 3

=a again by theorem 3.

So,a+z=a+Vy




Theorem 4. (Cancellation) If for elements a, z, and y in a Boolean algebra we have
a+z=a+y and a+z=d+y
or we have
a-z=a-y and @ -z=4a -y

then
T = Y.

Proof. Ha+z=a+y and @' +z = ¢’ +y then
(a.—l-m) (a"+z) = (a+y) (' +y)
Now the left hand side

(a—i—m)-(a'-l—m)::a-a’.{-a-a:-{—n;-d’+m_-=':c.
—~0+z-(at+ad)+z
=z- I+
=T+
=,

and similarly, the right hand side equals y.
Therefore, T = y, as required.

Theorem 5. (Associative ld'ws) For every a, b, and ¢ in a Boolean algebra,

a+(b+c)=(a+b)+c and a-(b-c)=(a-b)-c

Proof (optional). Let z :=a- (b c) and let y := (a - b) - ¢, then by theorem 4 it is enough
to show that a +© = a +y and that o' + = =d+y.

Now,
a+z=a+a-(b c)
- =a by theorem 3,

d
- a+y=a+((a-b)-c)

~(a+a-b)-(at+c) by A3(i)
=q-(a+c) by theorem 3

=a again by theorem 3.

So,at+z=a+y.

Also,
d+z=a+(a-(b-c))
=(a'+a)- (' +(b-c))
=1-(a' +(b-¢))
=a' +(b-c),
while,

o +y=d+ ((a-b)-c)
=(a' +(a- b)) (' +¢)
= ((a'+a)- (d' + 1) - (a' +¢)
= (a'+b) (d +¢)
=a +(b-c).
So, ' + z = a' + y, establishing the result.
|

Theorem 6. ( Uniqueness of complements) For each element a in a Boolean algebra, the
element a' associated with a and satisfying A5) is unique.

Proof. Suppose that © satisfiecsa+z=Jand a-x =0.

Then
z=1 =z
=(a+a) z
=a-3 + a-x

=0 4+ d - x by assumption

=CL"CL'

=z-a + 0

=z-a + a-a
=(z+a)-d

=I-d by assumption
=a'.

Since for every element a there is only one element o' satisfying the conditions of A5}, we
may unambiguously refer to it as the complement of a.

Corollary 7. For every element « in a Boolean algebra,

(a') =a.
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Proof. (a')' is the unique element satisfying o’ + (¢') = I and ' - (a')' =0, but o' +a=1T
and o - @ = 0, thus we must have (a') = a.

EXERCISE. Prove that in any Boolean algeb-ra.:
(1) The elements 0 and I satisfying A4) are unique.

y(2) For any elements a, b, and ¢ we have the identity

a-b+b-ctecra = (a-{-b)-(b-{-c)'(a-i—c).

(3)0 = TandI' = 0.

(4) For every pair of elements a and b,

(a-b) =d + ¥ and (a+b) =d b

(5) For every pair of elements a and b,

a +d -b=a —|— b.

(6) If a, ©, and y are clements such that both e+ =a+yanda-x=a-y then & = y.

10
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Proof. (@'} is the unique element satisfying a' +(a')’ = I and a-(a)=0buta +a=1
and @' - a = 0, thus we must have (a')’ = a.

|
EXERCISE. Prove that in any Boolean algebra:
(1) The elements 0 and I satisfying A4) are unique.
\(2) For any elements a, b, and c we have the identity
a-b+b-c+eca = (a+b)~(b+c)-(a+c).
(3) 0 = Tand I' = O.
(4) For every pair of elements a and b,
(@ b)) =a'+¥ and (a+b)=d b
(5) For every pair of elements a and b,
a+ a-b —a + b.
(6) If a, =, and y are elements such that botha+z =a+yand a-x=a-y then x = y.
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2.3 Examples, Boolean functions, and the representation of Boolean algebras

2.3.1 Examples of Boolean algebras
EXAMPLE 1) Algebra of sets

Let U be a given universal set, and let § be the set of all subsets of U (5 is sometimes
denoted by 2V and termed the power set of U, a notation suggested by the number of
elements in S, namely; 2#Y | where #U is the number of elements in U). Then, from the
results of section 2.1 we sce that S is a Boolean algebra if we define 4- to be U, - to be N,
0 to be the null set @, I to be U, and a’ to be the set complement of a in U for all a € 5.
Note, a € § means a C U.

