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HisTorRY oF MATHEMATICS

THE DEVELOPMENT OF CERTAIN ASPECTS OF TWENTIETH CENTURY ANALYSIS

INTRODUCTION: .

In writing this essay I have relied heavily on secondary sources,
in particular the excellent paper by Bernkopf - "The development of Function
Spaces with particular reference to their origins in Integral Equation Theory"
and the opus "Mathematical thought from Ancient to Modern Times" by Morris

Kline.

Wherever possible T have, however, endeavoured to inspect the original
material, for points of notation, terminology and the like. Almost nowhere
have I remained faithful to these original works. I have none-~the-less tried
to use symbolism and terminology which will convey some of the original
flavour, consequently the reader will find both the language and notation
gradually evolve as the essay does. Allowance must be made for this and I

hope it has not unduly obscured the overall story.

The essay is net.meantaas a.piece! ofithistopdographpp tnot eaven - ehéonicTing,
rather it isaddressed to final year undergraduate students. The necessarily
selective nature of courses offered in modern analysis cannot give the student
any clear idea of its unity and certainly not its development. Although
applications, to other more applied areas, are often included in such courses,

a common reaction of many students meeting abstract methods for ‘the first
time, seems to be "but this is not real mathematics". T believe this
reaction is in part due to the isolation of such methods from the more

"classical" style of mathematics they have been used to.

In any undergraduate mathematics programme the emphasis must, for
reasons of time, be on results and methods, however in such an approach the
natural evolution of abstract methods out of their "classical" background
will inevitably be lost. Indeed, because of the large number of options
available to an undergraduate in some programmes, it is quite possible that
key topics in this progression will have been missed. For this reason I
have devoted the first 30 odd pages to those aspects of pre—-twentieth century
mathematics which I considered most important for the development of modern

functional analysis.

Wherever I felt they would be readily understood I have included
mathematical details. Some of the less essential ones have been "boxed" as

inserts, the rest need only be skimmed - however I hope the student will do
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more. A student reading the essay should not cnly gain a better under-
standing of how and why modexn analysis developed but also learn some

mathematics on the way, at least in a "birds-eye" sense.

B. Sims.

April 1980.
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APOLOGIA:

When writing an historical account of mathematics as a coherently
developing body of knowledge the important features of any earlier pericd
are identifiable as results and techniques which have gained a lasting place,
or ‘else work which directly contributed to subsequent advances. Inevitably
this represents only part of the mathematics done during any era, a significant
proportion rapidly fades into oblivion; or is subsumed as simple consequences
of later more powerful developments.

Of necessity, our view of éurrent mathematiecs must lack this "historical
perspectiva".

Undoubtedly the dominant and novel feature of 20th Century Mathematics
has been the recognition and study‘of "abstract" structures and methods.
Whether these structures will retain a fundamental place in future mathematics
or perhaps become mere "techniques", useful in establishing those results for
which they prove most suitable, cannot be decided. (Although some will argue
that the study of structure per se comes nearer to the true essence of
mathematics than anything else.) What we can, and will, attempt to show is
how these developments followed naturally from 19th century mathematical
endeavours. The structures studied waré not "ecreated" at random. Only those
structures found to underlie already existing areas of mathematics have been
extensively developed, particularly when the area involved major unsolved
problems. The hope, sometimes realized, being that a change of view-point:
from the "concrete" to the "abstract", would provide new lines of attack on
recalcitrant problems. (After all, mathematics proper is a living art: the
solving of problems. What the student of mathematics studies is merely the
"success" story of past mathematics - an apprenticeship so to speak.) The
change of view-point, as with any new development, has bred its own generation
of problems, problems which have occupied many 20th century mathematicians.
Indeed some abstractions have only assumed significance because they were found
to underlie already developed structures. For example, the algebraic notion of
general vector (or linear) space grew in importance because such structures were
present in the abstract notion of "function space" which in turn, as we shall
see, provides a setting for the continuation of 19th century work on integral
equations and the calculus of variations, while the recently developed theory

of Categories (MacLane et al,1948 on) might be described as the "Structure of

Structures".



We have already noted how later developments sort out key features
from the great volume of mathematics produced in any previous era. Further,
this sorting is accomplished by whole generations of subsequent math-
ematicians. This is a great asset to fhe mathematical historian. BSig-
nificant source material is already pin-pointed and systematic accounts
of the material are available.

Any would-be-writer on 20th century mathematics lacks this assistance.
Systematic accounts are at best fragmentary, much of the material appearing
only in the original research papers. 2add to this the "exponential® growth
in the number of papers published, and the task of surveying any broad area
of current mathematics becomes formidable. It is for these reasons that I
have elected to confine the subsequent article to one area of analysis
(functional analysis and, in particular, material immediately connected to
the notion of "function spaces"). The magnitude of this restriction and
the truth of the above assertions can possibly be gauged from the following
data. _

The subdivisions of analysis listed are a slightly compressed versicn
of those used in the international review journal, Mathematical Reviews.
This journal appears in 12 monthly parts each year. The numbers listed on
the right are the number of papers reviewed in the May, 1979 issue and so
roughly correspond to the number of research papers on analysis currently

published in major international journals {about 55 in number) during one

month.
Functions of real variable 9
Measure and Integration 17
Functions of one (or more) complex variables 97
Special functions 24
Ordinary differential equations 60
Partial differential equations 156
Finite differences and functional equations 16
Sequences, Series, Summability 8
Approximations and Expansions 45
Fourier and Harmonic Analysis 50
Integral Transforms and Operational Calculus 14
Integral Equations 28
Funetional Analysis and Operator Theory 176
Calculus of Variations and Optimal Control 43
Differential Geometry and Manifold theory 239
General topology 105
Algebraic topology 42

1,129

The subsequent account, while restricted to functional analysis during the
earlier part of this century, is typical of much 20th century analysis and

may give the reader some idea of developments. Although it deals with an
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area which is more familiar to me than many, still it must inevitably suffer
from serious omissions and distortions due to my very incomplete knowledge

of the literature. For these inaccuracies I apologise in advance.

19TH CENTURY PRELUDE

We consider scme aspects of 19th and early 20th century mathematics which
contributed directly to the evolution of "function spaces".
Some of this material may be found in standard accounts of the 19th century,
however, in several cases the work did not belong to the main stream of 19th

century mathematics and so is omitted from short accounts of that period.

Integral equations

DEFINITION

An integral equation for the unknown function y, is an equation in~

volving an integral whose integrand depends on y. For example;
1

v {t) _
I EH:b;‘dt = £(x),

-1
where f(x} is a given function and -1 < x < 1.
The problem of solving such an eguation is to determine  y. OFf course,

the simplest example of an integral equation is

X
J y{gldt = £(x) - £(0)
]

for which the solution y(x) = (f(x)) is obwvious.

&~

EXAMPLES
Throughout the 19th century many problems in mathematical physics and

engineering led naturally to integral equations. Thus, as early as 1782

Laplace considered

J e ¥t y(t)at = Flx).
0

[You should recognise this as the problem of finding the function y whose
"Laplace Transform" is F(x).] Similarly Fourier while studying questions

of heat flow was led to consider in 1B1l the eguation

f cos (xt) yv(t)dt = £(x)

0 (c.f. Fourier Transforms).

One of Abel's earlier mathematical works (1823 and 1826) concerned the problem

of determining the curve (see diagram) through 0 along which a particle,
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starting from the point above x, would

take a specified time T(x) to slide to

0. This led to the integral equation
x

T (x) =J-—E'(—t)dt for s'(t).

Yx - ¢

0 0]

e e,

S

Liouville was interested in integral equations from 1832 on, and in 1837
observed that certain differential equations could be converted into integral
equations. This was soon to become a powerful technique in the theory of

crdinary differential equations, particularly Boundary Value Problems.

Formulation of the Boundary Value problem

y'" +py' +gv =iy, y(0) =y(l) =0

as an integral equation.

I£ Yyr ¥, are two linearly independent solutions of the
homogeneous problem v" + py' + qv = 0 satisfying

¥y, (0) = yz(l) =0 and y,(1) = y,{(0) =1, then by the
method of variation of parameters (see for example Boyece
and Di Prima, p.126) the general solution of the non-

homogenecus equation y" + py' + qr = g is

X
f ¥, (B)y, (x) -y, (x)y, (£)

Y =01y, t oy, +
L2 W ¥y ,¥y) (6)

g(t)dt
where w(y,.,y,) (t) = y, (B)yy (&) - y; (€)y, (£) is the non-
vanishing Wronskian of ¥, and Yy

Choosing cy and ¢, to satisfy

y(0) = y{1) =0

we obtain the solution
1

b4
[y (B)y, (%) v, (X)y, (£)
y = —lﬁg-)—zm—-—g(t)dt + J —lw—(,c~)-2———g(t)dt

0 X
1
L

or y = | G{x,t} g(t)dt
0

where
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Y1 (t)Y2 {x)

for 0<t<x
w(t)

G(x,t} =
¥, (x)y, (£)

WD) for x < t<1,

is the Green's function for the problem.

Replacing g by Ay, we now see that the Boundary value

problem has been reformulated as:

Determine those values of A (the eigenvalues) for which

the integral equation
1
yix) - A [ G{x,t) y({£)dt = 0

0

has non-trivial solutions y (the corresponding eigen-
funetions).

Boundary Value problems arise naturally from separating variables in
a partial differential equation. By the middle of the 19th century, partial
differential equations were a subject of considerable interest (Dirichlet,
Riemann, Neumann and many others), and again attention was drawn to integral
equations. For example, the function u(x,y) which satisfies the

Laplace (or potential) equation
2 2
2=311 B'Ll=
Véu §;§-+ §§§ V]
in the interior of a given plane region "R and assumes specified wvalues on
the boundary of ® may be determined from an auxiliary function p which

in turn satisfies the integral equation

L
2rf(x) + J P(s,t}) p(t)dt = O,
0

Here it is assumed that the boundary of ® has been Parameterized by arc

length along it. & is the perimeter

£(s) = u(xs,ys) of ®, f£(s) is the specified value
of u at the point on the boundary
(xs'ys) corresponding to a parameter value of

s and P(s,t) = log{d(s,t))

where d{s,t) is the euclidean distance
between the two boundary points with

parameter values of g and +.



Late in the century (1894), Poincaré considered the non~homogeneous

partial differential equation
*
V2u + Au = F(x,y)

where A 1is, in general, a complex number.
Starting with this equation and suitable boundary conditions, an analysis
akin to that for the Laplace equation, led Poincaré (1896} to consider the

integral equation

b
£(s) = ¢(s) ~ A f P(s,t)d (t)dt.
a

DEVELOPMENT OF A THEORY

During the early part of the 19th century individual problems were
considered in isolation and solved by particular methods. Thus in 1823

Poisson obtained the solution

e t F{x)dx {(for a suitable choice
R—je of R)

yvi{t) = ==

to Laplace's problem

e_Xt y{t)dt = F{x).

o Y— 8

Such a solution is known as an "inversion formula". Similar inversion

formula were obtained by both Fourier and Abel for their respective problems.

* Solutions of this equation are important in the study of wave motion in the
presence of external forces, described by the equation

1 32a

v2a - o7 3z - D(x,v,t).

To see this, note that, if Aj' uj satisfy Vzuj + ljuj = f(x,y) then

o
uj(x,y) e Aot is a solution of
2 S
v2a - %5-%E%-= £fix,y) e 13 t. By adding together such seclutions we are able
to solve
2 o
2. _ 1 3%a _ cviy t
Vea o7 3eT fix,v) Z aj e " ",

]
The problem is to be sure of an adequate supply of possible Aj values for the

given D({x,y,t} to be expressible in this form.



The germ of a general method was sown by Liocuville who obtained the

"splution" of

X
y(x) = cos kx + i—f o(t) sin kx y(t)dt
0

by a method of successive substitutions.
A similar iterative procedure was employed by A. Beer in 1845 to "solve" for

¢ a special case of
L

£(s) = 3 d(s) + ‘;}F[ Q(s,t) §(E)at
o
which arises in connection with Laplace's equation on a region ®.

Neither Beer nor Liocuville justified their procedures by establishing
convergence of the successive iterates. It was some thirty years later that
C. Neumann (1832 - 1925) demonstrated the validity of Beer's solution when &
is a "convex" region.

These methods were brought nearer to maturity by the Italian mathematical
physicist, Vito Volterra (1860 - 1940) toward the end of the century.

At this point it is convenient to recognise some basic types of integral

equations.

An integral equation of the form

b
y(x) = £{x) + A J K(x,t) y(t)dt
a

is a Fredholm equation of the Second Kind. (When £(x) =0 the equation is

said to be homogeneous.)

b
£(x) = [ Ki{x,t) y{t)at
a

is a Fredholm equation of the First Kind.

The function K(x,t) is referred to as the Kernel.

Fourier's equation is an example of an equation of the first kind, while those
arising from boundary value problems are equations of the second kind. In
general, equations of the first kind present the greatest difficulty.

When the fixed upper limit of integration b is replaced by x we have

Volterra equations of the first and second kind. Thus Abel's equation is an

example of a Volterra equation of the first kind.
Volterra equations are really special cases of Fredholm egquations in
which the kernel is such that Kix,t) = 0 for t > x.

A Fredhelm equaticn is said to be symmetric if Ki{x,t) = K{t,x). Almost
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all the examples given have been of symmetric equations.

