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STURM-LIOUVILLE THEORY

Introduction’

The mathematical_expression of many problems from the natural sciences:

Physics, Chemistry, Geology and the life sciences, leads to differential

equations of the form

a(x)y" + bx)y" + elx)y = £(x).

Some of the more commonly oceurring of these are listed in the following table

together with a Ffew of the situations in which they arise.

' 4 by ¢ ey = £(x)

(b, ¢ constants)

Forced vibrations of mechanical
and electrical systems. Simple

ecological models.

Euler (or Cauchy) Equation
x2y" + bxy' + ey = £(x)

(b, c constants)

Some potential problems with

circular symmetry.

Bessel Equation (solutions of
order v)

xzy“ +ouyt o+ (2 - uz)y =

Vibrational, gravitational and
electromagnetic potential
problems with nylindrica)
symmetry. Diffraction problems
(astronomy) resclving power of
optical instruments.

Chemistry, Biochemistry.

Aivy Equation
y' - wy = 0

(Essentially a Bessel Equation)

Scattering problems (atomic

collisions, vainbows). Quantum

description of a particle jin a

Legendre Equation

(1 - x2)y" - 2xy* + nln + lly =

0

Potential problems (as for
Bessel's) with spherical symmetry .
Including quantum models of tha

Hvdrogen atom.

Laguerre Equation

®y" + (L - x)y" +ny = ¢

Radial structure of the quantum

mechanical hydrogen atom.

Hermite Eguation

¥+ 2xyt o+ 2ny = 0

o]

1ant mechanical Havmonic

o]
1=

uantum
scillator.




Tchebyshev Equation : Theory of Filters

(1 - x2)y" - xy' + n?y = 0 (Telecommunications).
Hypergeometric Equation Unifies a broad class of

*(1 - x)y" + (e - (& ¢+ b + 1)x)y' - aby = 0 épecial functions. Statistics,
Mathieu Equation . Vibration of elliptical

y'+ {a +bsinx)y=0 membranes.

The above applications, and most of the later examples, are drawn from physics,
not because analogous problems do not oceur in all the other branchs of science,
but simply because it is the area of which I am least ignorant.

No such table would be -even partially complete without adding the one-dimensional
Schrodinger Equation

42

3 ¥ [E - PGOTY = 0

determining the probability density function, |w(x)[2, for the position-of a
particle, mass m, of total energy E and potential energy P(x) confined to 'motion'
along a straight line.

Except in special cases, none of the above equations (with the possible
exception of the first two) have solutions which can be expressed as finite
combinations of the elementary functions* (x » x, sin, cos, exp, and their
inverses). Their solutions belong to the class of special functions (Bessel's
functions, gamma functions etc.) whose individual properties were intensively
researched during the 19th century, and are still of great interest to the
applied mathematician and scientist of today.

In the absence of such elementary closed form solutions it becomes important
to establish- technigues whereby the hehaviour of solutions can be studied
directly from the equations. Even in cases where a closed form solution is:
-available, it frequentiy proves less tedious to work from the equaticn itself
rather {han employ the solution.

In this course we develop some general theories which enable us to probe
(at least qualitatively) certain aspects of solutions to such equations.

The thorny question of whether or not the equations under consideration do
indeed possess solutions will not be tackled (see PMI notes and Boyce and diPrime
§2.11), we will assume that solutions exist and when necessary that fhey are

unique.’

* In many cases however, solutions can be expressed as infinite series, products,
etc. of these elementary functions.




Throughout it is well to bear in mind the trivial, yet powerful,
observation that Since a solution to a differential equation must be gz priori

differentiable, it is therefore continucus.

ExamEles

We now examine specific cases which may help motivate the type of questions
considered in the ensuing work and how they can arise. The underlying physics

is included for interest only and is not an examinable part of the course.

1. VIBRATING MEMBRANES

We begin by deriving the equation of motion for small amplitude transverse
vibrations of an 'infinite' plane membrane of density p per unit of area, under
a uniform teasion t (per unit of length). For our later work it will be convenient

if we work in polar coordinates {r, ¢).

An 'infinitesimal' element of the membrzne surfac

i

such as illustrated inp

figure 1(a) is subject to the forces indicated on +the diagram.
g 3 g

I
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If, due to slight vertical distortions of the membrane, the éross-sectional

views of the element are as shown in fipures 1(b) and (¢), we have

total vertical force on element
.= Tdﬁ(éin(e + 68) - sin 8) + r + 6r)8¢ sin(y + &) - ré¢ sin )
= TEr80 + TrdSY +Tirsdy '
(since 8 and ¢ are small and 88, S even sméller}. _
So, if y denotes the vertical displacement of the element, we have, from

Newton's second law

2
préddr %;%—3 T{ré¢sp + Srépy + Srég)

The approximation becoming more nearly exact the smaller the values of &p

and d¢.

= :EX = :i..y__.
Now, i = tan ¢ e and 6 tan 6 oYY
whence
. i}'r- By
%y . . 5(ar] s 13y, 5(r3¢)
at 5o T ar réd

- and so, passing to the limit as 6r, 8¢ + 0 we recognise this as

Pat2 ap? T r 2 342
onr
g2y = 3%y i?‘_x+i_323’.-332%
ar rar 12 32 T 1 3t

where V2 (= A) is the two-dimensional Laplacian operator, here expressed for
polar coordinates. This partial differential equation is the two dlmen51onal

wave equatlon in polar coordinates. (What is the form of the equation in

rectangular coordinates?)
Solutions to the wave equation, of the form y{r,¢,t) = R(r)o(¢)T(t) may be
obtained by separation of variables, i.e. observing that y = RIT implies

3y _ .. dR 3y _ d2r
E“@Ta;,-m—‘brrm etc.

we obtain




or dividing throughout by y = R®T,

d’R .1 drR 1 d% d?T
dr? " rar  rZ 347 _ p dx2
R ] T T

which is of the form: a fumction of r and ¢ only equals a functiom of t anly,

and so we conclude that both sides must équal a common constant p. (Prove)

Thus T is determined by

dzT‘: HT o
dt2 p
while
R 1dR 1 g%
dr2 r dr N ;?-d¢§ -
R 5 ¢
d?rR 1 dr ~d29
el 5
or rg{dr R r dr ~ P} = dg = & constant

*, say (for similar reasons to ahove).

Consequently & is given by

.

=
g—é—r A (anlutione afe) = SR 4 )
d¢= ' o cos

zind ~learly, unless our membrane is schizophrenic we require QUd + Tm )= b))
2 ¥ I ] : (4

for all ¢, which in gensral necessitstes ) = n.an integer.