EXAMPLE 2) The Boolean algebra {0,1}

Let S be the set consisting of the two numbers 0 and 1. Define; - to be ordinary mul-
tiplication, + to be addition modulo 2, and complements by 0’ = 1, 1’ = 0, so that we
have '

ajbla-b aibla+b

1111 1 111 1 a |d
1{0} O 110 1 10
011 0 011 1 01
0{o} o 00 0

It is readily verified that § with these operations is a Boolean algebra with [ = 1. For
example, to check the second distributive law, A3(ii), we calculate

alblciat(b-c)|(ad+d) (atc)
1711 1 1
11110 1 1
17011 1 1
1{010 1 1
01111 1 1
0110 0 0
0101 0 0
01010 0 0

from which we see that, for all values of a, b and ¢, the expressions a+(b-¢) and (a+b)-(a+c)
have the same value, and so are equal.

11
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Thus we see that the expressions =(P A Q) and =P V ~@Q have identical truth values and
80, '

~(PAQ) = =P V -Q.

It is now straight foreward to verify (do scras an EXERCISE) that the set of propositions
with this definition of equality and with + defined to be V, - defined to be A, and '
defined to be negation — is a Boolean algebra in which I corresponds to fautology (a
~ proposition which is always true) and 0 corresponds to a proposition which is always false
' (contrediction). Indeed it was in this form that the Enghsh log1c1an George Boole [1815 —
1864] first consxdered such algebras. . _ .

This enables us to manipulate and simplify logical expressions algebraically using the rules
of Boolean algebra. In particular, any identity valid in an arbitrary Boolean algebra when
appropriately translated becomes a valid statement in logic. For example, from exercise
(2) at the end of section 2.2 we have ' :

(PAQ)V(QAR)V(P_AR)z(PVQ)/\(QVR)/\(PVR).

EXERCISE Verlfy this last 1dent1ty by constructmg truth tables for the left and right
hand mdes :

It is also worth noting thd,t of nec equtv the prmc;ple of duality applies to loglcml statcments
and identities.

In our discussion of logic we have so far made no mention of the type of proposition most
frequently encountered in mathematics; namely, P implies @, or equivalently If P then
Q, written P = Q. However, it is not hard to see that what we mean by P =—> () is the
same as 7(P A —=Q), and so has the truth table

P|Q|P=Q
TI|T T
T F F
F\|T T
F|F T

Note that, applying the rules of Boolean algebra to the expression (P A =Q), we also
have P = ( is the same as =P V .

It is also worth noting that the last two lines of the truth table for P = @ correspond
to the observation that starting from a false premise we can deduce the correciness of
anything, and exposes the fallacy in the all too common “schoolboy™ method of proof;
suppose what I want to prove is correct, compute --- compute, deduce a truth, hence
what I wanted to prove must have been correct! What lines of the table verify the correct
method of proof; suppose the proposition I want to prove is false, compute - - - compute,
arrive at a fallacy {or contradiction), hence what I wanted to prove is true?

14
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EXERCISE. Prove that P — () is the same as -@Q == ~P. (Proving P = Q) by
establishing the contrapositive = = - P is an important method of proof often used in
mathematics.)

2.3.2 Functions on Boolean algebras

Let By and Bz be two Boolean algebras. A function f : By — B; is a Boolean homo-
morphism if f(a +b) = f(a) + f(8), f(a-b) = f(a)- f(b), and f(«') = f(aY, for all
a, b = Bl

Note: Although we have used the same symbols, the operations in the left hand side of
these expressions are those of By while the operations in the right hand side are those of

Bs.