For equations of the second kind, Volterra considered the following

iterates.
. {x) = £(x)
0 b
¢, (x) = Ia RK(x,t) $y (E)dE
b
9, (x) = I Kix,t) ¢, (x)dt

a

Provided K(x,t) =0 for t > x, IK(x,t)| <M, |f(x)| < M, for some M

and all x,t, Volterra was able to establish that the series

) p, ()

n=0

converges to a function ¢(x) which by direct substitution into the equation

may be shown to be a solution of

b
yx) = £(x) + J K(x,t) y(t)dt.
a

It is worth noting that the substitution leads to
b

¢ {x)

£(x) + ) [K(x,t) ¢_(t)dtr
n=0 n

£fx) +

) —g

b b
Rix,t) f{t)dt + J Kix,t) J K(t,s) f£(x)ds dt
a a

+ ...

Kix,s)K(s,t) £(t)ds dt

f(x) + | K(x,t)E{t)dt +

p—
o —g
B —

+ ...
(by interchanging the order of integration and the

roles of the dummies s and +t)

I

fix) + J[%(x,t) + I K{x,s)X(s,t)ds + ..zlf(t)dtt

a a

* The "Picard process" of successive approximations

Yo (x) = £(x) b

yi{x) = £(x) + Ja K{x,t)y, (t)dt
b

Y, {x) = £(x) + f K(x,t)yl(t)dt
a

LY

also formally leads to this expression. Volterra's work implicitly establishes
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and so we obtain an "inversion formula" for the equation, namely
b
vix) = £(x) + J kix,t) £({t)dt

b a

where k(x,t) = K{x,t) + I K(x,s)K(s,t)ds + ...
a

is known as the solving kernel, iterated kernel or resclvent for the equation.

Under certain conditions Volterra was able to reduce a Volterra equation

of the first kind to one of the second kind and so apply his methods to it.

assuming each of the required operations is justified,

by differentiating both sides of

X
fi{x) = J Ki{x,t) y{t)dt
0
with respect to x we obtain
X
oK
£'{x) = K{x,x) yv(x) + £ {x,t) vit)dt
0

dividing throughout by K(x,x) yields a Volterra

equation of the second kind for v;

X 9K
£1 (x) N J 3—)‘{“ {x,t)

Y = - 10 R x.x)

y(t)adt.
0

In 1896 Volterra also observed that an integral equation may be regarded
a5 a limiting form of a system of n 1inear algebraic equations in n
unknowns. However, while he privately developed this observation into a
powerful method for deducing results he did not publish it, instead he
simply published verifications for the solutions so obtained.

It remained for the Swedish Mathematician, IvarFredholm (1866 - 1927)
to develop and publish, in lQOOf a similar approach to the solution of general

integral equations of the second kind.

Starting with the equation

b
(0) yix) = £(x) + A [ K(x,t) y(t)at.
a

Fredholm partitioned the interval [a,b] dinto n+l =subintervals each of

the same length § ({see diagram)

* translated from Swedish into French in 1903.
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i_
gt

and, by replacing the integral with a sum, obtained an associated egquation

n
yn(x) = £{x) + A .Z K(x,xj)yn(xj)é

J=1

for the function yn(x).
In particular then for i = 1,2,...,n we have
n
= -+ .
v (x) = £x,) + A ) K(Xi,xj)yn(xj)ﬁ

j=1

or, setting

yn(xl) f(xl)
_ Y, (xz) e - f(xz)
¥n - ~1 -
Efn(xn)— j(xn)_
K(xl,xl) K(x1 ,xz) K(xl,xn)
o - =' K(xz,xl) K(xz,xz) . K(xz,xn)

n Iy R s hsesusse e sessesna

_f(xn,xl) cebaenms sae K(xn,xnl-
we have the matrix equation

T - = £ .
(1) ( lGKn)zn fn

Using the determinant formula for the inverse of a matrix we obtain

An (xi'xj A} f(xj)
A_(A)
n

N t~13

{2} yn(xi) =

=1

(provided An(l) 7 0),



S

.







N

where An(l) denotes the determinant of (I - lﬁKn) and An(xi,xj,l) is
the 'first minor' of the element in the i, jth place of (I - ASK).

Fredholm now chose to expand An(h) as a polynomial in A of degree n;

k.. k.,
n 2 B n [Tii 1] %
() s =1-1 ] k. s+ 7 3 82
n . ii 20 . .
i=1 i=1 j=1|k.. k..
J+ 3I]

Letting n -+ = suggested using

o » 2 [x(e,t) (k)
(3) D(l) =1 - A [ K(t,t)dt + ET'J J du dt ~ ...
: K{u,t) K(u,u)
a a a

in place of An(l) in the solution of (0).

Because of the similarity of the expressions for An(l) and the minors
An(xi,xi,h), Ffedholm also replaced these by D(X). While for i # 4, if

X + x and xj - %, it seemed appropriate to replace An(xi,xj,h)/ﬁ by

K(x,t) K(x,u)
D(x,t,A) = AK(x,t) - A2 J AU+ ... .
K{u,t) K{u,ua)

Using a theorem, published by Hadamard in 1893 (though the result seems to

have been known as early as 1BB86):
For any B X n matrix [m ], |det [m, . 1| < /n" (max[m..l)n;
ij ij i,y id

Fredholm was able to show that the series for D(A) and D(x,t,\) converge

and sco both of these are well defined functions.

By writing {2) as

An(xi,xi,l) n An(xi,xj,h)
RO =g ) L Ty fy)8
n j=1 n
3F#i

o

* At this point Fredholm may have been influenced by the work of Helge Von
Koch on systems of infinitely many equations in infinitely many unknowns.
In 1893 Von Koch had used the above expansion for infinite determinants for

which (2) becomes a power series in A.
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and using the above cbservations for n + ®, Fredholm was naturally led to

infer that

b
(4) y(x) = F(x) + J 9-(-]’-3‘_'(-;'[)'—“— £(t)dt (provided D(A) # 0)
a

is a solution of (0).

This final "passage to a limit" is not mathematically rigorous, however by

direct substitution into (0) Fredholm was able to verify that the suggested
form of solution (4) is indeed correct.

Thus Fredholm established the existence of solutions to (0) for any A
which is not a zero of the function D(A)} given in (3). [Fredholm also
obtained satisfactory conclusions for the case when D(A) = 0, however we
will not pursue this line.]

In addition, Fredholm established uniqueness of the solution when
D(A) # O. To deo this he introduced ideas which appear to have been well
ahead of his time and came close to explicitly using "function space methods".
Write DK(l) for D(A) to emphasize the dependence on X(x,t) - see (3).
Given a value of A, Fredholm then considered the set of all possible
kernels X for which DK(A) # 0. For each such X he regarded (0) as
defining a "transformation" of the unknown function y into the given
function £. The desired conclusion followed by showing that the set of

all such transformations forms a group under composition.

REMARK: In order to easily join onto subsequent work we have explicitly
ineluded the parameter A in our calculations. In the original work
Fredholm did not. His calculations correspond to ours with A = 1. He

did, however, study the effect of such parameters by replacing K(x,t)
b
* 1 ,
by K {x,t) = X-K(x,t). Solving y = £ + J K{x,t)y(t)dt 4is then, of course,
o a
equivalent to solving v = £ + A J K*(x,t)y(t)dt.
a
The theory of integral egquations and, in particular, Fredholm's methods
were brought nearer to a definitive form by the German mathematician,
David Hilbert (1862 ~ 1943). Hilbert, a Professor of Mathematics at the
University of Gottingen, had done important work in algebraic number
theory, the theory of invariants, and the foundations of geometry and was
already recognised as the foremost mathematician of his time, when from
1906 to 1910 he turned his attention to the theory and applications of

integral equations.
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Hilbert's work on integral equations was both extensive and detailed.
Without expanding this section into a fully blown essay on integral equations,
we can do little more than hint at Hilbert's methods and state some of the
more important conclusions. For a more detailed discussion of Hilbert's work
see Kline, pp. 1060-1070, and, in particular, Bernkopf L11, pp. 9-33.

Hilbert began the first of his six papers on the subject by thoroughly
"reviewing" the theory of n linear equations in n-unknowns, paying
particular attention to the case when the matrix for the system is symmetric.

In this work Hilbert makes repeated use of the notion of "inner—product" for

two vectors x = (xl,xz, ceerX,) and y = (eryzr--'lyn) defined by

n *
[x,v]1= § xy.
o1 PP

In particular, he uses the fact that if
[xrgj = [X,f] + ?\[foA@]

is an identity in x, then @ is a solution of

I

{a) v f + AKy.

Like Fredholm he expresses the solution g using determinants and when K
is symmetric, he develops expressions for these in terms of the eigenvalues**

Ak and eigenvectors ﬁk of the homogeneous problem
(a") ¥ = ARy.

For example:

DOx,y) _ n [Ek,x][ﬁk,ylhk
ald) [, 8" 10-0)

here d({i) = det(X - AK), and

Ol i
D(Aix,y) = det|¥1! .

-1 I -

y !

“n _

* Hilbert's notation

** Note: From the form of (a'), Hilbert's "eigenvalues" are the reciprocals
of what we would understand by the term today.
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He has already shown that @ is a solution of (a) if

— D(;\Fxff)
[x,8] = ~s for all vectors x

Hilbert now applied these results to the "transcendental problem", that is
the inteqral equation.

1
(b) | y(x) = £(x) + A J K(x,t)y(t)at
0

which "arises" from (a),with A replaced by %u as n -+ «,

Unlike Fredholm, who inferred the form of solution by analogy with the finite
case, then verified the correctness of the guess by direct substitution,
Hilbert verified various steps in his theory by rigorously taking to the limit
expressions occurring in his theory of finite systems of linear equations.

For example, he proved that for bounded A, d(ﬁa converges uniformly to

1 1
s\ = ) i:EQETA_ J . [ det[K(si,sj)] ds1 ... ds_.
n=0 )
0

By these metheds Hilbert arrived at the solution

1
{c) v(x) = £(x) + A I K{x,t) £(t)dt
0

for any value of X for which &(}d) # 0, where

— _ . AAQGx,E)
Kix,t) = 1 —‘_”"""'"—"6()\)
and
_ 0 _ | K(x,sl) S K(x,sﬁy
_ @ (_l)n 31 K(sl,t):
Alh;x,t) = nz —"—ET———'I J— } det L | [K(Sirsj)] dsl «en dsn
= |
0 0 K(s_,t)1
. o [ -

* It is convenient to take the range of integration to be from 0 to 1 and by a
suitable change of variable this can always be assumed to be the case.
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The eigenvalues of (¢) are taken to be the zeros of &{A).

Hilbert next proceeded toc extend his results for finite systems of linear
equations with a symmetric coefficient matrix to the theory of symmetric
integral equations (ones for which XK(x,t) = K{t,x))}.

His first result is that the eigenvalues for such a problem are all real
and so may be ordered. Next Hilbert used an expression analogous to that for
the finite case to define eigenfunctions ﬁk(x) corresponding to the eigen-

value Ak

Ak 3
l:ﬂk(x) = {E;EE:;;;SJ A*(Ak;xrs)

where A*(Ak,x,t) = —G(Ak)ffx,t) and s 1s any real number chosen so that
A*(Ak;s,s) # Oi].
The next results show that these eigenfunctions may be selected so as to form

an orthonormal family; that is,
1

J ﬁi(t) dt =1 and if Qk(x), ﬂj(x)
0

correspond to distinct eigenvalues, then
1

J ﬁk(t)ﬂj (tyat = o,
0

and that ﬂk(x) is a solution of the homogeneous problem

1
(d) y{x) =2 f K(x,t)y(t)dt,

0
with A = Ak.

The major result of this study was a generalized "principal axis theorem":

For arbitrary continuous funciions y (x), y,(x) on [0,1] we have

11 1 1
[ I K(x,t)yl(t)yz(x)dx dt = E r]:- U ﬁn(t)yl(t)dt] U ,@n(t)yz(t)dt] .
00 n=1l n 0 0

As an application Hilbert then proved an important result, now known as the

Hilbert-Schmidt Theorem:

If f£i(x) <& such that

1
flx) = J Ki{x,t)g(t)dt
0
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for some continuous function q, then

1

oo

£lx) = § U f(t);zn(t)dt] g, x).
n=1 0

That is, such f£'s can be expressed as a "Fourier" geries in the eigen—
funetions of (d).

In the closing few lines we discuss some results of what was probably

Hilbert's most extensive and penetrating work.

In his work on finite systems Hilbert was led to consider bilinear forms:

n

expressions of the form X ki.xiy.; and quadratic forms (the result of
i,j=1 ] J

setting Yj = xj in the previous expression). IHe now proceeded to an

investigation of infinite quadratic forms (forms corresponding to n = =).

The connection of such forms and integral equations is established as follows.
By using polynomials, Hilbert shows that it is always possible to construct

a "complete" set of orthonormal functions; that is, an orthonormal family

ﬁl(x},ﬁz(x),... for which the conclusion of the generalized principal axis
theorem holds in the particular case when K(x,t) = 1 and for each n, An = 1.
Any continuous function g{x) can now be represented by its sequence of "
"Fourier" coefficients Gpr Tgr emer Goroeen where
- i
9, = J En(t)g(t)dt. Similarly XK(x,t) is represented by the sequence {infinite
0

matrix) of double "Fourier" coefficients
1
k=f
nm
0

It is then shown that vy(x) 1is a solution of (a) if and only if

K(S.t)ﬁn(s)ﬁm(t)ds dt.