R ig then z soluticn of
J2 . .
p2 22, L dR (~yr - n?9)E = 0
dr2 dr

which transforms to the Bessel equatian

2.
2?-»-5 ® E}_B' + (1’2 - nz}]? =0

where 3 = Vo 1, (Hote: For wave-like scluticns we need T{t} to wvary
2
periodicallyv, or i < 0, s0 = = k> 0.0
: : T
Cireular Nodea, I ihe civcle r = 2 iz 1o 22 & permanent node {curve of zepo

vla,d,t) R{a) #(¢) T(t) = 0 for all ¢ and t
énd so (unless o(¢) or T(r) = 0, i.e. ths membrane is static)

R(a) = n




or x = ka is a zero of the solution to the above Bessel Equation.

Vibration of a eireular drum skin. The clamped outer edge of the skin, at
r = g—(where'ﬁ is the diameter of the drum head), must be a node. Thus if
0 <z; <3y <23 < .... are successive zeros of the solution to the Bessel

equation
Tx2y" + xy' + (%2 - n2)y = 0

we require k to be such that

D .
§-= kz, (§ =1, 2, ...)
Thus the possible values of u = -k% are
p? .
lJ:“HE*Q—(]:l,Z,E,...)

and via the equatjion for T, these values determine the frequency of vibration
of the skin.

The mode of vibration corresponding to each of these frequencies is known as
an "harmonic'". - -

We therefore see that it is desirable to determine the existence and

location of zero's to solutions of equations such as the one considered here.

Often, by touching the centre of the skin, a drummer introduces a node at the
centre. ' |
For a fixed n € {1,2,....}, the problem then becomes;

find values of u such that

d2rR - dR
2 — nlD = 2
r Iz + T an n“R ur<R

has ‘a non-trivial solution (i.e. other than R ¥ 0) on the domain 0 S ~<-%
which vanishes at the two boundary points of the domain, i.e. is such that
R(Q) = 0, R(%J = 0. (Again the values of u determine the harmonics of the.drum.)

For obvious reasons such a problem is usually referred to as a Boundary value

problem, in contrast to the Initial value problem: find solutions satisfying

initial conditions,
R(rp) = Ry, R'(rg) = R'y,

specified at one point (the initial point) r = ry.

(A simpler example, and one which the student might well investigate himself,

is afforded by the vibration of a taut, uniform string clamped at each end, which,
unlike the above illustration, is completely tractable in terms of the elementary

. functions.)




2. HYDROGENIC ION

- Schrodinger's equation for the 'spacial' probability density function of a
single electron (mass m, charge -e) bound to a conéiderably more massive neucleus

of charge Ze at ‘the origin of a set of spherical polar coordinates (r,0,¢), is

g%vzl[.l-}' [El‘f—z——z)qu 0  (where E > 0).

For spherically symmetric solutions, ¢ is a function of r only, in which case,
the form of the Laplacian operator for spherical polar coordinates, leads to the
equation ;

1 d , d mZe?  2mE
b 3 G- e

{ 'For the change of variables Y(r) = e-Bxy(x), X = -gr we have

dy _dx d -Bx ~ -Bx -Bx
& @ a(c YO) moe Tyt -ake Ty
and similarly
2 . - -
gr¢ - g2 B% y" - 2a2Be B ov 4 a2p2e7P% g,

which, upon substitution, leads to the transformed equation

. , )
Cry" +.(2 - 2Bx)y" + [[ 2;3 - QB] + [82 - QgEz]x]y =0

oo
. &
and so choosing B = %, o = /.E%
‘ﬁ .

we have the "associated Laguerre Equation"

2
xy" + (2 - x)y' + }y.= 0, where A = %g— /-ﬁ% .

We are thus lead to seek solutions of this equation for the domain

0 € x < = which satisfy the "natural" boundary conditions

y(0) and Limit y(x) are both finite.
. X0

24
Z7me ] for which the

The values of E corresponding to those values of A [E = pwrel

above Boundary value problem has a non-trivial solution, represent the permissible

energy levels for the electron.
The zero's (if any) of the scolution for a permissible energy level correspond to
"forbidden" regions for the electron.

As we have tried to indicate, many questions of applied mathematics result in




boundary value problems, a theory of Boundary value problems is therefore of

considerable practical importance.

STURM'S OSCILLATION THEQRY.

In this section we investigate the existence and location of zeros for -

solutions to equations of the form
y" + a(x)y' + b(xly = 0.
RECALL ®p 1Is a zero of the function y if y{xgy) = 0.

The Licuville Normal Form

If y and v are functions related by y(x) = u(x)v{x) where u(x) > 0, for
all %, then ' '
(a) %p is a zero of y if and only if %y is a zero of v

and (b) if y satisfies

y" + ay' + by = 0

then upon substitution of uv for y, we find v satisfies

uv" + (2u' + au)v' + (u" + au' + bu)v = 0.
Thus by choosing u appropriately (subject to the constraint u > 0) we may obtain
an equation for v, of a "simpler" form than the original equation for y,
whose solutions have precisely the same zeros as solutions to the original
equation.
It is particulariy suitable, to choose u such that 2u' + au = 0

X
' 1
i.e. E—-: La or u(x) = e s [ alt)dt )

in which case

®
u(x) > 0 providedl[ a(t)dt|< =

and the: equation for v becomes

u" u!
v [-—-+ a—+Dbw=0
u u
or v' + (b - ka' - %az)v.; 0
. u' . . . .
since, — = -La and u" = %(au)' = “L(a'u - %aZu) (provided a is differentiable)
u" 1t 1.2
50 —— T =3 + .
n aa d

The equation
v+ (b(x) - Ba'(x) - ka?(x))v = 0

is the normal form of




y" o+ al{x)y' + b(x)y =‘O

It is clear from the above derivation that the presence and location of uzero's
can be studied from the normal form.
Henceforth, we will therefore enly consider equations of the form

y' o+ I(x)y = 0.

EXAMPLES. Airy's, Mathieu's and the 1-dimensional Schrodinger equation are
already in normal form.

"Writing Bessel's equation as
Ly ' v -
ey Q- Sy=0 (x> 0)
we see that

X
alx) = —-(and[[ %—dﬂ =|en x| < = Ffor all finite x)
' 1 .

while b(x)

I
Lo
|_|

I

l <
o
17

and so the normal form of Bessel's equation is

2
v 1 1
R P A
. _ 2 )
or L ALIEE S ;*——EE"-V = 0 Afor x > N)
Y2
EXERCISES.

Noting any necessary restrictions, cbtain the normal form for each of the

equations listed in the previous table.

Note: Rather than remembering the precise form of the v coefficient in the
normal form (i.e. b - %a' - %a?) it is nearly as easy to work from first

principles. You should try at least one of the above cases in this way -

Basic Theory

THEOREM. (Comvexity) If I(x) < 0 for & < x < B, then any non-trivial solution
of v"' + I(x)v = O has at most one zero between o and B.