For example, the function f from the Boolean algebra of propositions to the Boolean
algebra {0, 1} which maps each proposition P to 1if it is true and to 0 if it is false is easily
shown to be a homomorphism. For instance, to verify f(P Q) = f(P)- f(Q) we need only
compute the following table. '

Pl Q |P-Q |f(P) | Q) | F(P-Q) | F(P) £(Q)
T| T T 1 1 1 1
TIF{ F |1 |0 | o 0
F| T F 0 1 ‘ 0 G
F\ F F 0 0 0 0

It is this homomorphism which makes possible logical operations in a digital computer.

" EXERCISES.

1) .Let f : By — B; be a homomorphism from the Boolean algebra B; to the Boolean
algebra By. Show that f(0) =0 and f(I) =

- 2} Let B; and B, be Boolean algebras. Show that f : By — B, is a homomorphism
if fla-b) = f(a)- f(b) and f(a') = f(a), for all a, b € B;. [Hint: Note that
a+b=(d b’)’.]

A homomorphism f from the Boolean algebra B; to the Boolean algebra B; which is

also one-to-one and onto, and so invertible with inverse f~!, is termed a Boolean iso-
morphism. When there exists an isomorphism from B; to B; we say the two Boolean
algebras are isomorphic. Two isomorphic Boolean algebras are essentially the same.

For example, it is readily verified that the Boolean algebra {0,1} is isomorphic to the
algebra of sets {§, U} whose elements are the two subsets of the universal set U = {a}

_ with only one member a.
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EXERCISES.

3) Let f be an isomorphism from the Boolean ‘algebra B; onto the Boolean algebra By,
show that f~! is also an isomorphism. ‘

4) Show that is isomorphic to defines*an equivalence relation on the set of Boolean
algebras. '

We now study the structure of those functions f from a Boolean algebra B into itself which
can be formed by combining several variables 1, z32,+-- and constants (fixed elements of
B) using the operations of +,-, and ’. Such functions are termed Boolean functions,
and are the analogue of polynomials. For example, f(x1,z2)=a-%;-z2 +b- 2] issucha
function, where a, b are fixed elements of B. ‘ '

Theorem 1. Let B be a Boolean algebra and let f(zi,z2,:'-,%a) be a Boolean
function on B which contains no constants, then f can be expressed as a sum of terms of
the form ‘

ylcyz- + . n .Vﬂ}

wl

W

n factors
where v; is either z; or zi. We will refer to this as the disjunctive normal form of f.

An application of the principal of duality shows that we could also express f as a product
of sums each of the form vy + 1 +- - -+ v, known as the conjunctive normal form of f.

Proof. Wherever expressions of the form (a4 #)' or (o - #)' occur, replace them by o' - §'
and o + ', respectively. Continue this process until the only complements present are of
individual variables z;.

Use the distributive law of - over + as many times as is necessary to reduce the expression
for f to a sum of products of variables and their complements.

Now suppose a term does not contain either the variable z; or its complement z}. Multiply
the term by (z; + «}) and use the distributive rule to replace the term by a sum of two
products, one having z; as a factor and the other having z' as a factor. Continue this
procedure for each missing variable in each of the terms.

Finally, use the idempotent laws to remove any duplicate terms. The resulting expression
for f has the desired form.

For example, to express the function f(z1,72) = 1 - 2 + 27 in disjunctive normal form
we proceed as follows.

flzy,z0) =@y - g + 2}
Ty 22 + (T2 +7h) - 7]

' [ ' !
=1 Ty+ T T2+ & Tq.
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EXERCISES.

3) Let f be an isomorphism from the Boolean algebra B; onto the Boolean algebra, B,
show that f~! is also an isomorphism.

4) Show that s isomorphic to defines an eqmvalence relation on the set of Boolean
algebras.