[ e L

[++]
m=1

and that this happens if and only if

(=] [+=] @
y X = f x + 2 XK vy x
nzl n 1 nZl n'n n,£=l nm m n

holds for every segquence X0 X

(==
f --- With Z %2 < =,
2 n
n=1
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Hilbert's key result on infinite quadratic forms is the following. As with an

integral equation, Hilbert associates a set of eigenvalues Ayr X -v. Wwith

2'
the guadratic form

z k X X .
nm mn
n,n=1
he then shows that there exists an "orthogonal® transformation T such that

with respect to the new variables xﬁ = T(xn) the quadratic form becomes

We will not describe the integral term, except to note that essentially it
corresponds to a "sum" over a "continuous" range of "eigenvalues™. Indeed
Hilbert was intent on finding conditions under which it would not be present.

To this end he introduced the concept of "complete continuity" for the quadratic

form
[=~]
F(xl,xz,...) = X om o %n-
n,m=1
F(xl, X, «..) 1s completely continuous if, whenever El(t), sz(t), e

is a sequence of functions for which z ei(t) < = for each t and

Limit e_(t) = 0, we have
0 0

Limit F(x1 + El(t), X, T Ep(t), ...u) = F(xl, X,y ceaa)e
t-+0

Hilbert is able to show that when the knm's result from a symmetric kernel,

the corresponding quadratic form is completely continuous. From these results

he re-deduces the "generalized principal axis theorem” and Hilbert-Schmidt

Theorem for the eigenfunctions of a symmetric integral equation.

Caleulus of Vavriations

The calculus of variations is concerned with finding those functions

y{x) which satisfy certain "constraints" and for which a given expression of

the form

b
J = I f{x,y,v',...) dx
a

is a minimum (or a maximum).

The simplest form of constraint is that y have specified values at a and
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b. In other problems it may be required that a second expression, similar

in form to J, be a constant.

Such problems appeared early in the history of the calculus.

In the Principia, Newton considered the curve y(x) joining the points
A, B (see diagram} for which the surface Ay
of revolution obtained by rotation about (0,a)

A

the x-axis, offers least resistance when v (x) res%g}ive force

moving through a liquid such as water at
a constant velocity in the direction of

the x-axis.

B
e
) ®,0 = *
[The resistance at any point on the surface is assumed (guite unrealistically) to

be proportional to the component of velocity normal to the surface at that point.]

In 1694 he obtained a solution, which amounts te finding a function vy(x)

with v(0) = a, v(b) = 0 and for which

b

[y [y'(x)]3
J = f 1+ [y (12 &

]

is a minimm.

The connection of similar problems with "stream-lined" design
is obvious, though seldom used because of mathematical difficulties.

In 1696 John Bernoulll proposed the brachistochrone problem as a challenge
to other mathematicians of the time.

Here one seeks the curve vy({x) joining two ¥
given points A, B down which a particle will

slide in minimum time. That is, one requires A (0,a)

v(x) to be such that y(0) = a, y(b) =0

and .\a

b B

. 5
. { [1 + [y' (x0)12) dx 0| (b, 0)
a - yix)

0
is a minimum.
The unicgque solution (a segment of a cycloid) was correctly given by Newton,
Leibniz, L'Hospital and John and James Bernoulli.
Another problem, first considered in the 18th century, and which may be
formulated as a question in the calculus of variations, is the problem of

finding the path of minimum length (geodesic) joining two points on a given

surface.
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In the 18th century the concern was with geodesics on the earth's surface.
Subsequently, such guestions played an important role in the study of non-
euclidean geometries and later in the general theory of relativity.

Another class of problems which belong to the calculus of variations
are the so-called igoperimetric problems. A typical problem of this class
would be to find the curve y(x) Joining A, B (see diagram) which has a
given length and for which the area

enclosed by it and the x-axis is a

=

maximum. Thus we seek y(x) such

that

b
J YL + [y'(x)]2 ax = &
0

b
and j v dx 1s a maximum.
a

[We are here alsoc assuming that the desired solution y(x) be a function
of x.]

During the 19th and 20th centuries the calculus of variations has grown
steadily in importance. In part this is due to the discovery of so-called
"principles of least action", first in opties and classical mechanies, then
in many other areas including gquantum mechanics.

Such principles date back to classical greek times. Thus Heron
(improving on statements in Euclid's Catopirica) noted that light passing
from A to B by reflecting off a plane mirror follows the path of minimum
length (time). He then went on to apply this result to spherical mirrors.
Fermat adopted this "principle
of least time", and in 1661
successfully applied it to

problems of refraction.

The similarity between
Newton's first law for the motion of a particle and the observation that in
free space, light travels in straight lines (paths of shortest time) suggested
that a similar principle might apply in mechanics. Maupertuis made an attempt
in this direction and Euler established that for a single particle (moving
in a conservative force field) the observed velocity function wv(t) either

maximises or minimises the "action™

J = J v2 (t) dt.
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It was Lagrange, however, who first formmlated a generally applicable
"principle of least action" in about 1755.

ILagrange considered a system of n particles in a foree field derivable
from a potential functien V; that is, the force F = VW is conservative.

For such a system Lagrange showed that Newton's Second Law is equivalent to:

(i) the total energy T + V be a constant; and

(ii) the action f T dt must be a maximum or a minimum.

n
Here T =% Z ijj'Yj is the kinetic energy of the system.
3=1

Almost immediately Poisson reformulated Lagrange's results in terms of
the "Lagrangian" L = T - V, however, the most important development was bﬁ
the Irish scientist, William Hamilton. In a series of papers from 1824 to
1835 he developed the principle of “"stationary" action, first for optics and

then mechanies. His principle, which asserts that the action
5 = J L dt

is stationary (that is, either a maximum or a minimum) applied even
when energy is not conserved. Hamilton expressed necessary conditions
for & +to be stationary in a very symmetric way in terms of the "Hamiltonian"

H, which in effect represents the total energy of the system,

Many generalizations of the calculus of variations have also been
studied. For example ¥ may be a function of several variables and the
form of J may involve multiple integrals. One class of problems of this
type are the so-called "minimal surface" or "Plateau" problems. Here the
problem is to determine the surface of minimal area having a given boundary.
When a wire frame is fashioned in the shape of the boundary and drawn out of
a soap solution the resulting scap £ilm defines a minimal surface., a fact
exploited experimentally by the Belgian physicist, Joseph Plateau (1801-1883).
Such problems were considered by Lagrange and later Ampére in 1817, however,
it is only in the last few decades that major advances have been made .

So far we have only described the type of problem dealt with in the
calculus of variations. We now turn to the more important issue of surveying
methods developed to solve such problems.

During the 17th century problems in the calculus of varilations were
treated by individual techniques which exploited special features of each
problem. Although some of the approaches used hinted at more general methods

it remained for Euler to publish, in 1736, the rudiments of & general method.

* gee the Scientifie American article by Almgren and Taylor "The Geometry of
soap films and scap bubbles", July 1976.
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Euler began by replacing the integral with a finite sum and the
derivatives of y appearing in the definition of f by difference gquotients.
In this way "J" was made to depend on only a finite number of points on
the curve y(x). He then derived an expression for the change (variation)
in J resulting from variations in the ordinates at these points. By
setting this wvariation to 0, Euler obtained a difference equation for the
ordinates of the "solution". A crude limiting process then convinced him

that a necessary condition for the curve y(x) to maximize or minimize
b

(1) J = f Flx,y,y')dx
a

is that y({x) must satisfy the differential equation

3 A [of
(2) 3y  ax (ByJ =0

Over the next few years he applied this same approach to a larger and larger

variety of problems.

We illustrate the use of Euler's result by applying it
to a very simple problem.

Find the curve y(x) of shortest length which joins
the two points A,B (see diagram).

Thus we require y(x) such

y
4k that y(0) = y({1) = 0 and
(x) 5= | a
0
B \ 1
X
0 1 - = J (1 +Cy (x)]z];i dx
0
iz a minimum.

Here f(x,v,v') = {1 + Y'z)%: s0 s

oy =
g;.'= y'{l + Y'z)_%, and {2) requires that

o,

%) - o.

g_.. t 1237
dx(y (1 +y')

Clearly this implies ¥'(l + y'z)—% equals a constant

Cl ' or

T — 2_%
y' =c (1 - cl) .
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Integrating yields

- 2\
y = cl(l cl) x + c,.

Imposing the constraints y(0) = y(1) = 0 gives c, = ¢ = 0

and we conclude that the only possible solution is the straight

line vy = 0!

While Fuler's method led to an elegant and applicable necegsary condition:
that y satisfy a differential equation of the form (2), the derivation,
involving as it did a mixture geometric and analytic arguments, was cumbersome
and far from rigorous. i

It was Lagrange in 1755 who introduced a widely applicable and purely
analytic approach.

Lagrange considered the change in J, AJ, when ¥y(x) is perturbed by
the addition of a "small" function 6&yv{x), with ©&y(a} = fy(b) = 0.

v 4

>

L= T, YR F Sy x)
e e .

L 4

f
o gl N

Thus,
b

AT = J [fix, v + 6y, ¥v' + (8v)'} - £{x, v, v')]ldx.

a

Using Taylor' theorem to expand £ about (x,y,y') we obtain

Bf af l Bzf 2 'aZf 32f ’
= 5 tomor ! SlaoT + ——n ' ' .
& J[EY oy ay" (GY]] T 2|ay 4 2 ayay 8y (8y) TyZ (6y) "<+ dx
a
_ 12
= 6T + 5 §¢T + ...
b
- e B ,
where &J = J [éy Sy + 3y (Gy):]dx etc.
a

83 is known as the first variation of J, 527 the second variation, ete.

If J is a maximum or minimum for y +then AJ has the same sign regard-
less of how y 1is perturbed. By assuming that 6J dominates the expansion
for AJ and so AJ changes signs as &J does, Lagrange convinced himself that

a necessary condition for y to maximize or minimize J is that &g = 0.*%

* This observation, that &J = 0 for any y which maximizes or minimizes J,
was assumed in all subsequent work, however, it was not until 1848 that a correct
proof was given by Pierre Frédérie Sarrus. The result is now known as the
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From this Lagrange rededuced Euler's necessary condition (2).

b
[t B4y
8J = J 3y d§y dx + [ 3y By )'dx

a

Integrating by parts we have

b b b
af af d df
8J = J v dy dx + 2y 6%] J [dx By'} oy dx.
a & a
b
df 4 3f
=J‘ (E-f-d—x'?r] 8y dx, as §&y(a) = Sy(b) =0
a
Thus &J = 0 implies
b
af d of
oL e Lt | 5 =
J [By dx By'] ydx =0
a

for every choice of the function &y and so we conclude

that

3y ax oy’ O

One cannot help but notice the analogous roles played by the first variation
8J in the calculus of variation and the first derivative of a function in
the ordinary calculus. A sufficient condition for a differentiable function
g(x) to have a maximum at a point Xqr where the necessary condition
g'(xo) = 0 1is satisfied, is that g"(xo) < 0. It seems reasonable to
expect the second variation §2J to play a similar role in the calculus of
variations. This proved to be a much more difficult gquestion, first con-
sidered, unsuccessfully, by Lagrange. In 1786 Legendre was able to prove
that for a y maximizing J we have &8J =0 and 827 < 0. 'Thus the
condition 827 < 0, which Legendre proved equivalent to %E§=€ 0, is a
necessary condition, however in 1787 he was able to demonstrate that it is
not sufficient.

Sufficient conditions were not found until later in the 19th century.
The first was found by Jacobi in 1837, though an adequate proof of Jacobi's

result was first given by Weierstrass in 1879.
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Weierstrass also drew attention to an important limitation in the methods
developed hy Euler, Lagrange, Legendre and Jacobi.

We have already noted that Lagrange assumed the first variation &J
dominates the variation AJ. Since 67 depends linearly on &y and {8y)!"
while the higher order variations depend on terms like &y2, 8y(8y)' and
{6y)'2, this assumption requires that both 6y and its derivative (Sy)'
be small. Thus the size of J for y was only being compared to the size of
J on a limited class of other curves. Perturbations &y for which both 8y
and (8y}' are small were later called weak variations by Adolf Kneser
(1862-1930).

Functions y which satisfied the necessary (and sufficient) conditions
derived from such perturbations are termed weak solutions. The theories of
Euler, Lagrange, Legendre and Jacobi were concerned with weak sclutions. To
find solutions which really maximize or minimize J one must allow all
possible perturbations, including those for which (8y)' need not be small

even when &y is, thus one must allow so called strong variations.

r -
rwk S—— B

f
-~
-

-
-

A% y(x)
The eanly Zheories only allowed weak Weienstrass agdmitted stnong
variations. That L8 perturbations. variations, for which (8y)' need
with both 6y and (8y)' small not be smatl

Weierstrass proved that Jacobi's conditions were sufficient for weak solutions.
By introducing a further condition, Weirerstrass also obtained a set of
sufficient conditiens for y to be a strong solution, his proofs in this
connection were greatly simplified by Hilbert in 1900.