Proof. Let v be a non-trivial solution and aésume v has two consecutive zeros
at x; and xp; where o < x; < %8, < 8. Then either v(x) > 0 for

X} €<% < Xp or v(x) < 0 for x; < x < xy. (This follows since v is continuous
and v‘(xl) # 0, otherwise the unique solution safisfying vixy) = vi{xy) = 0

‘would be v = 0,)




(o}
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In case v{x) > 0 for x; < x < xp we have v'"(x) = -I(x)v(x) > 0 for every
» between x, and xp but, since v{x;) = v{xy) = 0 there must exist a point x,
between %} and xp at which v attains a maximum; then v'(xg) = 0 and
v'"(xg) < 0, contradicting v (xg) > 0.
We therefore conclude that in this
; case there do not exist consecutive
; zeros of v between o and B-and so v
: has at most one zero in the interval.
; A similar argument applies in the
I

. —3 case

i /ﬁ”l *o N8

%1 and x%j.

v(x) < 0 for X1 € X < Xp. -

EXAMPLE. The equation y" - x3y = 0 satisfies the conditions of the theorem for
all x with € < x < = (where g is any strictly positive number). So, there is at

most one zero greater than e.

THEOREM (Sturm’s Theorem). Let u and v be non-trivial solutions of

vt I(x)v = 0 and u" + J(x) u = 0 fespectively where I(x) > J(x) for all x
with o < x < B. Then v has at least one zero between any two consecutive zerps

of w, provided these are both between « and 8.

Proof. Let x; < x; be consecutive zeros of u, both lying between o and A, and
assume v(x} # 0 for x; < x < x,.
Then both u and v have a constant sign throughout the interval from o to

B. Without loss of generality we take both to be'strictly positive i.e,
u(x) > 0 and v(x) > 0 for all x with X] € X < Xg

(possible, since -u and -v are also solutions satisfying the required conditions).
Now construct _
wx) = v{x)u'(x) - ulx)v'(x), then

wlxy) 2 0 (since u(xy) = 0 and u(x) > 0 for X] € X < xp and

so u'(xy) > 0) similarly

wixy) < 0.
So (by the Mean Value Theorem) there is a point xg between X3 and xs
for which w'(xg) =< 0.
But, w'(x) = v(x)u"(x) - ulx)}v"(x)
= [I(x) - J(x)1v(ulx) > 0 By the assumptions on I, J, v

and u for x; < x < Xy, contradicting w'(xg) € 0. So v must have a zero between

NOTE: This theorem remains true under the weaker assumption I(x) = Jx), IFJ

for a < x < B.
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COROLLARY (Spacing of Zeros Theorem)

Let I be such that 0 <m < I(x)<Mfora< x <8, vhere m, M are
constants, then 1f Xy and xy are two consecutive zeros of v" + I(x)v = 0, with

o < xp < ¥z < B, we have

ﬁ//ﬁ-< Xy - x3 < "/fm

Proof. Consider the comparison equation u" + Mu = 0 which has a non-trivial
solution u(x) = sin M(x - %1} with zero at x; and the next zero at Xy + ",
Now by Sturm's Theorem there is a zero of u between x; and x; so we must have

Xo > %q + T/ or

.E/!/["T<X2-X1 .

The upper bound is established in the same manner.

EXAMPLE. -

From the normal form of Bessel's Equation

4x2
we -have
1 for all x > 0, if |[V] < %
1 - yy?
I(X)‘l""_"f&‘f— >
% for x » &2—5:—£- - all other v

Thus, taking J(x) = %, we see that for sufficiently‘large x any solution of
Bessel's equation has a zero between n¥27 and (n + 12w, consecutive zeros
of a solutien of u" + hu = 0.

Further for each Xg > 0 it is easily seen that we can select numbers

m{xg) and M(xp) with

m(xp) < [l + ——:§EE~J < M(xg) for all x > x,

in such a way that m(xg) and M(xg) both tend to 1 as ¥p * =. Thus for large
values of x, the spacing between consecutive zeros of any non- tr1v1al solution
to Bessel's equation is very nearly w.

Our next result -extends the observation:
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(1)

Yy = sin x and y = cos x are linearly independent

solutions of y" + y-= 0 and between each pair of consecutive zeros of the sine

function there is a zero of the cosine function (i.e. their zeros interlace).
2-€- : Zhterlace

3/\

THEOREM (Interlacing of Zeros). Let vy, vy be two linearly independent, non-

trivial, solutions of v'" + I(x)v = 0, then between each pair of consecutive

zeros- of v, there is a zero of vy.

Proof. Since vy and v, are linearly independent, twice differentiable functions
their Wronskian W(vy, vy) = vivs - V1V, 1is mever zero,(g) and so has consfant
sign. Without loss of generality take W(vy, vp) > 0 (otherwise replace W by -W
in the following argument).

Let %7 < #» be two consecutive zeros of vy and assume vy{x) # 0 for all x

between x; and x3. So we may form the quotient %l-for all x between x; and x,.
. 2 .

{1) Recall: Two functions f and g are linearly independent if a-f(x) + b-g(x)=0
for all x implies the constants a and b are both zero.

(2) If W(vy, vy) (%g) = 0 for some xy we show there exist non-zero constants
a, b with avy + bvy = 0 and so vy and vy are not linearly independent.

Now, since v) is non-trivial, there exists a point x1 with vi(xy) 2 0
and so by the continuity of v; there is an open interval J containing x,
on which v; does not vanish. So for x € J we can form the quotient

XAJ?--fc)]':' which
Vi

X ras W' = vi"vy < yiya"
(!Z-J zW(v],vz):O 1V2 1V2
V1 Vl = —IV1V2 + IVIVE
So for x € J gz- = k, a constant J =0
V1
S0 W = constant
or vy = kv
=0 as Wixg) = 0

We now show this holds true for all x. '

From y = v, - kvy, then y(x) = 0 for all % ¢ J and so in particular
y(xg) = 0 and further since xq is an interior point of J y'(xg) = 0.
Further y, being a linear combination of the solutions vy and vy is itself
a solution of the second order equation v" + J(x)v = 0, which as we have
seen satisfies the initial conditions y(xg) = y'(xy) = 0. Clearly another
such solution would be the zero function. However the solution to such a
problem is unique and we therefore conclude that y = 0or vy = kvy and so
vy and v, are not linearly independent. '
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%2 {v,) v, ]%2 ' ' ' ‘
Now 1 = [—L =0 (as vy(x;) = vi{xy) = 0)
X X1
; ' t . 1
But Vil . Y1ve - vivp o Mvys vp)
© v v% vz

X3 X2 |
50 _ J [XlJ‘ = J HLZJ%"XEA. > 0 a contradiction.
Vol V2

X1 ’ X1 .
Hence we cannot have v,(x) # 0 for all x between ®1 and x, whence there exists
xp(x) < %p < %y) with vo(xg) = 0. i.e. vz has a zero between x; and x,.
Oseillatory Solutions

The presence (or absence) of oscillatory behaviour is of importance in many

physical and biological situations. Clearly the property of a function, y = £(x)

F]

osc1llat1ng about the line y = 0 is characterized by its repeated crossing of the

\/\[\ /\/\\f\

o ' xz;}r/ﬂxq =§\L/

F3

X-axis.