We now study the structure of those functions f from a Boolean algebra B into itself which
can be formed by combining several variables z1, 2, -+ and constants (fixed elements of
B) using the operations of +,-, and ’. Such functions are termed Boolean functions,
and are the analogue of polynomials. For example, f(z;,z2)=a- :1:1 +Zo+b-z} issucha
function, where a,b are fixed elements of B. ' ' -

Theorem 1. Let B be a Boolean algebra and let f(:r:;,:cg, -y Ty) be a Boolean
function on B Whlch contams no constants, then f can be e*cpressed as a sum of terms of
the form | '

E}l . y2 . - ..- . Ijr';" .

n factors

where v; is either ; or z!{. We will refer to this as the disjunctive normal form of f.

An application of the principal of duality shows that we could also express f as a product
of sums each of the form v; + 15 +-- -+ v, known as the conjunctive normal form of f.

Proof. Wherever expressions of the form (a + #) or (a - )" occur, replace them by o' - '
and a' + #', respectively. Continue this process until the only complements present are of
individual variables z;.

Use the distributive law of - over + as many times as is necessary to reduce the expression
for f to a sum of products of variables and their complements. x
Now suppose a term does not contain either the variable z; or its complement z*. Multiply
the term by (z; + z}) and use the distributive rule to replace the term by a sum of two
products, one having z; as a factor and the other having z} as a factor. Continue this
procedure for each missing variable in each of the terms.

Finally, use the idempotent laws to remove any duplicate terms. The resulting expression
for f has the desired form.

For example, to express the function flzy,x3) =z, 23+ z} in dasjunctlve normal form
we proceed as follows. :

flzy,m9) =21 - 29 + 13
=11 Tg + (T2 + z4) - T}

! I !
=11 T2+ Ty T2+ Ty Ty
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EXERCISES.
5) What is the conjunctive normal form of the function f(x1,2) = 2y - 2o + 217

6) Express in disjunctive normal form the function

flzy,T9,23) = (x - 2h + 25) - 9

Remark. Any Boolean function in which the only constants are 0 or I can also be
expressed in disjunctive (conjunctive) normal form. Indeed, if necessary we may first
replace 0 by z; -z} and I by z; 4+ z{, where ; is any variable in the function, to obtain an
expression free of constants. In particular any Boolean function on the elgebra {0,1} can
be ezpressed in disjunctive (conjunctive) normal form. In fact, if f(z1,2q, -+~ ,2na) is the
function on {0,1} determined by the table of values

z1 lxp |-+ f
1 0 f(l'loa"')
0] ol |r00 )

then it is readily confirmed by direct substitution that

f(ml|:r2,"')=f(1,]-1 -)-:]-1.;1:2...+f(1’0,...).:I'j.apé...+..-+f(0,0‘...)._1;;.;1:'2...
For example, if f is the function on {0,1} given by

1| T2 *_}i

1111

11010

o{ 110

0] 011

then
flry,z))=1 -2y 2o+ 0 2y -ah +0-27 29+ 1-2] -2,

! !
=TTy + Ty Ty

2.3.3 The representation of Boolean algebras

In 1936 the American mathematician M.H. Stone proved that every Boolean algébra is
essentially an algebra of sets. Since sets and the set operations are relatively simple things

about which we can develop a good intuition, Stone’s result is an extremely important

17
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one. It means that any statement or identity which we can establish for arbitrary sets is
true in any Boolean algebra. It also means that devices such as Venn diagrams may be
used to help our reasoning in any Boolean algebra.

A proof of Stone’s general result is beyond the scope of these notes, we will however prove
the particular case for finite Boolean algébras.

What appears to be missing in an arbitrary Boolean algebra, but present in an algebra of
sets, is the notion of one element being a subset of the other. The exercise at the end of
section 2.1 suggests a way around this. '

Definition (inclusion relation): For two elements a, b of a Boolean algebra B we will say
a<bifa-b =0.
In an algebra of sets a < b corresponds exactly to a C b.