In the course of the work Welerstrass was led, naturally, to measure the

"nearness" of two functions: f and g are in an e-neighbourhood of order
p (p=20,1,2,...) 1if for every x with a <x <b we have
n n
i—g——dg < g for n=0,1,...,D.
ax ax

[Roughly speaking, &y is a strong or weak variation of vy depending on
whether vy and ¥ + dy belong to an e-neighbourhood of order 0 or of order
1.]
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Although Weierstrass did not publish any of his work on the calculus of
variations his lectures aroused fresh interest in the subject. Perhaps as
early as 1883, though the first published work did not appear till 1887,
Vito Volterra started to develop a theory of "functions of lines®. By a
line I Volterra understood what would now more usually be termed a curve
specified by the equation y(x) - or more generally by a pair of parametric

equations x = El(t), y = Lz(t). In modern language, a function of lines

U was a mapping from some family of lines into the real numbers. Thus,

U is a function which assigns to each line I. in the family a real numbexr
U(L). Since L is determined by the function y(x) we may think of U as
a function of y{x), U(y(x)). For convenience of discussion we will use
the modern terminology and refer to U as a functional, although this term
was first introduced by Hadamard after Volterra had established his theory.

As an example b

J=d(ylx)) = J fx,y,y")dx

defines a functional on the family of smooth curves joining A and B.
Volterra first defined a functional U +to be continuocus at the function
y({x) if, given e > 0 there exists a 6 > 0 such that for all functions
z{x} 1in a G&-neighbourhood of order 0 of y¥{x) we have
[U(y(x)) - U(z(x))| < g. He then went on to establish a "differential
calculus” for functionals,
In his theory the "derivative of U with respect to the function £,

at a point x.", is defined by

0

\ = oqaoa UUE(X) + nix)) - U(E(x))
U' (£(x) ,xu) = 1%1%1; x0+h

J (£(t) + n(t)) 4t
xn—h

provided this limit exists uniformly in h and g, where In(x)l < e for

all x and n(x) =0 for x < X5 -hTor x > Xq + h.
The total variation of U is now taken o be
b
[}
J u (Y(x),xo) 6y(x0) dx;.
a

For problems in the calculus of variations, Volterra hoped to use the
vanishing of his total variation for J in place of the requirement 6J = 0,

as a necessary condition for y +to be a solution. He also hoped to obtain

sufficient conditions in terms of higher derivatives and higher total
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variations defined by repeated applications of the above procedures.

Unfortunatley his theory did not prove very satisfactory for this
purpose and subsequently the adequacy of his definitions was criticized
by the French Mathematician, Jacques Hadamard (1865-1963).

Hadamard, along with several other French
mathematicians had taken up the study of
functionals toward the end of the century.
Again the calculus of variations supplied
their motivation, however, their work was
in a different directicn to that of Volterra's.
Their aim was to find simple representations

for a functional as a "Fourier" type series

of integrals. Hadamard introduced the concept
of a linear functional and cbtained some results
in this case. The functional U is linear if
U(x, fix) + lz gx}) = ll U(£(x)) + A, Ulg{x)) i

Jacques Salo

where A, and Az are constants. | T

2 .
mon Hadamard - *

The development of a theory of point sets

Georg Cantor (1845 - 1918), though born in Russia of Danish-Jewish
parents, lived most of his life in Germany where he studied under
Weierstrass. His original interest was in Fourier series and, in
particular, the question of uniqueness of the representing series. 1In
1870 he proved that, if for each point =x ’

N

an + Z (a cosnx +b sinnx) -0 as N + =,
0 ey © n

then a = bn = 0. A year later he extended thigs result to cover the case
when the series converges for all but a finite number of x wvalues. Then,
in 1872 Cantor introduced the notion of a set* of points of the "first
species"” énd proved that a, = bn = 0 provided the set of =x values at
which the series fails to converge is of the first species. Cantor defined
a first species set of real numbers as follows.

A point p is a limit (point) of a set § of real numbers if every (open)

interval containing p contains infinitely many points of S. The set of

all limit points of S he termed the (first) dexived set of S. The second

* For Cantor a set is a collection of definite and distinct cobjects for

which we can decide whether or not any given object belongs to it. He also
defined the union and intersection of sets.
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derived set of & 1is then the derived set of the derived set of S. In
this way Cantor is able to define the n'th derived set of S. A get 5

iz of the first species if for some n the n'th derived set is a finite

set of points. (For example, the points of a convergent sequence form a
set of the first species, as does a finite union of sets of the first
species.) 1In this work we recognise the beginnings of a theory of point
set topology* and the reason for Cantor's subsequent study of infinite
sets of points.

Using an idea already investigated by Bolzano (in 1851), Cantor said
two sets have the same power (or, as it subsequently became known, cardinal
number) if there is a one-to-one correspondence between them. For Cantor
a set is 'infinite' if it can be put into a one-to-one correspondence with
a (proper) part of itself. For two sets M and N, the cardinal number
of M is larger than that of N if there is a one-to-one correspondence
between N and a subset of M but no such correspondence between M and
N. Cantor proved that the relation "has the same cardinal number" is an
equivalence relationship and that larger, as defined above, has the properties
of a partial order. For sets with the same cardinal number as the set of
natural anumbers 1, 2, 3, 4, .... Cantor introduced the term enumerable
sets. The cardinal number of such sets he denocted by HO - the "smallest"
transfinite cardinal number.

His first paper on the subject (1874) included the following results:

(1) The set of rational numbers is enumerable.

(2) The set of algebraic numbers is enumerable.

Recall: A real number is algebraic if it is the root of some polynomial
with integer coefficients. The first example of non-algebraic (trans-
cendental) numbers had been given by Liouville in 1844 and the trans-
cedence of e established by Hermite in 1B73.

(3) The "continuum', the set of all real numbers (or points on a
line) 78 uncountable (not enumerable).

From (1) and (3) Cantor readily deduced the existence or irrational

numbers and more importantly, from (2) and (3) the existence of transcendental

* Cantor also introduced other relevant notions. B2 set is closed if it
contains all its limit points. It is open if all its points are interior
points, that is belong to open intervals containing only points of the
set, If every point of the set is a limit point, then the set is perfect
(that is, contains no isolated points).
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*
numbers . TIndeed, both the set of irrational numbers and the set of trans-

cendental numbers are "larger" than the set of rationals.

Cantor's proof that the algebraic numbers are enumerable.

For any polynomial equation

2 no_
a, + a,x + ayx + ... + anx =0

of degree n with integer coefficients, Cantor defined the

"height" to be

N (n-1} + |a0| + |a1| + ... [an[.

Corresponding to each possible value of the height
N=1,2,3,... there are only a finite number of possible
polynomials.

For example for N = 2 we have the four distinct equations;
x2 =0, 2x=0, x+1=0 and x - 1 = 0.

Since each polynomial equation has only a finite number of
roots, only a finite number of algebraic numbers arise from

the polynomials of any given height.

*These were the first important examples of "non-constructive existence
proofs". As we shall see, such proofs were soon to appear in many other
areas of mathematics. Essentially a non-constructive existence proof pro-
ceeds as follows. Let E be the set of all objects of the type whose
existence we wish to egtablish, then E is proved to be non-empty by showing
that its complement has some property which prevents it from being the whole.
In this way the existence of our objects is established without the need to
give a single example of such an cbiject. Such a proof should be sharply
contrasted with the "constructive" style of proof, in which E is proved to
be non-empty by explicitly producing an element of it. For example,
Fredholm's proof that the set of sclutions vy{x} to the integral equation

h

yvix) = £(x} + A [ K(x,t) y{t)dt
a

is non-empty, is achieved by "constructing" the explicit solution

b D(Xrtr}l)

D (M) £(t) dt

vix) = £(x) + J

a

{see pages 9 to 12).

Non~-constructive existence proofs require us to pay careful attention to the
formulation of our problem and to the processes of logic. The emergence of
such proofs partly explains the growing concern at the end of the 19th century
to formalize (axiomatize) mathematics. It also promated fresh interest in

the Foundations of Mathematics and Logic. The profound resultsof Godel,

Cohen and other 20th century logicians were a direct outgrowth of this work.
Indirect existence proofs were not, and are still not, universally accepted,
Some mathematicians have worked toward the developments of a purely "con-
structive mathematics", most notably i.. Brouwer (1881 - 1967}, E. Bishop

(1928 - } and currently a Belgium School of Mathematics centred around
Garnir (1921 - y—- the "intuitionist" school of mathematics.



Let ¢ (N} be the number of algebraic numbers which
arise from polynomials of height N and which have not
arisen from any polynomial of height less than N. Such

an algebraic number is also said to have height N. TFor
from the four polynomials of height 2. Further 0 is
x =0 of height 1, so $({2) = 2 and the algebraic
the numbers 1 to ¢ (1) +to the algebraic numbersof
$(2) algebriac numbers of height 2, the numbers

d{l) + 4(2) + 1 to ¢(l) + d(2) + $(3) to the $(3)

algebraic numbers of height 3 etc.

In this way a one-to-one correspondence hetween the

example; O, 1 and -1 are the algebraic numbers arising

the unique algebraic number arising from the one equation

nmumbers of height 2 are 1 and -1. Cantor now assigns

height 1, the numbers (1) + 1 to ¢(L) + $(2) to the

algebraic numbers and the natural numbers is established.

Cantor continued to investigate infinite sets for the next two decades.

For example he constructed a subset of real numbers with zero length which

may be placed in one-to-one correspondence with the whole continuum.

During this period he developed an
"arithmetic" for transfinite cardinal
and ordinal numbers. It was in the
course of this work that he éormulated
the celebrated continuum hypothesis,
however, this apsect of his researches
need not concern us here.

He also continued to give "simpler™
proofs for many of his 1874 results.
Thus, in 18385 he produced the often

gquoted enumeration of the rationals

14 1/1 17y 37

2 ¢ 2/1 1‘/1/1‘/1
3172 1 2 3

4 +1/3 2 2 2 o

s 22 2L

6 < 3/1 3 3 e

7 e

4/1 z/
1

29.
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BEarlier, in 1890, he developed the now famous “"diagonal argument" to prove
the real numbers (between C and 1) are uncountable. This argument has
subsequently been adapted for use in many other problems, particularly

problems of "computability".

Cantor's diagonal Argument

We begin by writing each real number between 0 and
1 uniquely as a non-terminating decimal. (Thus
L = 0.4999 ..., for example.)

We now assume the real numbers can be enumerated

1 -éé-'O.a11 A1y 8yg =--

2w 0.a a a

21 722 723 *°"*t

3 <->-O.a31 a32 a.33 ces

Here, A= 0,1,...,9 is the n'th digit in the decimal
expansion of the real number in correspondence with m.

Now, let b = O.b1 b2 b3 veey

9 if g 1

1 if akk #1,

where bk=

then 0<b =<1 and b differs from any of the real
numbers appearing in the above enumeration. Thus b
is not in correspondence with any natural number, contradicting

our agsumption that all the numbers between 0 and 1 have been
..enumerated and so establishing the result.

Cantor's work was not favburably received by many of his contemporaries.
Tt was strongly opposed by Kronecker and certainly treated unsympathetically
by Felix Klein, Poincaré and Hermann Weyl, to mention a few. Indeed, as
we have already noted (see previous footnote) some present day mathematicians
still prefer to develop mathematics without the use of transfinite methods.
It was not, however, without its champions, including Hadamard and later
Hilbert and Bertrand Russell. Today his ideas pervade almost every branch
of mathematics.

Most of Cantor's work was concerned with subsets of real numbers regarded
as points on a line, however, he did attempt to extend some of the ideas to
sets of points in n-dimensional euclidean spaces. In this he was partly

successful , particularly for some of the more "topological' results. Similar
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generalizations were attempted by other mathematicians. Two Italian
mathematicians G. Ascoli (1B43-1896) and C. Arzeld (1847-1912) aimed to
extend certain of Cantor's ideas to sets of curves or functions.* In
particular they were concerned with properties of limits of seguences of
functions. Thus, in 1883 Ascoli published a memoir "On the limit curves

of a variety of curves". To illustrate their work we state the following

result of Arzeld.

Let {£f} be a family of functions all defined and continuous on the
same interval [a,b], then a necessary and sufficient condition for every
sequence of functions from {£} to have a uniformly comvergent subsequence

18 that {£} be bounded and equicontinuous on [a,b]. ({f} is equicontinuous

if given € > 0 there exists & > 0 such that If(x) - f(x')|<s for all

pairs of points x,x in [a,b] with |x—x'| < 8 and all £ in {f}.)

In 1893 the French mathemétician René Baire (1894-1932) travelled to
Italy where he worked toward his doctoral degree (conferred at Milan in
1899) . Under the influence of Volterra and Dini his interests turned to
the theory of functions of a real variable, a subject which occupied his
studies for the remainder of his short working life (ill-health forced Baire
to resign the professorship of analysis at Dijon in 1914 and greatly

curtailed his subsequent research activities.)

Baire began with a critical analysis of the classical definition of
continuity due to Cauchy (in the course of which he introduced the notions

of upper and lower semi-continuity). He then proceeded to classifg_liﬁits

. T on .
of continuous functions defined on subsets of euclidean n-space R, applying
transfinite methods of a type which had previously only been used by Cantor ----

for sets of real numbers.

Contimious functions, he took to be of class 0. Limits of continuous
functions were of class 1 and so on. ﬁe foﬁnd properties common to all
functions of class n for each finite n, and undertook an extensive study
of the functions in class 1, 2 and 3. Baire used topclogical notions to
classify subsets of RY into two categories. Sets of the first category are
'small' (a countable union of sets whose complements are dense). They are
analogous to Cantor's enumerable sets. He proved that the complement of a
first category set is of the second category; that is, not of the first
category, and so is a 'large' set. (A similar classification of subsets
of R had been made two years earlier by Osgood.) Baire then demonstrated
that the set of discontinuities of a function of class 1 is a first category

('small') set.