\

We therefore offer the following definition.

DEFINITION. The function f is oseillatory (about ¥ = 0) if there exists a

sequence of points x; < X5 < x3 < ... < Xp € -... with x; + ® as n + » such

that'f(xi)'= 0, 1i=1,2,... and f(x)} # 0 if x # X, any mn.

THEOREM. If I ie such that I(x) > m > 0 for all x > o = 0, then any non-trivial
solution of v + I(x)v = 0 is oseillatory.

Proof. The equation u" + mﬁ = 0 has a—non—trivial solution u{x) = sin v x
which has zeros at x = 0, n//ﬁ; ?“/#E; 3“/%5,'... and so, since Sturm's Theorem
" applies, there exists zeros xi, X2, X3, . of any non-trivial solution of
v' + I(x)v = 0 with o

Dgugkﬁ//n7< %y < (k+l)n/£<x2 < (k+2}1r//a<

* Oscillatory behaviour is not to be confused with periodiecity, which is a

s -t . . . s s
special case. Thus e sin T 1s oscillatory but not periedic.
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As a consequence of the convexity theorem we also have
THEQREM. ‘Lf I i such that I(x) < 0 for all x > ¢ >0, then v" + I(x)v = 0
has no oseillatory solutions.

Frequently an application of the spacing of zeros theorem allows something

to be said on the "frequency" of the oscillations.
EXAMPLES.
For Bessel's equation in normal form

_ 2 _
+ 1o bve > % for all x » 4y 1l

I(x) =1 Tz 5

and so solutions to Bessel's equation ave oscillatory.

For x > 0 the Airy equation y"' -~ xy = 0 has I(x) = -x negative and so solutioens
are not oscillatory. Reversing the direction of x by the substitution t = _x
we obtain '
d2
+ ty = 0
atz Y
which is oscillatory for t > 0 (i.e. x < 0).

Further, from the Spacing of zeros 'theorem, we conclude that
T
ts Sty 4+ /Yt1 where ts » 1y

are consecutive zeros, i.e. the maximum spacing between zeros decreases as

t + oo,

Thus, the zeroS must be distributed as illustrated below, where the form of 1

solution curve has also been indicated.

L4
&

L4
F
X

A
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EXERCISES 7
1. By obtaining explicit solutions for the equation y" + ky = 0 (k a constant)
show that the theorems obtained so far are 'natural’ generalizations of
what this équafion might lead fou to suspectl
2. Under what conditions does
y"'+ ay' + by = 0 (2, b constants)
have '
(a) oscillatory solutions
(b) periodic solutions?

3. Discuss the existence of oscillatory solutions to Mathieu's equation

v" + {a + b sin x)v = 0 (a, b constants).
L. (The condition m > 0 cannot be dropped from the corollary to Sturm's Theorem.)
| Show that the normai form of Euler's equation, y"‘+ %-xuzy = 0, has
solutions of the form y = A"l 4 Bx"2 where r; and rsy are appropriately
chosen real numbers and so has at most one zero greater than 0, even thdugh

I(x) = %x“2 > 0 for all x > O.

5. Show that if v is a non-trivial solution of v" + I{x)v = 0 with I(x) > 0
for ¢ < x < B where v'(a) = v'(B8) = 0, then v has a zero between o and B.
#6. Using the result obtained for Bessel's equation, investigate the higher

harmonics of a circular drum.

Boundary Value Probhlems

Finite-dimensional Analogues. Our treatment of boundary-value problems will
involve generalizations of. finite-dirensional vector space concepts, some
of which were discussed in Sections VII1,VIII of the Linear RAlgebra Notes,
‘e.g. eigenvalue has essentially the same meaning, eigemvector becomes
eigenfunction, Another relevant finite-dimensional concept is the
followings ' : : o

On the vector space X of complex n-tuples we can define a scalar

(colloquially, "dot") product by

H

x-¥y

(x1, R2s ervy Xn)'(YIs ¥2s 00 YI‘!)

n

X1Y1 + Ka¥g + ... + %y = Z "355
J=1

ir

which has the readily established properties

‘X = 0 if and only if x = Q.

£ w N
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and consequently

3‘(12)_='v¥'¥= x+(y + 2) = x-y + x-2.

A linear operator T:X + X is such that
T(x + Ay) = T(x) + AT(y)

T is self-adjoint or- hermitian-(= symmetric in the feal-case)'if_its

matrix [ti.] {w.r.t. some basis) is hermitian, i.e. t.. = t.., or
equivalentiy, Je +J
T(x)'y = xT(y) (for all x, y « X).

. The eigenvalues of a self-adjoint operator (i.e. values of A for which there
exists x # 0 with T(x) = Ax) are real.

If Xy, Ap are two distinct eigenvalues of the self-adjoint operator T and ey, e,
corresPonding eigenvectors (i;g;_T(gj) = Ajgj, j =1,2), then ey and ey are
orthogonal i.e. ej.ep = 0.

Definition of the Problem (see earlier examples)

We now investigate Boundary value problems of the form:

Find those values of A (eigenvalues) for which there are non-trivial

solutions (corresponding eigenfunctidns) to the second order equation
aludy™ + b(x)y' + elxdy = -Ar(x)y

satisfying prescribed boundary conditions on the closed interval
[a, bl = {x € R: a <x <1}°

We will only consider boundary conditions of the following three types

1. Separated Linear Homogeneous Boundary Conditions.
ay(0) + By'(0) = 0
asy(l) + Bay'(1)
which include the simplest boundary conditions

y(0) = y(1) = o.

0 (¢y, 23, By, Bp comstants)

2. General Linear Homogeneous Boundary Conditions.
a1y (0) + B1y'(0) +771y(l) + §1y'(L) =0
a2y(0) 4 Boy'(0) + ¥oy(1) + 8py'(1) = O
(Note 1 is a special case of 2, in which the conditions at 0 are separated

from the conditions at 1).

% Except when otherwise stated we will take a = 0 and b = 1, indeed unless

either a = —-= or b = = under the change of variable
t - . ‘ o s .
KT Z the interval [a, bl becomes [0, 1], and so it is sufficient to

consider problems defined on [0, 1].
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General Homogeneous Boundary Conditions.

Any conditions on y, y' at 0 and 1 which ensure that for some suitable
function p(x), ‘ ®x=1

[p(x)(yy' (x)yo(x) - y(x)yyp' (x))]
' x=0

= p(L)(y; " (L)ya (1) - yi(l)YQ'(l)) - p(O)(yl'(O)yg(Oj - y1(0)y2 " (0)) = 0

where y1, yz are eigenfunctions of the equation, possibly for different

values of A;

Note. If the boundary conditions (1) hold we have

(0) _ By _ vo(0).
%__L“Y_z__

¥ ap  yy(0)
or y1(0)y;(0) - y1(0)yy(0) = 0
and similarly o
y1{y, (1) - yi(l)y}z(l) =0

for any two solutions y;, yy, and so
(1) implies a special case (3).