We begin by showing that the relationship “<” has the properties we would expect from
the case of sets.

Theorem 2. Let @, b and ¢ be three elements of a Boolean algebra.
(1) a € a. That is “<” is reflezive.
(2) fa < band b < athen a =b. That is “<" is anti-symmetric.
(3) Ha<band b<cthena<c Thatis “<" is transitive.
(4) 0L < 1.
(5) Fa<bthena-c<b-c
Proof.
(1) a-d =0,s0a < a. :
(2) fa-¥'=0and b-a'=0thena +b=d +b0" =(a V') =0 =Tanda' -b=0, s0
b=a" by theorem 6) of section 2.2
=a
(3) fa-¥ =0and b-c’ =0 then

a-c=(a-c)-(b+1)
=(a-c-b)+(a-c"-b)
= (a-0)+ (¢ 0)
=0, |

s0a<ec

(4) 0-a'=0,s00<a,anda-I'=a-0=0,s0a < I.

18



one. It means that any statement or identity which we can establish for arbitrary sets is
true in any Boolean algebra, It also means that devices such as Venn diagrams may be
used to help our reasoning in any Boolean algebra.

A proof of Stone's general result is beyond the scope of these notes, we will however prove
the particular case for finite Boolean algebras.

What appears to be missing in an arbitrary Boolean algebra, but present in an algebra of
sets, is the notion of one element being a subset of the other. The exercise at the end of
section 2.1 suggests a way around this.

Definition (inclusion relation): For two elements a, b of a Boolean algebra B we Will-sa.y
a<bifa-b=0. :
In an algebra of sets a < b corresponds exactly to a C b.

We begin by showing that the relationship “<” has the properties we would expect from
the case of sets.

Theorem 2. Let a, b and ¢ be three elements of a Boolean algebra.

(1) a < a. That is “<" is reflexive.

(2) fa<band b < athen a =05 That is “<” is anti-symmetric.

(3) f a < band b < cthen a < c. That is “<7 is transitive.

4)0<a<l.

() fa<bthena-c<bh-c

Proof.

(1) a-d' =0,50a < a. | :
(2) fa-b¥=0and b-a' =0thena +b=da +b0" =(a-¥) =0 =Tanda' -b=0,s0

b=a" by theorem 6) of section 2.2

(3) Ha-V =0and b-c¢' =0 then
a-c' =(a-c)-(b+?)
=(a-c-b)+(a-c-b)
=(a-0)+(c'-0)

Q

soa<ec.

(4) 0-a'=0,s00<ag,anda-I'=a-0=0,s0a < I

18

(5) Ifa-b =0 then
(a-c)-(bre) =(a-c)- (B +¢)
=(a-b-¢c)+(a-c-c)
= {Q&-¢) + (a-0)
=0,

soa-c<b-c

EXERCISE. Prove that for a, b and c elements in a Boolean algebra:
(1) If a < b then atec<b+e

(2) fa<banda<cthena<b-c

(3) a < bif and only if §' < d'.

(4) e-b<a<ga+b

(5) a<bifandonlyifa-b=a.

(6) a < bifand only if a + b =b.

Definition: We say a # 0 is an atom in a Boolcan algebra B if for cach € B either
a-x=0o0ra x=a.

EXERCISE.

(7) Let U = {a,b,c,d} and let B be the Boolean algebra of subsets of U. What are the
“atoms of BY

(8) Show that a # 0 is an atom in the Boolean algebra B if and only if for each = € B

eithera<zora<gz'

(9) Show that a # 0 is an atom in the Boolean algebra B if and only if ¥y < a implies
- y=0ory=a.

Theorem 3. Let B be a Boolean algebra with only a finite number of distinct elements,
then B is isomorphic to an algebra of sets.

~ Proof (optional). We first show that every element @ # 0 in B “contains” an atom.