* volterra's "lines".
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THE BIRTH OF ABSTRACT FUNCTION SPACES
As early as 1851, Riemann had "philosophized"about the importance of

regarding a collection of functions as a totality endowed with certain
intrinsic properties. ‘fThus, in connection with his work on "Dirichlet's
principle" we find the statement "...the fofalify of these functions fosums
a connected domain which {4 closed in itself..." and later, "There are
however manifolds in which the detenmination of position requires ... an
inginite sequence o even a continuous manifold of deteaminations ... ".

As an example of this he cites the manifold whose "points" are functions on
some common domain.

This idea, of regarding functions as "points" in a "space", was
implicit in Volterra's approach to the calculus of variations and was
pursued by Ascoli, Arzeld and Baire, particularly as a result of the in-
fusion of Cantor's ideas into the theory of real functions.

Similar ideas were also present, though less obviously, in the work
on integral equations; witness Fredholm's unigqueness proof (page 12).

Thus, by the beginning of the 20th century, the notion of "spaces" of
functions in which certain operations could be performed was certainly 'in
the air'. What was perhaps unclear was how profitable a pursuance of these
abstract ideas might bhe. One of the first to make the "bold" step of finding
out was the French Mathematician, Maurice Fréchet (1878 - 1973).

Frechét's contribution

When 12 years old, Fréchet's 1eaning toward mathematics was recognised
by his teacher, at the Lyceum in Buffon, who was non other than Jacques
Hadamard. Hadamard proceeded to give Fréchet private instruction and
encouraged Fréchet's father, himself a school teacher, to foster these
talents. Hadamard continued to instruct Fréchet throughout his student
years.

Fréchet's early work was on the representation of functionals, however,
in his doctoral thesis of 1906, he sought to encompass the ideas of Volterra,
Cantor, Arzela and others in a general theory of abstract function spaces.

Despite many interruptions due to the war, Fréchet continued to work on

abstract analysis until 1930 when, under the influence of Emile Borel, his
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interests turned to statisties and probability theory, an area which occupied
his attention for the remainder of his long working life.

Fréchet first considered the class I of sets in which an abstract notion
of limit is defined.

A set E belongs to the class I, if there is defined in E a procedure
which assigns to certain infinite sequences {An} EEAI, Bor weny An' ces
of elements of E a unique "limit". Further, the procedure must be such that:

(i} a constant sequence, An = A for all n, is assigned the

limit a&; and
(ii) if {Ah} is assigned the limit A, then so is every sub-

sequence A A «.a 0OFf A i,
gu nlr nzf '[ n}

For sets of class L, Fréchet now introduces a number of useful concepts.
The derived set S' of a set S is the set of all limits of sequences of
elements of §. & 1s closed if 8' c 8; perfect if S' = &. A 1is an

interior point of & if A is not the limit of any sequence of elements

in the complement of S.*

S5 is compact (in modern terminology, sequentially precompact) if
either it is finite or it has the "Bolzano-Weierstrass property": every
infinite sequence has, at least, one subsequence which is assigned a limit.
S is extremal (today's sequentially compact) if it is both compact and closed.
Compactness is among the more important of the concepts identified by Fréchet.
The "Bolzano-Weierstrass property" was important.in the work of Ascoli and
Arzela. (Thus, the theorem of Arzeld, given on page 31, provides a necessary
and sufficient condition for a subset of continuous functions to have this
property, with respect to "uniform convergence".) It was also important
for Hilbert's 1900 proof of the existence of a minimum in Dirichlet's
principle. Fréchet proved, if {sn} is a nested sequence of closed non-empty

subsets of an extremal set than O's s non-empty.

Fréchet next considered functionals, that is, real wvalued functions

defined on a set of class L. He defines a functional U to be

upper (lower) semi-continuous at A if l%ggt U(An) < ) u(a) for all
sequences An with limit A. U 4is continuous if it is both upper and
lower semi-continuous. For such functicnals he proves; an upper (lower)
semi-continuous funetional attains a finite maximum (minimum) on an extremal
set. (These results proved to be important in the calculus of variations
where the functionals are frequently not continuous but are lower semi-

continuous. For example, arc-length is lower semi-continuous but not

continuous.)

*Tn these first few definitions Cantor's influence is readily discerned.
Indeed, Cantor's notion of set is basic to all of Fréchet's work.



Fréchet then proceeded to develop results for functionals and sequences
of functionals analogous to; the intermediate value theorem, Arzeli's theorem
of page 31 and those for Baire's class 0,1,2,... functions.

The next step was to introduce a special subclass of L in which the
derived set of any set is always closed.

V is the subeclass in which the limit process is defined in terms of a

real valued function (A,B), termed by Fréchet a neighbourhood (voisinage).

{A,B) is required to satisfy

(i) (a,B) = (B,a) 20 for all elements A,B of the set
(ii} {A,B) =0 if and only if A = B
{iii) there is a real wvalued function f({e) for which 1%gat f(e) = 0,

such that (A,B) < f{e) whenever (&,C) and (C,B) are both

less than Ee.

The sequence {An} has limit & if (a,,A) + 0 as n = =,

[In (iii) we recognise a type of weakened "triangle inequality". Indeed,
in an attempt to prove the converse of the previously cited theorem:

If X 1is an extremal set, then every continuous functional U attains a
finite maximum and minimum on K, Fréchet considered a true "metric" for
which (iii) is replaced by the requirement (A,B) < (A,C) + (C,B) for aill
elements A, B and C of the set. In this case he referred to (A,B} as
an ecart (literally "&€cart" translates as "distance apart"). It is worth
remarking that while Fréchet's theory was more general, in all the examples
he considered an gcart was present.]

For sets of class V, Fréchet gave the following definitions and results.

The sgheroid of centre A and radius p is the set of all B such that
{A,B}) < p. A set is bounded if it is contained in a spheroid of finite
radius and every extremal set is bounded. A version of the "open-covering”
characterization of extremal sets is proved, however to obtain the full
result he further restricted attention to what he termed V-normal sets.

A set is V-normal if it is perfect, separable (contains a countable dense
subset) and every Cauchy sequence has a limit. Here, {An} is a Cauchy
sequence if for every positive integer p, (An+p’An) +0 as n =+ «,

In V-normal sets he alsc introduced the usual -8 definition of
continuity and uniform continuity for functionals and proved that every
continuous functional on an extremal set is uniformly continuous.

This work was followed by several examples, some of which are listed
below.

(1) The set of all continuocus real valued functions on some interval I.
Here the ecart is (f,gq) = ¥2¥ If(x) - g(x)[ and "limit" is "uniform

limit".



MAURICE FRECHET (1954)

(I am indebted to Prof. Dr. K. Jacobs for the above photograph and to

Mr. Roberto Minio for assistance in securing it.)
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(2) The set of all sequences of real numbers Ew'
Fréchet referred to this as "a space of countably many dimensions”, a
point of which may correspond to the Taylor coefficients of a function
expanded about some fixed origin.

As an ecart on Em Fréchet used

OXO 1 |xphyp|
pey B 1+ [xp - yp!

where x = (xl, X wes xP, ...) eta.

2'

(3) The set of all "curves" (directed arcs) in three dimensicnal space.

Such a "curve" <y is represented parametrically by
x= ), y=1,06, z=v,(0), o0<t<1,

where Yyr Ypr Y5 are continuous real valued functions.

The ecart is defined by

(v,v*) = g.1.b. [mgx Yl (8) = YTENZ+ G, (8) =~ v ENZ + (v, (6) - yi(0)2)

where the greatest lower bound is taken over all possible parametric

. *
representations of the two curves vy,y".

For each of these examples Fréchet went on to show that the resulting
"space" is normal; that is, perfect, separable and, in modern terminology,
complete.

The significance of Examples (1) and (3) for the calculus of variations
is obvious. 1Indeed, in 1911 Frechet considered the "differentiability"
of functionals defined on such spaces.

Thus, for the space of example (1), Fréchet said the functional U is
differentiable at f if there exists a linear functional I {see definition

£
on page 26) such that

- U(f+Ag) — U(£) _
liﬂﬁt g.l.b. Y Lf(g) = 0,

here the greatest lower bound is taken over all ¢ with M{g) = 1 where

*
M(g) = Max |g(x)].
xeX

*Fréchet gave the definition in the equivalent form
U{f+g) -~ U{f) = Lf(g) + o(M(g)).

In this form you may recognise the definition as that often used in the calculus
of several variables to define the total differential of a function.
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Differentiability of U at f in Fréchet's sense implies continuity
of U at f and so Fréchet's differentiability proved too stringent a
condition for use in the calculus of variations (see comment on page 33).
The most useful form of differentiation for this purpose appears to have
been found by a contemporary of Fréchet, and also a student of Hadamard,
R. Gateaux in 1913. Unfortunately Gateaux was killed early in the Great
War and a full version of his work did not appear until 1922 when
Lévy prepared Gateaux's papers for publication.

Gateaux dropped the uniformity in Frechet's definition. U 1is

Gateaux differentiable at £ if for each g thée following limit exists

Timit U({f + Ag) - U(f)
A0 A

The use of these and similarly defined higher order derivatives in the
calculus of variations were considered by Charles Albert Fischer (1884 -
1922) and Elizabeth IL.. Stourgeon (1881 - 1971), who restricted attention
to weak variations by taking M{g) = §2§ {[g(x)l, |g'(x)|}.

By 1924, these ideas had been brought near to a definitive form through
the efforts of the Ttalian Mathematician, Leonida Tonelli (1885 - 1946).
Tonelli's work brought to a “"successful conclusion” the programme started
by Volterra in 1887.

Préchet's general approach gave considerable impetus to the newly
emerging theory of "point set topology" (now known as General Topology),
initiated by Cantor. Thus, in Felix Hausdorff's (1868 - 1942) influential
book, Grundauge der Mengenlehre (Essentials of set theory, published in
1914), there is a great deal of dependence on Frééhet's ideas. Hausdorff
both refined and further generalized Fréchet's work. We owe much of our
modern terminology to Hausdorff. For example, Hausdorff defined a metric
space (Fréchet's ecart-spaces) and the notion of completeness: every
Cauchy sequence is convergent. He also obtained many new results-for such
gpaces including a generalization of Baire's theory of Category 1 and II
sets. He proved that the complement = of a first category subset in a
complete metric space is of the second category.

By way of generalization, Hausdorff build on an idea used by Hilbert
in 1902 in a special axiomatic approach to plane euclidean geometry.

Essentially, he introduced the notion of a "neighbourhood" of a peint
which was to replace the spheroids of a metric space. W

Hausdorff defined a topological space tao be a set of points x

together with a specified family of subsets, termed neighbourhoods and

satisfying:

(i) each point x is contained in at least one neighbourhood Ux;
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(ii) The intersection of two neighbourhoods of a point x is itself.

a neighbourhood of x. {Thus the family of neighbourhoods is
closed under non-empty finite intersections.)
(iii) If Ux is a neighbourhood of the point x and y is any
point in Ux’ then there exists a neighbourhood UY of ¥
with U _c U_.
¥ X
(iv) [Hausdorff separation axiom] If x and vy are distinct points

then there exist disjoing neighbourhoods Ux' U of x and v

Y
respectively.

U
x

Using this more general structure, Hausdorff is able to redefine many
of Fréchet's terms. Thus: x is a limit point of a set of points if every
neighbourhood of x contains other points of the set; a set is open if

every point of it is an interior point; that is has a neighbourhood con-

taining only points of the set, etc.
The analogy of the usual €-8 definition of continuity is as follows.
A mapping £ from one topological space into another is continuous at

x if given any neighbourhood E of £(x) there is a neighbourhood

f(x)
h i i E . th i E .
Ax of x whose points all map into £ (%) at is f(Ax) =] £ (x)

Ef(x)

Hausdorff's work was the point of departure for considerable later
research, In particular we had the work of a Russian school of
topologists -~ Alexandroff (1896 - ), Urysohn (1898 - 1924), Tychonoff
(1206 - } and an American school which developed around Robert L.
Moore (1882 - 1974).

The Russian school was largely concerned with the question of when
a given topological space could be realised as a metric space. For separable
spaces this question was answered by Urysohn (published in 1925)*% Urysochn,
together with Karl Menger (1902 - ) also developed the first generally

acceptable definition of "dimension" in topological spaces.

* However, complete answers were not given till the late forties, by a
nurber of mathematicians including one of R.L. Moore's students, R.H. Bing.
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We will not pursue general topology further except to remark that it

has remained an area of active research to the present day.

The theory of integral equations, as developed by Volterra, Fredholm
and, in particular, Hilbert, inspired an alternative and, in many ways,
independent development of function spaces. In this work algebraic as well
as topological properties were important.

Hilbert's study of a finite number of equations in the same number of
unknowns made freguent use of the fact that these equations are embedded
in a more general vector structure in which "addition", "inner product" etc.
are defined and in which "geometrical" reasoning is possible. He did not,
however, explicitly attempt to develop a similar structural setting for the
transcendental problem. There, the appropriate equations and manipulations
were arrived at by analogy (or rigorous passages to the limit) from
individual results in the finite theory.