The other case of interest, where (3) applies is when either p(0) or p(1) = 0
in which case a sufficient condition at 0 (or 1) is that v and y' assume finite

values {(i.e. are bounded).

Although the character of the boundary value problem is largely dependent
on the particular boundary conditions prescribed and in the absence of any
would be ill-posed, as we shall now see, the boundary conditiéns can be placed

in the béckground (at least for the purpose of general theory).

Operator Formulation .

Since, a priori the eigenfunctions of a given boundary value problem must
be twice differentiable and must satisfy the boundary conditions we need never
lock beyond the set H of twice differentiable functions which satisfy the
boundary conditions.

Note. (1) H will vary from problem to problem as we change the boundary
conditions, and |

(2) There is no assumption that the elements of H satisfy the differential
equation. H is determined entirely from the boundary conditions.
For convenience we take the elements of H to be complex valued functions i.e.

functions of the form

Tx) = ulx) + iv(x).
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LEMMA. The set H of twice differentiable functions satisfying boundary
conditions of the type (1}, (2) or (3) is a vector space under point-wise
defined addition and scalar multiplication.

Proof. Recall: By f + g we mean the function defined by

(f + g)(x) = £(x) + g(x), and by Af the function for which (Af)(x) = AE(x).
Since under these operations the set of all functions with domain [0, 1]

is a vector space (see linear algebra) it suffices to show H is a subspace,
i.e. £, g € H implies £ + Ag ¢ H. |
From elementary calculus £ + Ag is twice differentiable if f and g are.
Indeéd~(f +Ag) = " o+ g,

Now for boundary conditions of the type (1) and f, g € H we have

a1 (£€0) + Ag(0)) + B1(£1(0) + Ag' (0))

11

(o1£(0) + B1F'(0)) + Aleyg(0) + Big'(0))
= 0 + 0

as both f and g satisfy the boundary conditions.
A similar argument applies at x = 1 and so we conclude that f + Ag e H.
For boundary conditions of type (2) and (3) analogous arguments {give them)

establiéh the result.

It was largely to ensure the truth of the above lemma that we restricted our
attention to fhe three particular types of boundary conditions. Had we for
example allowednonhomogeneous boundary conditions,
véig; : y(0) = a # 0 and y{1) =lb,
then, for f and g satisfying the boundary conditions we have

(f +g)(0) = f(O) +g{0) = 2a # a

and so their sum f + g does not satisfy the boundary conditions.

We now define an operator L on H as follows. L maps f ¢ H to the new function
af" + bf' + cf (a, b and ¢ are the given Ffunctions appearing in the differential
equation) -

i.e. LOF)(x) = a(x)E"(x) + b(x)Ef' (%) + e(x)F(x) (all x e [0, 1]).
EXAMPLE. TFor the bbundary value problem
(1 - x2)y" - 2»y' = Ay

with y(0) = 0, y(1) finite

we have associated the Legendre operator L such that

L(f)(x) = (1 - x2)E"(x) ~ 2xF'(x).
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So, if f{x) = xJ (clearly a member of M in this case) we have

LOF)(x) = (1 - x®)6x - 6x?2
= Bx - Bx? - 6x3.

(1 - 2x - x2)e™,

Similarly L{exp)(x)

LEMMA. L, as definéd abbve; 18 a linear operator on y,

Proof. This follows trivially, since differentiation is a linear operator.

Thus, for £, g ¢ H we have

L(f + Ag) = a(f + Ag)" + b(f + Ag)' + c(f + Ag)
a(f" + Ag") + b(£f' + Ag') + c(f + Ag)
‘af" + bf' + of + A(ag" + bg' + cg)

L{f) + AL(g)

1§

1t

(Because of this the differential equation
L(y) = ay" + by' + ¢y = 0 is often referred to as '1linear'.)

In terms of the vector space H and linear operator L, our boundary value
problem may be restated as - |
Find values of A for which there is a non-trivial element y of H such
that ‘
L{y) = -Ar(x)y.

Except for the factor ertx) on the R.H.5. this should be highly suggestive
of the eigenvalue/eigenvector ﬁroblem of linear algebra, hence the parallel
terminology (eigenvalue,'eigenfunctions)}

Since symmetric operators on finite dimensional vectar spaces have the
richest eigenvalﬁe—theory,_we attempt to develop an anal&gous theory for a

second order linear differential operator L on H.

An immer-product for H

Since H is in general an "infinite dimensional” vector space, it is not
possible to represent L by a matrix, as linéar transformations of finite
dimensional vector spaces can be. Thus if we are going to try and specify
what a self-adjoint (symmetric) operator on H might be, we must look for =
definition other than the usual matrix one of finite dimensional 1inear algebra.

A suggestion comes from the scalar product characterization of self-adjoint
linear transformations viz.

The linear transformation T is self-adjoint if and only if %-T(y) = T(x)-y

" for all X and y-
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In order to use this as a definition in our case, we must first however,
define a scalar product on H, and what could one mean by the "dot" product
of two functions? 7

A clue is to be found by examining the definition of dot product in the

finite case.

(X1 Xps X3y eees X))

For x =
¥ = (¥1s Y25 ¥3s o225 ¥g) (xj, yj complex numbers)
z{-yd@-xlyl +X2Y2 +X3y3 T . +xy
n
):x
3= ]

_Now, the vector X may be regarded as the "baby" function, whose domain

{152,3;...,n}'is'mapped,into the complex numbers according to

1 x;
2 %,
3 ———— x5

n p————% X
which we summarize by writing Xt j e xj. Similarly y is equivalent to

the function y: j » yj.

From this point of view the-iudividﬁal terms, x1§}, x2§é, cens of the scalar
product Xy represent the value of % at each domain point j (x ) multiplied
by the conjugate of the value of y at the same domain point. The scalar
product is obtained by summing these products over all possible domain points.
In the case of interest to us, our vectors are again complex valued
functions defined on the domain [0, 1]. For £, g ¢ H the corresponding

point value product is £(x) g(x) and the "sum" over all such values corresponds

to
1

J F(x)g(x)dx

¢
: ¥
We are therefore led to define a scalar product in H by
' ' 1
fg = I f(x)g(x)dx for all f, g e H.
0 :

* In wore advanced works, scalar products are usually termed inner- products and
denoted by (f, g) instead of f.g.
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. It is readily verified that "." satisfies all the axioms of a scalar product.
1. £+f = 0 if and only if £ = 0O
2. (Af).g = A(£f.g)
3. (f +g)h=¢%£h+g-h
Y, g-f = f.g

- 1
For example: f+f = 0 #J |[£(x)|2dx = 0
0

@ |F(x)}2 = 0 for all x (f is twice differentiable and
, so continuous)

1 1
J g () f{x)dx
0

g(x)f(x)dx

m
e
1l

1}
0 ——

1
L f{x)g(x)dx

15

I
1]
fije)

(Proofs of the remaining two are left to you. )

From these we also have the useful identities:

g-f + h-f

£-(g +h) = (g + h) - =
=gf+hf=f-g+.f-_h
and
£« (Ag) = (Ag)-f = A(g-f)
= x(g-f) = Mf-g) .