If z is itself not an atom then there exists 2; € B with z- 1 # 0 or 2. If -z, is not

an atom then there exists o € B with -2y - 22 # 0 or z - z; and also not equal to

z(ifz-zy 29 =z,thenc -2y =(z 71 22) 21 =T Z; 22 =2 contradicting our
choice of z,). Repeating this procedure yields a sequence of distinct non-zero elements
T, T Ty, T Ty T, £+ Ty-T3, --- . This cannot continue indefinitely as there are
only a finite number of distinct elements in B. Thus, eventually we must arrive at a term

T-21-Tp -r+ - Ty <z which is an atom.

19
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Now, let A := {ay,az, --- ,a,} be the set of all atoms in B. From the argument above
we know that A # 0. We next show that A partitions I in the sense that

ay +ax+ -+ +a, = L

Suppose this were not the case. That is, z :=ay +az + -+ +an # I. Then, taking
complements z' = a} - ay+--a!, # 0, so by the first part of the proof z' contains an atom,
say a;, which is necessarily in 4. But, then

! I '
ai:ai.z =ai.(al~aq-..ai...an)=0’

contradicting a; is an atom and so non-zero. Thus ay +az + -+ +an = I.

Forz € Blet A; ;= {a : a € A and a < z}. That is, A; is the set of atoms contained
in r. Then, for a € A; we have a -z = ¢, and for any atom a ¢ A; we necessarily have
a-z = 0. Thus,

z=1TI-a
=(a;+a+ -+ +an)-x
—aq-rt+ap-xr+ -+ +ap-T
= Z a-z all otlier terms of the above sum are 0
aEA,
-y
aEAz

That is, each clement @ € B is the sum of the atoms contained in it.

The function f : B —+ 24 : 2+ A, is now readily verified to be a Boolean isomorphism
from B to the algebra of subsets of 4, thereby establishing the result.
a

EXERCISE (optional). Using the notation introduced in the previous proof show that:
(i) Forz, y€ B wehave Apy, = A, UAy, A,y = A NA,, and Ay = AL
(ii) The function f is one-to-one and onto.

Hence conclude that f is indeed an isomorphism as required.



Now, let A := {a1,a2, -+ ,an} be the set of all atoms in B. From the argument above
we know that 4 # §. We next show that A partitions I in the sense that

a1 taz+ - +an = I
Suppose this were not the case. That is, z := a; + ay + + an # I. Then, taking

complements z' = af - al---al, # 0, so by the first part of the proof z' contains an atom,
say a;, which is necessarily in 4. But, then

ai=a;-z' =a; (a}-ay---at-a;) =0,
contradicting a; is an atom and so non-zero. Thus ay +az + -+« +ap =1,
For z € B let A; := {a
a-z=0. Thus,

=11
—(atat e tan)

Za]'$+(12'.1;+

= Z a-x

a€A,

+a, -
all other terms of the above sum are 0
= a.
aE Ay
That is, cach clement = € B is the sum of the atoms contained in it.

The function f: B — 24 : 2+ A, is now readily verified to be a Boolean isomofphism
from B to the algebra of subsets of A, thereby establishing the result.
: a

EXERCISE (optional). Using the notation introduced in the previous proof show that:
(i) Forz, ye Bwehave 4,1, =4, UA,, A,., = 4, N4, and Ay = AL, ' |
(ii) The function f is one-te-one and onto.

Hence conclude that f is indeed an isomorphism as required.

:a € 4 and @ < z}. That is, A; is the set of atoms contained -
in . Then, for a € A; we have a -2 = a, and for any atom a ¢ A, we necessarily have
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2.4 Application to switching circuits

We will analyse electrical networks of the type illustrated in figure 1 using the Boolean
algebra {0,1}.

network of
in e——>——| interconnected }——>——o out
switches
Figure 1.
Such a circuit is illustrated in figure 2.
5 Sa S3
e Sa e
51
Sy
Figure 2.