The possibility of developing a structural setting for the trans-
cendental problem was not overlocked for long. In 1909 a faltering and
isolated attempt to provide a general theory was made by the American
Mathematician, Eliakim H. Moore (1862 - 1932). Moore aimed at developing
a broad axiomatic theory which would include not only Hilbert's results
but also other classical results on infinite systems of linear equations.
On the other hand, starting in 1907, the German Mathematician, Erhard
Schmidt (1876 - 1959) undertook to simplify and illuminate what Hilbert
had done. Schmidt's approach proved both successful and influential.

The contribution of E. Schmidt

In relating his theory of infinite quadratic forms to integral

equations, Hilbert had used the fact that the continuous functions on an
interval, with which he worked, are uniquely determined by their Fourier
coefficients. Using this, Schmidt identified these functions with "points"
in the space of square summable infinite sequences of complex numbers.

Thus, a point of Schmidt's space is

z = {z } = Zyr Zor wney Bopoeeey

where

Following Hilbert, Schmidt defines
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(=]

[z, wl = )
p=1

Z w
P p’

he also introduces the notation

*

p =
le Zp ZP Viz, z]

[Note: By the square summability assumption [zl < «.]
A Y, R

Schmidt now introduces "geometric"
language (and hence thinking) into his
space.

Two elements =z, w are called
orthogoral if [z, w] = 0. From this

follows the generalized Pythagorean

theorem: <f 2z and w are-orthogonal
then o Mzl ® = 22 + ) 2,
Schwarz's inequality:
[[z,w]] <llzlllwl and the triangle
inequality: [z + Wil <llzl + l+ll, . :
are also proved. - ERHARb SCHMIDT

Schmidt then considers sequences of mutually orthogonal elements and
sets of linearly independent elements. Here, Bessel's inequality, Parseval's
identity for finite sums, and the recursion formula now known as the Gram-
Schmidt orthogonalization procedure are established. .

Finally, Schmidt proceeds to what are undoubtedly the most significant
and novel aspects of his work.

The notions of strong convergence and strong Cauchy sequence are

. -~ {n) . (n)
introduced. The sequence {z '} strongly converges to z if llz" '-zll + 0.

Schmidt then proves that his sequence space is complete (that is, every strong
Cauchy sequence is strongly convergent).

By a closed subspace, Schmidt understands a subset A which is both

"topologically closed" {contains all its strong limit points) and "algebraically

closed" {that is, if =z, w are elements of A and Al’ A are any palr of

2
complex numbers, then llz + lzw is an element of A).

For any clesed subspace A and any point 2z, Schmidt establishes the
L 2) L@

existence of unigue points

w(l) belongs to A&, w(z) is orthogonal to A (that is, [w

such that 2z =

*It is [z,w] which accords with the modern notion of inner-product. Thus
through Schmidt's work we find [z,w] being used where today we would use
[se)

the complex imner-product (=z,w) = Z Z W .
p=1 P p



for all pointz a of Aa)..

He then proves that, for every point a of A Hw(z)” <lla - all,

with equality only when a = w(l)

. On the basis of this result he

refers to llw as the distance between =z and A.

The work of Friedrich Riesz
In 1902 the French Mathematician, Henri Lebesgue (1875 - 1941)

ien.

introduced a very general and powerful theory of integrat
e SIS

The Lebesque integral is basic to modern ¢§ ;
real analysis and the development of his ideas
iz a major area of active research. '

Under Lebesgue's definition many more
functions proved to be integrable than had
previcusly been the case.

For example, the Divichlet function

0 for x dirrational e
f{x) =
1 for =x rational

};, Henri LEBESGUE;.

is Lebesgue integrable, ] £ (x) du(x) = 0, but not integrable in the
. .
sense of Riemann.

One consequence of this is that, under quite mild conditions,
Lebesgue was able to show that the "limit" of a sequence of Lebesgue
integrable functions is itself Lebesgue integrable. In earlier theories
the integrability of the limit usually had to be assumed. This had been
an impediment in the work of Ascoli and Arzeld for example.

The Lebesgue integral proved especially useful in the theory of

Fourier series.



LEBESGUE TNTEGRATION IN ONE DIMENSION

Iebesgue based his theory on the notion of the "measure" of a
set of real numbers. ILet E be a set of real numbers contained

in the interval {a,b]. The outer measure of E is
- (-]
w(E) = g.l.b. § £ :
i=1

where the ﬂi are fhé lengths of a countable collection of intervals
whose union contains E, the greatest lower bound is taken over all
such collections of intervals.

E is said to be measurable, with (Lebesgue) measure u(E) if

w(E) = (b - a) -~ u(la,bN\D).

After showing u is well defined and "countably additive" Lebesgue
defines a real valued function f on [a,b] to be "measurahble" if
{x:f({z) > al is measurable for all real numbers a.

f iz now said to be (Lebesgue) integrable (or summable) if
g.1l.b. g a; pi{xs a;q < fi{x) < ai}) < =

where the greatest.lower bound is taken over all possible bartitions
a1, 83, «-., a, Oof the range of f. When it exists, the value of this

greatest lower bound is the Lebesque integral.of £ and is denoted by

b

I £xdaplx).
a as‘fL?f -
After establishing that the -f - s

Lebesgue integral is well defined

7o N

and agrees with the Riemann

—r ¥

integral of £ when the latter is

defined, a number of important

results may be established, for

U'"“"'." i
\

example:
Dominated Convergence Theorem:
Let {£ }, £ and g be measurable functions such that
1) For each n=1,8,....
uix:|£ 00| > g =0 {
ii) For each € > 0, asn+ =
wlx:|£ (x) - £(x)| > e} = 0.
and 1i1) g and each £ 158 integrable.
Then, £

that is, Ifnfslgl except on a set of
measure Zero.

is integrable and, a8 n + =

b b
I fn(x)du(x) -+ I fx)dp{x).
a ] a
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For example, in 1906 Pierre Fatou (1878 - 1929), generalizing a result

of Lebesgue, proved that

[

n=1

T
J f(x)g(x)du(x) = 2a0a0 + X (ancxn + ann)
T

where an,bn and an'Bn are the Fourier coefficients for £(x) and g(x)

respectively:
ki) ki)
a =2| £(x) cos nx dp(x) ¢« =2 | gx) cos nx dp(x)
n W s n_ w9 COS nx dpix
=T ~T
™ i3
b =2 | £(x) sin nx du(x) B =2 | g(x) sin nx du(x)
now H n_oow) 2 Sin nx GHixl,
wp =T

and f(x), g(x) are assumed to be Lebesgue sguare integrable; that is
) T

J (£(x))%du(x) < = and J (g(x))2dn(x) < w.
_Tr _Tf

We might recognise this as the condition necessary for the orthonormal

. cos x si cos 2 sin 2 .
family, T J%'x' 3;' xr ;%~ LI to be complete in the sense

used by Hilbert (see page 16) to develop his theory of symmetric integral
equations.
These resultis led the Hungarian mathematician, Friedrich Riesz (1880 - 1956)
to extend Hilbert's results for integral equaticons of the form
b
yvi{x) = £(x) + A f Kix,t) y(t) dt

a

where f(x) and X{x,t) are continuous functions to the case when £ and
K are only assumed to be Lebesgue square integrable.

In the course of this work, Riesz was led to consider the "moment problem®
of determining {(if it exists) a function f£(x) which has as its "Fourier"
coefficeints a given sequence of numbers.*

In 1907, Riesz proved the following basic result.

(R) Let {¢P} be an orthonormal sequence of Lebesgue square integrable
functionson the interval [a,bl. Then, given a sequence of real numbers

{an} a necessary and sufficient conditon for there to exist a funetion £
such that

*The moment problem for arbitrary families of functions has
proved basic to certain questions in statistics and was one of the problems
considered by Fréchet in his later work.



b
f £i{x) ¢P(x) du(x) = ap for p=1,2,3,...
a

18 that
a? <
1 P

[==]

i r~18

P
Further if {¢P} 18 "complete" then £ 4is unique up to the addition of

a funetion n(x) with Jb [n{x)| du(x) = 0 such a function is
known as a Egil_function.?

Less than a month later and in the same journal (Comptes Rendus) the
German Mathematician, Ernst Fischer (1875 - 1959) published the following
result,

Fischer said that a sequence of Lebesgue square integrable functions

*
{fn} is convergent in the mean on [a,b] if

limit
n , Mo

(£_(x) - fm(x))2 du(x) = 0

A —

and {fn} converges in mean to £ if

b
limit( (f (x) - £(x))2 du(x) = 0.
T-ea n

al

Fisher then proves

(Fy If {fn} 18 a sequence of Lebesgue square integrable functions which
converges in mean, then there exist a fumetion £ (unique up to the addition

of a null function) such that {fn} converges in mean to £.

Riesz's theorem (R) is then deduced as a consequence. Indeed (F) and (R)

are equivalent and are now known as the Riesz-Fischer Theorem.

Via a given complete orthonormal family (the existence of which had been
established by Hilbert, page 16), Riesz's theorem establishes a one-to-one
correspondence between Lebesgue square integrable functions and square summable
sequences.

Following the publication of Riesz's result, both Schmidt and Fréchet
remarked that the space of Lebesgue square integrable functions on the interval

[a,b], now denoted by L2[a,b], has a "geometry" completely analogous to

*Today we would more likely use "Cauchy in mean" instead of "convergent in mean”.
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Schmidt's space of square summable sequences. Indeed Fréchet introduced the

(f, g} =/

and used this and Riesz's result to characterize the extremal subsets of

L2[a,b].

ecart

(F(x) - g(x))? dx

p—

[Note: In order to satisfy property (ii) of an ecart (page 34} it is necessary
to identify two functions which differ by a null function.]
Fréchet also proved that for every continuous linear functional U on

12[a,b] there exists u(x) e I2[a,b] such that

b
u(£) =-I fix) u{x) dp(x).

a
It is worth remarking that, in terms of Fréchet's ecqrt the Riesz-Fisher

Theorem may be interpreted as: L%[a,b] 18 a complete metric space.
These ideas were further elucidated by Riesz, who, in 19210, was able
to realize L2[a,b] as a special case of a more general class of spaces;
the so called IF spaces.*
For 1 < p < @, Riesz considered the set LP[a,b] of functions F
for which
b
J £ [Pautx) < = .

a
(Two functions are identified if they only differ by a null function.)
Using inequalities developed by HBlder {1859 - 1937) and Minkowgki

(1864 -~ 1909), Riesz establishes that LP[a,b] is closed unaer finite
linear combinations and that, for any f ¢ Lp[a,b] the product £(x)g(x)
is Lebesgue integrable if and only if g € L[a,b] where q is such that
§-+ é-= 1. {Henceforth, it will be assumed that p and g are related
in this way.) Two types of convergence are introduced into LP[a,b].
The sequence {fn} converges strongly to £ if

b

J l£ x) - £0x)[Pautx) » o.

a

{fn} converges weakly to f if

b
(i) I |fn(x)[Pdu(x) <M for all n and some M > 0; and

a

* Y"Rigsz' idea may have been motivated by the earlier work of H. Minkowski
who in connection with his work on the "geometric theory of numbers',
considered, for 1 € p < =, n b 1/p as a distance function between
DRERSA
i
i=1 *
points x = (xl,xz,...,xn) and y = (YI'YZ""'YH) in n-dimensicnal space.”



44,

t
(ii) [ (fn(x) - Flx))du(x) + 0 for all t with a <t < b.
a

(Later, he effectively shows that this last definition is equivalent to

the modern one:

b
£ Weakl¥ £ if [ (£ (x) - £(x)) glx)dulx) + 0
@

for every g € Lq[a,b].)

Riesz notes that strong convergence always implies weak convergence
and gives an example {fn(x) = CO5 NX 1in LP[O,l]) to show that the con-
verse does not heold.

Fischer's theorem (F) of page 42 is now generalized to prove: Lp[a,b]
is complete with respect to strong convergence; that is, if {fn} is a
strong Cauchy segquence then it is strongly convergent to some £ in
1P[a,b].

For weak convergence, Riesz proves that every "bounded sphere" in
LP[a,b} is weakly compact; that is, if {fn} satisfies (i} above then
{fn} has a weakly convergent subsequence.

He also answers the moment problem:

Can one find £ 1in LP[a,b3 sueh that
b
[ f(x)gn(x)du(x) =a

a

where the g, area given sequence of functions in La,b] and the a
are a given sequence of real numbers. In the course of this he proves

what is now known as the Riesz Representation theorem: A 18 a bounded

Linear functional on Lp[a,b] {(that is,

A(}\lf1 + lzfz) = llA(fl) + AzA(fZ)

for all real numbers A A and all fl, £

1" in ;P[a,b] and

1

2

b p
la)| < MU | £ () | Pan (x[l

a

for all £ in IP[a,b] and some M > 0) if and only if
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b

L(£) = J a(x) £ (x)du(x)

a

for some funetion a in L% a,bl. Further for any given B, a is unique
up to the addition of a null function.

We should recognise this as a generalization of Fréchet's result on

page 43.

Riesz's attention now turns to the study of integral equations in -LP
spaces. While the problem under consideration is rather specialized, it is
in this work that we find the heginnings of "abstract" operator theory.