EXAMPLE: 1If H contains £(x) = x + ix? and g(x) = %3 + ix® we have

ix2)(x3 + ix5)dx

8]
—
»
+

f-g

= (% + ix?)(x? - ix3)ax

—

0
1
= (x* + x7) + i(x5 - x5)ax
0 .
f'l 1
= (x* + x7)ax + 1 [ (%% - xB)ax
0 b
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Self-adjoint (Hermitian) operators

Having established a scalar preoduct in H we now define a (linear) operator

L on H to be self-adjoint if

(Lf)+g = £-(Lg) for a1l £, g € H.

1 1 ‘ .
(i.e. if I L(f)(x) g(x) dx = J Fix) Lig)(x) dx)
0 ]

EXAMPLES. (1) The simplest type of operator we define on H is multiplication

by a fizxed function.

i.e. Mr(x) (F){x) = r(x)F()

E.g. Mo, (sin)(x) = e sin x.

e

Provided r(x) is a real valued function, the operator Mr(xj is self-adjeint

on H. r(x) = r(x), so
' 1
Moyt e = J £ ()£ (g G dx = J £(x) TR
0 | : 0

= f-Hr(x)(g)-)

{2) Let H be the set of twice differentiable functions vanishing

at 0and 1 i.e. f e B = f" exists on [0, 1] and £(0) = £(1) = 0.

j .42
The operator D? = %;i'is self-adjoint on H. .

Proof. Tor any f, g € H we have

{(D%F)-g = l £{x)g(x)dx
1 1
= [f'(xjg(x)lu - [ £1(x) g’ (x)dx (integration by parts)
! .
l .
= —J Frix) g'(x)dx . (as g(0) = g(1) = 0)

0
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It

1 1
-If(x)g"(x)] + J Fx)g"(x)dx
: 0

1 ]

,I F(x)g" (x)dx (as £(0) = F(1) = @)
0

f-(ng)._-

The boundary value problem:

a(x)y" + br)y' + e(x)y = -Ar(x)y {r(x), real)

with prescribed boundary conditions on [0, 1], is termed a self-adjoint problem

if the operator L defined by
L{f) = af" + bf' + cf

is self-adjoint on the vector space H of all complex valued twice differentiable
functions satisfying the prescribed boundary conditions.

Thus from the above example the problem

y' o= -y
y(0) = y(1) = 0

is a self-adjoint boundary value problem.

One of the most difficult tasks in any application of Boundary value problems
is establishing that the appropriate operators are self-adjoint.
- Fortunately many of the commonly encountered problems are covered by the

following result:
THEOREM (Liouville) A boundary value problem of the form

. ,
%; (x) El%] - qlx)y = -dr(x)y

with the boundary conditions

' x=1
[p(x)(yi(x)yz(x) - yl(x)y;(x))] i = 0,
. x=0
where yy, yy are any solutions of the equation for some values of A,

[of type @) including type (1)1is a self-adjoint problem.

Proof. Here H is the set of twice differentiable functions satisfying the

boundary conditions and L is the operator defined by

L(F) = (pf")' - qf,
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whence, for any £, g ¢ H we have
' : 1

L(f)-g - £-L{g) = 1(pf')' g - qfg - [ f(pg')' - ofg
, ) . ) .
rl ' |
= | (£ g~ £logn)! (as q = Q)
0. ‘
— -1 .
= [pf'g - fpg‘]0 -0 (integration by parts)

0 by the boundary conditions satisfied by £ and g.
|

Boundary value problems of the form treated in the above theorem are known as

Sturm-Liouville problems. Many commonly occurring boundary value problems
are reducible to Sturm-Licuville problems. '

Generally, the second order linear differential equation
alx)y" + b{x)y' + c(x)y = Ar(x)y

may be converted to the form

d dy ' =
a;—(p(x) dx) - gq(x)y = Ap(x)y
by means of an integrating factor.
Multiplying throughout by u(x) gives -
uay" + wby' + uwcy = Apry

which will be of the form

(nay')' + pey = Aury
provided we select p so that
(va)' = ub
i.e. . p'a. + pa' = pb
or u—l—:wb-—él_
u a a
X
i.e. b p = J E-— &n a
a
*
TG
So oplx) = e .
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EXERCISE

Show that by thls means,the equations listed below may be reduced to the form
shown, and so define self-adjoint boundary value problems for the specified

domain and boundary conditions.

Equation : Reduced Form : Boundary Conditions

Bessel Equation )

x2y" 4 xy' - n2y = -ax?y (xy')' - E_.y = -Axy y finite at 0,
. y{1) =
Legendre Equation
(1 - x2)y" - 2xy' = ~Ay ((1 - xz)y')' = <Ay y finite at x = #1
Laguerre Equation
xy" + (1 - x)y' = -Ay (xe ™ y')' = 4Aeuxy- y finite at 0, and

Limit y(x)| < =
Xrhm

Hermite Equation

2 2
no_ 1 - : -x7/2 v L X /2 . -
y' - xy' = -y (e v') = -le y Limit y(x}| <
Tchebychev Equation
A
- W TR [ — LI Y N T - 4+
(1 - x)y xy' Ay (V1= %2 y') AT Y y finite at x = 1

Theory. of Self—adjoint Boundary Value Problems

Let H be the vector space of twice differeﬁtiable, complex valued functions
satlsfylng prescrlbed boundary conditions and L a self- adjoint (second order)
linear dlfferentlal operator on H.

We then have the following results for the selfladaoznt Boundhry value
problem -

Ly) = a(x)y, y € H,

where A o r{x) > 0

(with the possible exception of a finite number of points).
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THEOREM. The etgenvalues arve real.

Proof. Let y = ¢(x) be an eigenfunction corresponding to the eigenvalue Ag

ie. ' $ ¢ Hand L($) = Agrs.
Then, ' S hpled)-b = (Agre)-d
| = (L($))
= ¢-L(¢) (L self-adjoint)
= ¢ (Agrd) = Ag(¢-(rd))
= To(r'_d:}-,fb (as multiplication by pr

defines a self-adjoint operator on H, see p.22).

Thus (o - %) (xd)-4 = 0,
' . 1
now o (rd-0) = J r{¢|2 > 0 (by the assumption on r)
0
and so ‘ ‘ Ag = Xy or Ag is real.

COROLLARY. The eigenfunctions may always be chosen to be real valued.

Proof. If ¢ = u + iv is a eigenfunction corresponding to the (real) eigenvalue

Ag we have
L(u + iv) = L(u) + 1L({v) = Agr(u + iv) = Agru + iigrv
and so equating real and imaginary parts
L{u) = Apru, L(v) = Agrv,

i.e. the real valued functions u and v are also eigenfunctions corresponding

1o )\0.