Switching cireuits of this type are fundamental to the design of digital computers. In
practice the switches may be realized by relays or elecironic switching eircuits controlled

by outside clectrical impulses.

We associate with the switches variables Sy, Sz, --+ so that when a switch is open the
associated variable has the value 0, and when the switch is closed the variable has the

- value 1. When two, or more, switches are “mechanically” connected so that they all open

and close together they will be associated with the same variable. For example, such a
situation may be achieved by using a multiple pole switch. When a given switch is always
open when some other particular switch associated with the variable S; is closed, and is
also closed whenever the other switch is open, then it will be associated with the variable
Si. Such a situation may be achieved by using a double throw switch, for example.

We wish to associate with the network a Boolean function f(Sy, S2, --- ) which will have
the value 1 when the state of the switches will allow a current to pass through the network,

- and will have the value 0 when the state of the switches prevents a current from flowing.

Examples.

(1} For a pair of switches S, and 5; connected in series

1

S1 Sy -2
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we see that the associated function f has the table of values |

5115 f
T 111
110lo
"0|l14}0
0lo}o

and so,

f(51,52) = 51-52.

(2) For a pair of switches S; and S, connected in- parallel

S1
o— ———a
Sa
we see that the associated function f has the table of values

Si| S| f

171141

110(1

011t

clold

and so,

f(S1,5:) = 51 + Sa.

These two examples may be generalized as follows.

(1’) If a network consists of two subnetworks connected in series,

o—sme— suthnetwork 1 l———' subnetwork 2

and if the Boolean functions associated with each of the subnetworks are f; and f
respectively, then the function associated with the entire network is

f=hfhf

Similarly,

(2") If a network consists of two subnefworks connected in parallel,

subnetwork 1

—i subnetwork 2
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we see that the associated function f has the table of values

CDC)H:——*_E’J
Ob—-Ot—‘g’J
O QO O

and so,

f(SI)SQ) = Sl '52'

(2) For a pair of switches Sy and S, connected in parallel

S1

Sa

we see that the associated function f has the table of values

S5 f :
1 11 .
1101
0 111
0100
and so,
f(S1,82) = 5 + Sa.

These two examples may be generalized as follows.

(1"} If a network consists of two subnetworks connected in series,

subnetwork 2 —m————-»

@1 subnetwork 1

and if the Boolean functions associated with each of the subnetworks are f; and f2
respectively, then the function associated with the entire network is

= fi-fa

Similarly,

(2"} If a network consists of two subnetworks connected in parallel,

subnetwork 1

—{ subnetwork 2
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and if the Boolean functions associated with each of the subnetworks are f; and fa
respectively, then the function associated with the entire network is

f=n5s+Ff
Using these results we may write down the Boolean function associated with any series—
parallel network by inspection.

For example, the Boolean function associated with the network of figure 2 is

F(S81,52,53) = §1-52- 53 + S| -(82+ Ss).

EXERCISE. Write down the Boolean function associated with the network illustrated
in figure 3.

S1

Gy i 5y —

— S —— S,

S

Figure 3.

We may also apply these results in reverse. For instance, given a Boolean function f which

s expressed as a sum of products, in particular a function expressed in disjunctive normal
. form, we may construct a network, consisting of parallel connected banks of switches in

series, for which f is the associated function.

» For example, a circuit corresponding to the function

f(51,52,53) =81 -2 53+ 5;-55+ 53+ 5155« Ss

sl S] - SZ 53
] S] Sé 33 ‘ 9

51 S 53

EXERCISE Construct a circuit for which f(51, S2,83,54,55) = (5152 + Sz +54)- 55 is

the associated Boolean function.