He introduces the notion of an operator* T form Lp[a,b] into

itself and defines T +to be linear if
T(Alfl(x) + lzfz(x)) = Al T(fl(x)) + lz T(fz(x))

and bounded if

b
J [T (£ (x)) |Pan (x) <P
a

b
for all £ e L°[a,b] with { If(x)IPdu(x) <1, and some M > O.

a

An example of such an operator might be
b
T(£(x)) = J Kix,t}E£(t)du (t)

a

for suitable K, and so in this notation the study of integral equations

is included in the study of “operator equations" of the form
p{x) = £(x) + AT($(x)).

Riesz now introduces the important concept of adjoint operator.

For any fixed g e Lq[a,b]
b

A(E) = f T(£{x))g(x}du (x)

a2

defines a bounded linear functional on Lp[a,b] and so0, by his representation

theorem there exists a unigue a ¢ Lq[a,b] such that

* Riesz uses the term "functional transformation™.
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A(f) = fix)a(x)ap(x).

% O —

He now defines the adjoint operator T by

x®
T (g(x)) = a(x}.

*
T is then a bounded linear operator on Lq[a,b] such that

b b
[ T(£(x))g(x)du(x) = J £(x)T™ (g (x))dp (x)
a a

for all f e L'[a,b] and ¢ e 1.%a,b].

The question of invertibility of T is considered next; that is, the

solvability of the homogeneous problem

T(p(x)) = £(x) for all f in Lp[a,b].

* ® - - *
Noting that T is invertible if and only if T is  ((T) 1 = (T 1) ) he

derives a necessary and sufficient condition for the existence of these

inverses; namely, that there exists m > 0 such that

mi....‘—..b-'

b
[£(x) [Pap (x) <P f |7 (£ () ) [Pan (x)
a

and

o —

b
lg ) | Tau (x) <n? J I (g (x) | Fap ()
a

Restricting himself to the case p = g = 2, Riesz now tackles the eigenvalue

problem for

$(x) = £{x) + AT($(x)).

Noting that the symmetric integral equations studied by Hilbert correspond to
the case when T = T*, he further specializes to this class of problems for
which he is able to parallel many of Hilbert's results. To match Hilbert's
result for complete continuity (see page 17), Riesz defines an operator T +to
be completely continuous if T maps every weakly convergent sequence of
functionsinto a strongly convergent one, that is, if f weakl f then

*
T(f (x ))_EEEEEEEK T(f(x)). He then establishes that 1f T =T is completely

continuous, then




Umkechrung der linearen Funkiionaliransformation.
Es bedeute T'[f(z)] irgend eine lineare Transformation der Elasse

: P
[LF], T[g(z)] die zu ibr transponierte Transformation der Klasse [L-”"‘]
Wir fragen nach der Lidsbarkeit der Funkiionalgleichung

(39 T{E(z)] = f(=)-
Darin bedeutet f(z) die gegebene, E(z) die gesuchte Funktion aus der
Klasse [LF]. Das Gleichheitszeichen ist bis auf eine additive Nullfunktion
zu deuten. ~

Laut der Entwicklungen des vorbergehenden’ Paragraphen ist die
Gleichung (34) gleichwertig dem mit similichen Funklionen g(z) der Klasse

L -
[LP' 1] gebildden Gleichungssysiem

(35) SE@ To@]dz = [1@) () d.

Das Gleichungssystem kann dorch endlich oder abzihlbar unendlich viele
Gleichungen ersetzt werden; man kann hierfir z. B. wieder die’ Gesamt-
heit der in § 12 benutzten speziellen streckenweise konstanten Funktionen
heranziehen; denn zufolge der Linearitit der Transformation & kann man
jede Funktion Z[g(z)] durch jene, die nach Anwendung derzelben Trans-

formation aus diesen epeziellen Funktionen hervorgehen, (i.n bezng aufpf_ 1)
stark approximieren. Man darf daher das in § 11 formulierte Kriterium
auch, auf das System (35) anwenden. Beachiet man noch, daB das System
der L[g(z)] alle linearen Verbindungen dieser Funktionen mil enthilt,
50 ergibt sich: .

Fine nolwendige und hinveichende Bedingung fiir die Lasbarkeil der
Funklionalgleichung (34) durch eine Funltion E(z), fiir welche

b

- fiE@rdz < av

ausfdllt, besteht darin, daff die Ungleichung '

4

‘ﬁ'(x)g(z) dz gM[uﬂI[g(z)]]ﬁ dz:|

' P
fiir alle Funkilonen g(z) der Klasse [LP—‘] erfiilll ist.

RIESZ INTRODUCES ADJOINT TRANSFORMATIONS
- FROM MATHEMATISCHE ANNALEN LXIX
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T(f(x)} =

et

Il ~18

1
— P {f(x))
1 An n

where the ln‘s are the eigenvalues of T (real and countable in number)
and each Pn is an operator analogous to a projection to the "eigenspace™
corresponding to An.

Before leaving the work of Riesz we mention a further paper, published
in 1918. 1In this paper he proceeds to a study, similar to that undertaken
for TP spaces, of the space of all continuous functions on a closed
interval [a,b] (Example (1) of Fréchets on page 34). 1In this paper he
introduces much of the terminology later used in general "Banach spaces”.

For example, for £ in this space he calls max |f(x)| the »norm of f
asxsh

and, following Schmidt, denotes it by [/£]. Up to this point, he had not,

however, used similar notations in his study of the 2 spaces. *

THE EMERGENCE OF AN AXTOMATIC APPROACH

Fréchet developed axiom systems which were sufficiently broad to

encompass "topological structures" such as those considered by Volterra,
Agscoli, Arzeld, Osgood and Baire. Hausdorff's system of axioms allowed
for even more general structures.

The spaces discussed by Schmidt and Riesz certainly fitted into these
axiom schemes, however the axioms were too general to fully capture the
rich structure of these spaces, in which "algebraic" operations were
combined with topological ones.

Bxiom systems more attuned to these richer structures were presented
by: Stefan Banach (1892 - 1945}, in his doctoral thesis of 1920;
Norbert Wiener (1894 - 1964) in a paper presented at the 1920 International
Congress of Mathematicians held in Strasbourg; Eduard Helly (1884 - 1943)
in 1921; and Hans Hahn (1879 - 1934) in 1922. The first three men almost
certainly worked independently of one another, while Hahn based much of
his work on that of Helly. It was however, Banach who more fully developed
the work and certainly it was his contributions which proved most influential.
At the time, Wiener's interest was in logic and the foundations of mathematics.
His set of axioms was presented as an example of an axiom system which might
describe various sets of funections occurring in analysis, Wiener did not
investigate any consequences of his rather complicated system of axioms.

In contrast, both Helly and Hahn presented their axioms in the context
of particular problems; in Helly's case, the solution of systems of

infinitely many equations in infinitely many unknowns., Hahn's axioms are

* "In all of this work Riesz made no explicit reference to Fréchet's work

or the notion of an ecart, though in 1908 Riesz had contributed a paper
generalizing Fréchet's axioms along similar lines to those of Hausdorff (see
‘page 36) and so certainly was aware of these ideas."
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similar to those of Helly and are almost identical to those given by Banach.
Hahn regarded his axioms as a tool for studying the representation of certain
integrals as limits of other integrals and derived results in a number of
specific spaces. For example, in the space of continuocus functions on La,b]

with norm D(f) = Max |£(x)|, he establishes:
assesh

A necessary and sufficient condition for

b b
J f(x)¢n(x)dx -+ f fix)d(x)dx
a a

for all £ <in the space, is that the result holds for £(x) =1 and for

fix) = x.

Neither Helly or Hahn regarded their axioms as the basis for an abstract
theory, however, the important notion of "dual space" is to some extent

latent in both their papers.

Stefan Banach and his work

The departure of the Russian army from Warsaw in 1915 marked the end
of more than a century of cccupation for Peland. With independence came the
establishment of a Polish university and the formation of a number of learned
societies. One in particular, the Mianowski Fund, actively encouraged the
development of mathematics in Poland. This Society created a series of hooks
for self-learning by the young, as well as publishing journals for the
dissemination of more advanced work. It was in one of their publications,
Nauka Polgka, that an article by the young Polish mathematician, Zydumunt
Janiszewski "On the needs of Polish mathematics" appeared in 1918.
Janiszewski called for the creation of a "Polish school of mathematics™
concentrating on one field and supported by the publication of a journal
which would gain international recognition by accepting articles written in
the more widespread foreign languages.

Janiszewski's programme was implemented by the mathematician-teachers
of the time: Janiszewski, Stanislaw Mazurkiewicz, Waclaw Siexrpifiski, Hugo
Steinhauss, 5. Zaremba and K. Zorawski.

In 1920 (the same year as Janiszewski's death) the first volume of
Fundamenta Mathematicae appeared. This journal is still published today
and soon gained international status, attracting papers on Set Theory, the

Foundations of Mathematics, Topology and related material. It was followed
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shortly afterwards by another journal, Studia Mathematica®, specializing in
functicnal analysis.

On a walk through the Cracow Green Belt during the summer of 1916,
Steinhaus overheard part of a conversation between two youths, Otto Nikodym
and Stefan Banach - in which unexpectedly the words "Lebesgue integral
occurred., Banach proved to be an engineering student whose mathematics was
largely self-taught., ({Banach barely knew his parents; he had been given to a
washerwoman for bringing-up, and by the age of fifteen had to earn his own
living, giving private lessons, preferably on mathematics.) In 1920 Banach
was appointed as an "Assistant in Mathematics" at the Lwdw Technological
University and so began his career as a "professional" mathematician.

In his thesis of 1920 (a "summary" of which appeared in the 1922 volume
of Fundamenta Mathematicae), Banach introduces spaces E satisfying a set
of axioms identical with those now used to define a complete normed linear

{or Banach) space:

E is a (real) vector (or linear) space on which a norm function
Il is defined and satisfies

[« > o,

lxl = 0 if and enly if x = 0,

laxll = lalﬂx” for all real numbers a,

Iz + vl <Iixl + Iyl

and the completeness axiom; if {xn} is a Cauchy sequence,

that is, “xn - xp” + 0 as n, p~+ =, then there is an x

in E such that “xn ~ %l +0 as n -+ =,

The spaces of Schmidt, Riesz and many of Fréchet's examples are Banach
spaces.

For example,

b
M€l = [[f(x)lpdu(x)
a

defines a norm for Lp[a,b] while C[a,b] is a Banach space with respect

to the norm
£l = Max fix)].
asxsb ! l

Banach develops a number of theorems concerning the underlying space E.

Typical of these is the following.

*Founded by Banach in 1929
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- N
If {x } is such that ] lx |l <=, then )| x_ comwerges to a
n n=1 n=1 "

unique element of E as N + =,

Following Fréchet, Banach also introduced "geometry" into the spaces.
For example, the sphere with centre %y and radius r, K(xl,r) is, by
definition, the set of all elements x satisfying |lx - xlﬂ S<r. He
pbroves that if K(xn,rn) is a nested sequence of spheres then the sequence
of centres converges to an element which belongs to every sphere.

The title of Banach's paper includes a reference to the application of
his theory to integral equations. While he does not explicitly mention
such equations in the paper itself, he does develop results which are
"obviously" relevant to the study of integral equations. Banach introduces
operations (today termed, operators) F which map one Banach space E
into another El' F is said to be continuous at Xq if essentially
”F(xn) - F(xD)H -+ 0 whenever “xn -« + o. Banach then rephrases this
in terms of spheres. After proving that sums and scalar multiples of
continuous operators are continuous, Banach specializes to additive
operators where F(x1 + xz) = F(xl) + F(xz).

As Banach observes, if F is also continuous, then Flax) = aF(x)
for all real numbers a and so, since he mainly considers continuous
additive operators, we see that Banach is really working with what would
today be texmed "linear operators".

Banach next proves that F is continuous on E if it is bounded on
some sphere. From this we have the corollaries:
an additive operator is contimuous on E if it is continuous at any
one point;
and
an additive operator is continuous if it is bounded; that is, if for some
M>0 we have (F@G)ll <wulxl for all x in =E.

He also proves:

If {Fn} is a sequence of continuous additive operators such that

IIFn (x) ~F)l +0 foreach x in E, then F 4s aléo a continuous ‘
additive operator and {Fn} 18 wniformly bounded; that is, ”Fn(x)” < M xll
where M <& independent of n.

Banach concludes his 1922 paper with two results on operator

equations.

(1) Let U be an operator (not necessarily additive) with range and
domain both E. Furthermore, let there exist a real mumber M with



§ 1. Axiomes et définitions fondamentales,

Soit E une classe composé.e tout au moins de deux -éléments,
d'ailleurs arbitraires, que nous désignerdns p. e. par X, ¥, Z,..
a, b, ¢ désignant les nombrea rééls quelcongues. nous déﬁms-

sons pour £ deux opérations suivantes: - e
1) Paddition des éléments de £ '

X+Y, X+42Z,..

2) la multiplication des éléments de E par un nombre réal
aX, bY...

Admeltons que les pruprlétés suivantes sont réaliades:

I,] X+7 est un éldment bien déterminé de la classe E

I_] X4Y=VY+X

L] X+(Y4+2)=(X+Y)+ 2,

I} X4+Y=X+ Z entraine ¥ =2,

I,] Tl existe un élément de lu classe E déterminé 8 et tel,
qu'on ait toujours X 4 0= 23X,

L] a.X est un élément bien déterminé de la cla.aaeE

I] a. X=2¢ éqmvauta){_ﬂ ou a==10,

L] af0eta.X=a.Y entrainent X' =1,

I;] X08et a.X=15b.X entrainent a=2,

Lo a (X+Y)=a.X+a.7¥,

I, (ea4-8). X =a. X+ b. X,

L.l 1.X=X, .