THEOREM (Orthogonality)

If ¢1, $2 are (real valued) eigenfunctions corresponding to distinet
eigenvalues Ay, A, respectively, then

1
(rd1) 95 = 0 (or J r(x)d3(x)dy(x)dx = 0)
: 0
and we say ¢, $2 are orthogonal with respect to the weight functiom r(x).

Proof. A (rey)-d,

(11P¢1)'¢2

L{dy)-do

$1-L(¢s) (L self-adjoint)
#1-(Aards)
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Rady e (rdgp)
Aa(rdy)-do

(as A; is real, and r defines a self-adjoint operator on H).

Thus (A1 - A2) (r¢y) ¢, = 0 and since Ay # Ay (rdy)-ds = 0, as r-equired.‘

EXAMPLE.

The most trivial boundary value problem

y" = -y

y(0)

y(ly =0

is readily seen to be self-adjoint. It can also be solved explicitly.

The eigenvalues are ' A= ome, ww?, ..., ) n?y2

with corresponding eigenfunctions sin m™x, sin 2%, ....., sin nmx,

" Here rv(x) = 1 and so, from the above theorem, we have the orthogonality

relationship !

I sin nmx sin mmx dx = 0, for m # n,
0

basic to fhe construction of (odd) Fourier Series.

Further results and discussion

On finite dimensional vector spaces the eigenvectors of certain self-adjoint
linear transformations form a (orthogonal) basis for the space. When this happens
it is extremely useful.

Similarly, for certain (but not all) self-adjoint boundary value problems

L(y) = Afy, ¥y € H,

the eigenfunctions form a basis for H (frequently for some vector space H' 2 H)

in the sense that any £ ¢ H may be "expanded" as

o

£(x) = ] a_ ¢ (x)

n=1
where $1{(x), $o(x), ..., ¢n(x), ++. are the eigenfunctions corresponding to the
countable ‘set of eigenvalues Ay, Ap, ..., An’ e
Fourier series are a special instance of this.
It can be shown that any self—adjoint problem has only & countable number of
eigenvalues and that most of the commonly ocecurring boundary value problems (for

example, those listed previously) have a set of eigenfunctions with this property

{Hilbert-Schmidt Theorem).
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In case f can be so expénded, the coefficients, a , are determined by the

orthogonality relationship.

If ‘ | f = nzl a b
then ' (rf)*¢m = (rnzlan¢n]-¢m = ngl((ran¢n)'¢m)
= am(r¢ﬁ.¢m) as (r¢ﬁ).¢m =0
unless n=m
Whence
(rf)-¢m
a = (m = 1,2.3, )

m (r¢m).¢m

1
or a3 = IOP(X)f(X)¢m(x)dx

f;r(x)¢;(x)dx

c.f. Fourier sine coefficients

i
fof(x)sin mix dx

v
n

I;sinzlmnx dx
Application to the nonuhcmogeﬁeous problem.

Consider Lly] = wr(x)y + £(x) with boundary conditions, with respect to
which L is self—adjoint1 Let ¢n be an eigenfﬁnction corresponding to the eigen-
value An of the corresponding homogenecus problem L[y] = Ar{x)y under the,same

boundary conditions.

Assume that f and. r are such that f/r has the expansion f/r = z ay ¢k.
o =1
We seek a -solution y which can be expressed as y = I bk ¢k’ substituting-
k=1

-.this into the equation we have

H

) b A Ty

Llyl =] b, L[g, ]
| =1 k k xe1

n

ur z b, ¢, + f
k=1 k "k

Diﬁiding by r and rearranging we obtain
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o

- £
Z (A, —uw)b ¢ = /r = Z a, 4, .
K=1 X k 'k x=1 K K

So using the orthogonality of the.¢n we see that

{kk - U)bk = a, -
a

So provided p # An for any ﬁ, we have bk = 3 ﬁ ” and can write down the
: k

solution as

. co

J o
y = _
n=1 )‘n

S , where a = (f. ¢n)/(r¢n)'¢n

Thus, by first solving the corresponding homogeneous problem, and thencalculating

the constants a8 »We can write down a series solution for the non-homog eneous problem.

The Existence Problen

Although we have established results about the‘eigenvalues and eigenfunctions of
a boundary problem, we as yet have no guarantee that for 8 given problem there are
any eigenvalues. Indeed éome boundary value problems do not have satisfactory
solutions. '

We now investigate this situation for the relatively simple type of boundary
" value problem
L(y) = y" + a(x)y' + b{x)y = Ay

_ (1)
y(0) = y(1) = ¢

where b is bounded and®has a bounded derivative on [o, 1].
- x

, R OF -
In this case, writing y = uv where u = & 2 we have, by the arguments used

on p.8, for some function I,
Llyl = Lluv] = [v" 4 I(x)v]u = ruv

and so since u(x) # 0 for any x € {0, 1] we have

v+ I{(x)v = v }
while v(0) = v(1) = 0.

Further, if XAy is an eigenvalue of (1%) with corresponding eigenfunctien Vg,
then yg = uvp is an eigenfunction of (1) and Ay is the corresponding eigenvalue,
It is equally clear that the converse is also true.

Thus (1) and (1#) have the same eigenvalues and have eigenfunctions pelated
by a factor u.

It is therefore sufficient to consider the boundary value'ppoblem (1%)

which is clearly & Sturm-Liouville problem and so a8 self-adjoint problem.
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Let T . = minimum {I(x): 0 < x <1} (strictly we should use 'greatest lower

bound' or 'infinum' in place of minimum) and Imax = maximum {I(x): 0 <x <1},

[1(x) for 0 <x <1

Set I#(x) = I{(0) for x < 0
I{1) for x > 1
I
Tax|— “‘7-\ 5’=I*(-t) :
o = ) >

<\:;{-'z I (=)

— P T in,

and for any A let VA(X) be a solution of the initial value problem

F"o+ {I%(x) - A)y = 0, v(O) =0 (v'(0) # 0)

(that such a v may always be found follows from the 'existence theorem' for
initial value problems - see B. diP. p.88).

The following argument is motivated by the observation that vy is an
eigenfunction of (1%) which corresponds to the eigenvalue Agif v, has a zero at 1.

Let the strictly positive zeros of v, ocecur at the points b
%1 (A) < x(A) < ... < x_ (1) < ..., where x () + = as n = e,

(For A < Imin’ the existence of such a sequence of zeros follows from the corollary
to Sturms theorem since, then I#{x) - A ;zlmin - A > 0.)

For any n, xn(A} will vary as we vary A. We will assumethat xn(A) is a
continuous function of A. (This may be proved using arguments similar to those
appearing in the proof of the existence theorem, and is a special case of the
”continuoug dependence on parameters theorem" - see Sachez p.136).