L From section 2.3.2 we know that every Boolean function on {0,1} can be written in dis-
* " junctive normal form, this shows that every swiiching network is equivalent to a network
of parallel connected banks of serially connected switches.
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has the following possible paths through it. -

51-52 53'54 51-55-54 53-55'52

The associated Boolean function is therefore

f(Sl7521531S-i155) =588, + 535+ 5 S5+ 844835552
=5, +Sy4+ 8354+ 85+ (S1+ 8514855 S2)

and so an equivalent series—parallel network for the bridge is

51 . 52 ]

S, 54—
o i
Sy ——— 51
. ]_55 -
— Gy —— Sy '

Similarly, a Boolean function which is expressed as a product of surms, in particular anj
function in conjunctive normal form, is the function associated with a circuit consisting o
scrially connected banks of parallel switches. And every switching network is equivalen
to a network of this type. e

These results suggest a powerful technique for establishing the equivalence of two circuits

‘Find the Boolean functions associated with the given networks, and use the laws of Boolea:
algebra to show that the expressions for the two functions are equal, thereby establishin,
that the networks have identical switching properties.

Similarly we may simplify a network by finding an expression for the associated Boolea.
function f. If possible simplifying the expression. Then constructing a new networ
corresponding to the simpler expression for f.
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In this way both the problem of showing networks are equivalent, and the question of
finding the “simplest” series-parallel network equivalent to a given one, are reduced to

/ \ 3: algebra.

For example, the non series—parallel bridging circuit.

5 Sy o | | | ._ For example, the network o .
/ g \________' L I o . - S ]’_lmsl.:l
5 ‘ ' ! R °
' \ / T _ 4 has associated function
| | D £(51,82,53) = (S1 + 52) - (51 + S3)
e . R R : ' =514+ (5 -5
has the following possible paths through it. T 1+ (52 - 53)
- and so is equivalent to the network
S, -5 S4-S¢ 851-55-5: S3-S55-82 SN .
1

L]
-]

"i‘he associated Boolean function is therefore —s, g,

f(511.5'2,33,.54155) =8, 8+ 8535+ 54 884+ 55555

=5, Ss+ 83 -84+ 85 (5181453 S2) : -._E:EXE'RCISE. Show that the network of fizure 3 is equivalent to S; and Sz connected in

parallel.
and so an equivalent series—parallel network for the bridge is VVc conclude with a discussion of the design of circuits with given switching prop-
“erties. In fact we have already solved this problem. Knowing the switching properties

N Sz ™ 3__rét1uired of a circuit is the same as knowing an associated Boolean function for the network,
s -and we have already seen how to construct a corresponding circuit.
S3 947 D
— e————a For example, let us consider the problem of controlling a light from two different switch
—§— 85 | -positions. Such a situation is often found in the lighting arrangement for a hallway or
| _ ]— P stairwell, where the light can be switched on or off from either end.
g S, _ R

A '_'rﬁd:rnénts thought will show that we want the state of our network (conducting, or
qé;}qq_nciucting) to change if the state of either of the two switches 51 and 57 is changed. If
we agree that the light is to be on when both of the switches are closed, then the Boolean

Similarly, a Boolean function which is expressed as a product of sums, in particular any ve agt
';fq_h_ction f associated with the network must be given by the table

function in conjunctive normal form, is the function associated with a circuit consisting of
serially connected banks of parallel switches. And every switching network is equivalent
to a network of this type. - : S

These results suggest a powerful technique for establishing the equivalence of two circuits:
' Find the Boolean functions associated with the given networks, and use the laws of Boolean
algebra to show that the expressions for the two functions are equal, thereby establishing
that the networks have identical switching properties.

Except for the change in variable names this is the function considered at the end of section

Similarly we may simplify a network by finding an expression for the associated Boolean : 2'_-.3.-.2, where it was shown that

function f. If possible simplifying the expression. Then constructing a new network -
corresponding to the simpler expression for f.
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Thus, a suitable circuit is .

power source
Sy — 55 |

t—— light __E j___
51 S2

EXERCISE. Is it possible to find a network which will control a light from three different
switch positions, and if so design an appropriate circuit.