We now show that the graphs, in the y-A plane, of the family of functions

y :‘Xn(k)’ n =1,2,3,... are of the form shown on the next page.
H A
N <A < Tonin

//- ~ »r Ar xJA') // - ~ j,=(Al) ” DC3(AI)

N "] 3
= & ¥ 0 ?}\ oIS IR TS 14(:}’)/ \:‘5
¢ ~ - ~ -
—— \\‘—// y= V_A|(x)




Since 0 is a zero of vy for all A (by assumption) the spacing of zeros theorem
gives

/Y1 - A< xg(A)Y < wfYI - A
max min

while for n = 1

/Y1 - A <x (A) - x (A) < wf¥T | XL
max - n+l n min

So y = x3{(}) is a continuous curve lying between the two curves
y = w/iimax - A and y = n/#Imin - A both of which tend to zero as A + ~=

3

while the first tends to = as A + I - and the second as ¥ + I ., .. So we
' max min

conclude that x1(1) + 0 as X + -= and assumes arbitrarily large values for values

of A between I . and I - Hence y = %1(1) has a graph of the form illustrated,
min max

and from the intermediate value theorem for continuous Ffunctions we see that there

is a A3 for which x3{};) = 1. Thus, from our earlier remark, A; is an eigenvalue
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of (1%) with vy
1

location of the smallest strictly positive zero of v

a corresponding eigenfunction. Further since ®1(A1) = 1 is the
A (by definition of x1{1))
1

we see that the eigenfunction v corresponding to A; has no zeros in the interval

Al
between 0 and 1.

EXERCISE. From the above arguments obtain bounds between which the eigenvalue

Ay must lie.

‘Similarly y = x9(A) is a continuous curve which, from above, lies between
y = x1{(3) + anImax - Xand y = x(3) + ﬁ/#Imin - A

Again both of these curves tend to zero as A -+ —m and assume arbitrarily large
values for A sufficiently large. 0y = xs(X) has the form illustrated and there
exists a value A; < A; at which xg(lg) = 1. '

Whence, A, is an eigenvalue of (1*) with ¥y, @ corresponding eigenfunction
which, from the definition of the xn(A)'S, has a zero at x1(Ap) and so has one zero
in the interval between 0 and 1.

Continuing in this way we see, by an inductive argument, that the graphs of

=% (A (n =3 4, ..) are as 1llustrated, and that (1%) has eigenvalues
Al > 12 > X3 > o0 > Ay > ... (where A, is such that x (A ) = 1). That
ln + ~® as n + follows from the earller observation that X (MY s@asn+w

for each A. Purther vy is an eigenfunction, corresponding to the eigenvalue l »
n
which has zeros at the points xl(l ), xz(l ) S xn_l(An) in the interval between

0 and 1, and so has n-1 zeros in the 1nterva1 between 0 and 1.

We have therefore proved |
THEOREM. Let I be a bounded funetion on the interval from 0 to 1, then the
boundary value problem

w o+ I(x)u = Au
v(0) = v(1) = 0

has eigenvalueé

A1 > A2 > A3 > L, > A > e, with A, > —®asn+ = Further eorresponding
to the eigenvalue A there i8 an etgenfunctton Uy with precisely n-1 zeros
between 0 and 1. . 7 g
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PROBLEMS

Show that the solution of the boundary value problem

y' = -dy

y(0) = y(1) = o

is as stated in the text.

Find approximately the eigenvalues and corresponding eigenfunctions for

the boundary value problem

y" = Ay
y(0) + y'(0) = 0 = y(1)
For the boundary_value problem
y" = -y

y(0) - y(1) = 0 = y'(0) - y'(1)

(a) Find the eigenvalues and corresponding eigenfunctions;

(b) Show the problem is self-adjoint, even fhough the boundary conditions
are not separated and so the problem is not a Sturm-Liouville problem;

(c) Observe that to each eigenvalue there corresponds two linearly

independent eigenfunctions.

For a Sturm-Licuville problem with separated boundary conditions (of type 1)
show that, if ¢; and $o are two eigenfunctions corresponding to the one
eigenvalue, then they are linearly dependent.

(Hint: Show that it is sufficient to prove

$1(0) 45(0)
Wby, ¢9)(0) = ' \ = 0, and then do so.)
¢1(0) $,(0) '

This property of Sturm-Liocuville problems is an important one for nmore
advanced work, which is not necessarily true for a general self-adjoint

boundary value problem (see problem 3).
Find a series solution for the problem
y"' + Ay = x

y(0) = y(1) = 0

in terms of the eigenfunctions of the corresponding homogeneous problem

(see problem 1).
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What is the import of our theory on the Hydrogenic ion model, considered

" in the introduction?

Observe that, if ¢n is an eigenfunction, of the self-adjoint boundary value
preblem
Lly) = -Ary, y e H,

corresponding to the n'th eigenvalue An, then k¢n is also an eigenfunction
corresponding to Aﬁ, for any k # 0.
The eigenfunction, k¢n, is referred to as normalized if k is chosen so that

(rk¢n)'(k¢n) =1

X | 1 5

2. : ko=

i.e - /(I‘d}n.{bn) .

What are the normalized eigenfunctions for problem 1 above?

GREEN'S FUNCTIONS {(An alternative approach to boundary value problems)

Suppose L(y) = -[p(x)y']" + gi{x)y = £(x) under

1
o

ayy(0) + aéy'(O),—

byy(1l) + bay'(1) =

1
@

has the solution

y = d(x) = JIG(x,u)f(u)du, for some Green's Function G(x, u).

_ 0 ' _ _
Let ¢i(x) be the normalised (see problem 7) eigenfunction of L(y) = Ar(x)y
under (*) corresponding to the eigenvalue Ai, then y = ¢i(x) is a solution

of L(y) = £(x) = a,0(x)¢,(x) under (%)
1 1 1

HI

So ¢i(x) J G(x, u)Air(u)¢i(u)du.

0
Use this to determine G(x, u) by assuming

8

G(x, u) = .Z ai(x)¢i(u)

i=1

Consider the Legendre Boundary value problem

(1 - x2)y" - 2xy' = -y
y(-1), y(1) finite.
Clearly any polynomial y = anxn + an*lxn_l + ... + ai1x + ag satisfies the

boundary ceonditions.
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%9. (continued)

Show that for appropriate values of A, the.equation has such polynomial
solutions for eigenfunctions (the orthogonal polynomials so arrived at are
the "Legendfe Polynomials").

(Hint: A must have the form m(m + 1), m a positive integer, for which the
corresponding polynomial is of degree m. If you can‘do nothing more, at

least find polynomial eigenfunctions for m = 0,1,2.)

10. 0On p.32 you were asked to estimate bounds for the first eigenvalue, 1,
of the problem 1%. Using similar arguments estimate bounds between which

the n'th eigenvalue ln must lie.

’ nmw nmw
(Hint: Show T oy < % (A) < gy )
max min
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