Iyl a.(b. X)=(a.b). X."

L) [X[>0, -

II,) | X[=0 éuivaut ¢ X=20.

1L} [a.X{=l|a].] X,

) X+ Y[<IX[+]7)

I Si 1° {X.} esf wne suite d'éléments de E
: 2° lim | X, — X, [ =0,

Tmea
prom

il exigle un élément X tel que
hmlY - X, 1=0

BANACH'S AXIOMS
EXTRACTED FROM FUNDAMENTA MATHEMATTCAE (1922)
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0 <M< 1 such that for all pairs of elements x, x' in E,
luix) - vl <ulx - x,
E guch that U(x) = x.

then there exists a (unique) element x of

This is Banach's contraction mapping theorem which is important in many

applications, particularly to differential and integral equations.

(2) Let ¥ be a continuous additive operator with range and domain in E.
Let M be the greatest lower bound of all those numbers ' satisfying
IlF )l <ullxll for all x in E (today we call M the norm of T
and denote it by [IFll). Then for fized v in E the equation

X =y + AF(x)

has a (unique) solution x for each value of A such that |am| < 1.
Furthey this solution is given by

x=y+ ) D" Py,

n=1
With suitable definitions of F, E and the norm, the iterative solutions

for integral equations given by Neumann and Volterra (see page 8) are

special cases of this.

THE THEORY OF ADJOINT SPACES. Banach retained an interest in normed spaces
and the theory of linear operators for the remainder of his life.* The
publication in 1932 of his influential book “Théorie des Opérations Lindaires"
did much to disseminate the theory and methods throughout Europe and America.

A fundamental advance came in 1929 when Banach introduced and studied
the adjoint (or dual) space R* of a normed linear space R. R* is the set
of all continuous linear functionals from R into the real numbers. With
addition and scalar multiplication defined in the obvious "point-wise" way,

* . * N . .
R 1s a vector space. Further, R is a complete normed linear space if

we define [ £ by

Nel = g 1.6, {m: |f(x)] <mllxdl for all x in R}.

[This is a special case of a more general result of Banach's:

The set of eontinuous additive operators from one normed linear space E into
another E, <s itself a normed linear space with

el = g.1.b. {m: IF(x)ll <nullxl for all x in E}. Further, this space of
operators is complete if E, <8 complete.]

*In later years, much of Banach's time and energies were consumed in the
writing of school and university text books (a task frequently undertaken to
disentangle’ himself from accumulating debts). Many of these texts have
enjoyed a wide popularity.
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The relationship of a space and its adjoint may be seen as a general-

ization of that between I¥ and Lq. Indeed if R = LP[a,b} then Riesz's

representation theorem (see page 44) gives RY = Lq[a,b]. {(Here, as before,
P g

After establishing basic facts about adjoint spaces (in particular, that
R* is sufficiently "large" to separate the points of R; that is, if
f(x) =0 for all £ in R® +then x = 0), Banach proceeds to generalize
Riesz's notion of an adjoint operator (see page 45). If U is a continuous
additive operator from R to S, the adjoint operator U* from §* +to R*

is defined by
®
U (D) (x) = £{U(x)).

Adjoint operators are used by Banach to study operator equations in much the
same way as Riesz had done for operators on P spaces.
*
The wvital result that R separates the peintsof R follows from the

celebrated "Hahn-Banach" extension theorem (stated by Banach as followsz):

Let p be a real valued functional defined on a complete normed linear
space and satisfying

(1) plx+y) <plx) + ply)

(ii) p(x) = Ap{x) for A = 0.
Then there is a continuous additive functional £ on R such that

pl-x) < £(x) <plx)."

Banach then introduces the notion of a "Banach-Mazur limit functional and
uses this to define a weakly closed subset. He then uses the above theorem
to derive a number of "geometric" results. For example: If L <5 a weakly
closed subspace of R* and ¢ 1is an element of R* not in 1L then there
exists a sequence of norm 1 elements {xn} in R such that

* Banach's proof in fact establishes the modern statement of the theorem:
.~ Let E be a complete normed linear space and p a mapping
from X to the real numbers such that

plx + y) Sp(x) + ply)
and p{Ax) = Ap(x) for all A > O.

Then, if G <8 a closed subspace of E and £, an element of
a* satisfying £,(x) <plx) for all x in G, there exists f
in E* such that £(x) = fq(x) forall x in G and

F(x) Sp(x) forall x in E.

Hahn had proved this theorem two years earlier in the case when pix) = [I«l.
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f(x) =0 forall £ in L andall n
and

¢(xn) -+ distance from ¢ to L

= g.1.b. {ll¢ ~ £ll: £ is in =}.

The study of "weak topologies" in both R and R* is also initiated in
Banach's 1829 paper.

Many of the basic facts for adjoint spaces, including a special case
of the "Hahn-Banach" Theorem (see previous footnote), had previously been
developed by Hahn in 1927, however, it was Banach's work which again proved
most influential (although Banach did not reference Hahn, it is likely that
he was nonetheless influenced by his work). Unlike Banach, Hahn only
developed enough of the theory to answer the specific problem which

interested him:
If the system of equations fA(X) =¢ , A e A has a solution x, where

{fh} is a given family of functionals and'{ck} is a given family of real
numbers, what conditions must the family of functionals {vl} satisfy to
ensure that the perturbed system fl(x) + VA(X) = Cy, A e A also has a

solution?

Banach also obtained many other results, for example: in 1931 he
demonstrated that the set of continuous functions differentiabhle at at least
one point is a first category subset of the complete metric space of all
continuous functions on the interval [a,b]. Thus Banach gave a non-constructive
proof for the existence of continuous nowhere differentiable functions - they -
form a "large" set (see p.35 and p.31)

Banach did more to create a "Polish school" of mathematics than any
other individual. His 'peculiar' working habits, possibly a product of
his turgid youth, led naturally to his sharing with fellow mathematicians
and students not only his discoveries but also their invention. He daily
spent long hours in a café alternately sipping coffee and vodka while he
worked, along with others, on a mathematical problem.* Noise did not seem
to distract Banach, indeed when an orchestra was present he preferred a
table near to them. Consequently much of his later work was joint work with
colleagues: Stanistaw Mazur, Wiadysitaw Orlicz and Hugo Steinhiaus to mention
a few. The mathematical group centred on Banach continued to expand Ffunctional
analysis until their work was interrupted by the war. Many of Banach's contem-

‘poraries died during the war®® - others were dispersed throughout Europe

* For an interesting persconal account of mathematical life in ILwéw during the
early twenties the reader should refer to Chapter 2 of Staniskaw Ulam's book,
"Adventures of a Mathematician".

*%0One, V.L. Shul'yan, continued to write mathematical papers while in the

trenches. Several were published and several more manuscripts were found on
his person when he was shot in 1944.
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and America ~ Banach himself died very shortly after the war, during which
he had at one stage been used as a subject for Nazi medical experiments
(although his death appears to have been a natural one).

Banach and his fellow workers bequeathed many "hard" problems to future
generations of analysts. Work on Banach gpaces and operators has progressed
steadily since that time and within the last two decades many of the
"classical" problems have been answered, often by 'unexpected' counter-

examples. This has meant a resurgence of interest in Banach space theory

over the last few years.

Other axiom systems have been introduced into analysis. Some, like
those of von Neumann's, discussed below, are specializations of those given
by Banach. For example, to capture the richer structure of spaces of
operators (or real valued functions) in which a further algebraic operation,
composition (or point-wise multiplication), is possible, I.M. Gelfand
introduced the study of "Banach Algebras" in 1941.

Other systems have generalised the notion of normed linear spaces,

for example; the theory of distributions, essentially started by Sobolev
in 1936 and largely completed by Laurent Schwartz {1915- ) in 1945, fits
naturally into the structure of "locally convex spaces" founded by von
Neumann, Moore, Kothe and Toeplitz in the mid thirties and extensively
developed by G. Mackey and others from the mid forties onward.

None-the-less the axiomative method had reached a degree of maturity

by the early 1930's and it is with this that we will halt our discussion.

The axiomatigation of Hilbert epaces

Examples of Hilbert space were among the first spaces to be considered,
<. _ o
1ron1cally however, thelr structurewas among ths" last 6 be axlomatlzed.

Both the sequence space considered by Schmidt (see pages 38-40) and the
spaces IZ[a,b] studied by Riesz are Banach spaces, however they are
distinguished by the presence of an "inner-product" [z,w] from which the norm
is derived according to the formula lzl = +[z,z1.* The presence of an
inner-product permits a richer theory than is possible for a general Banach

space; for example, an adequate definition of "orthogonality" is possibile.

By the early 1920's the work of Hilbert, Wiener and Hermann Weyl
(1885 - 1935) had shown that Hilbert's "eigen-theory" (or, as it was more
usually called, spectral theory) for symmetric "operators" (see pages 15 to 17)
provided a possible model for the newly emerging quantum mechanics. Symmetric

linear "operators" correspond to the "observables" of a physical system. Each

* In the case of L2[a,b] the inner-product is defined by

b
[£,9] = [ £(x)g(x)du(x).
a
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eigenvalue of such an operator represents a permissible value of the
observable, while the corresponding eigen-vector (function) determines the
"state" (interpreted by Schrodinger as the likelihood of observing the

value at different spacial locations).

In 1925 Werner Heisenberg published his "matrix mechanies" in which
the "operators", represented by infinite matrices,. act on Schmidt's
sequence space. Then, in 1926, Erwin SchrGdinger presented a theory of
guantum mechanics based on differential equationsz. Here the "operators"
were essentially "differential operators" - for example, enerqgy corresponds
to iﬁ%{'- Schrodinger demonstrated the equivalence of his theory with
that of Heisenberg (a not unexpected result, since differential equations
(operators) may be converted in integral equations {operators) and Riesz'
theorem (R) on page 41 allows us to identify the space of functions Lila,b],
on which such integral operators may act, with Schmidt's sequence space' -
see comment on page 42.) What was lacking was an abstract frame-work into
which these varying approaches would fit naturally and from which a

general theory of quantum mechanics could be developed.

In 1929 John von Neumann (1903-1957) presented an axiomatic approach
to inner-product spaces. He then went on to develop the theory of linear
aperators.on such. spaces.

In particular, he considered

Hermitian (self-adjoint or

symmetric) operators for
which he developed rich
spectral and representation
theories. His subsequent
book "Mathematische Grund-

lagen der Quantenmechanik!,

published in 1932, is a AW e

] John von Neumann'.
classic, not only on quantum :

e -y

mechanics, but also on Hilbert space theory.

Von Neumann's axioms are the following. 7
A) H is a vector space, elements denoted by f,g etc., over the complex

scalars denoted by a,b ete.

B) There exists on H an imner—product (f,g) satisfying
1) (af,qg) = alf,q)
2) (£1+f,,9) = (£,,9) + (£,,9)
3) (£,9) = {g,B)

4) (£,£) 2 0 and (£,f) = 0 if and only if f = 0.
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Before stating the remaining axioms von Neumann notes that

|f| = V{f£,f) defines a nmormon H and so |f—g| is

a metric for H.

C) In the metric defined above, H is separable; that is, H contains

a countable dense subset.”

D) For every n=1,2,.... H contains a set of n linearly independent

vectors. [It would appear that the sole purpose of this axiom is to ensure

H isg "infinite-dimensional".]

E) H is complete with respect to the above metric. That ig, if
{f,} is such that |fn - fml + 0 as n,m+», then there exists an f in H such
‘that |£, - £| + 0.** ‘ ' |
For clarity we will henceforth write llfll in place of von Neumann's [f|.

Von Neumann derives a number of simple consequences: The Cauchy-Schwarsz
inéquality, I(f,q)l s l£lilgll  with equality holding if and only if f = g;
every complete orthonormal set (see pages 16 and 41) is countable - this is
a consequence of (C) and the Gram-Schmidt orthogonallkation process, and

the following are equivalent for an orthonormal set {¢n}
[= -]
i) {¢_} is complete [that is, (f,g) = } (£,6,) (g,6.) ]
p=l

[+
ii) £ = Z“(f,¢P)¢P for all f in H
p=1

iii)} The closed span cf'{én} equals H.

The analogue of Schmidt's theory of closed subspaces (see pages 39 and
40) is now developed. Von Neumann shows that if N is a closed subspace of
H, then the set of all elements orthogonal to every element of N is itself
a closed subspace which von Neumann denotes by H~N (today we would more likely
use N' and refer to it as the orthogonal complement of W). FPurther H is
seen to be a direct sum of N and H-N; that is, every closed subspace of H
is "complemented". Using this von Neumann is able to define the natural

projection operator from H +to N. This initiates a general discussion of

projection operators on H.

*  The modern definition of Hilbert spaces does not include (C). It is
the presence of (C) which distinguishes between "Hilbert space"” and
the more general notion of a Hilbert space. As was later shown, any
two separable Hilbert spaces are naturally isomorphic and so in a
sense there is only one such space. L2[a,b] and Schmidt's sequence
space are simply different realizations of the one space - Riesz'
theorem on page 41.

Today, it is the presence of (E) which distinguishes Hilbert spaces
from among the wider class of inmer-product spaces.

* %
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After defining a bounded linear operator R in the same way as Banach
had done, von Neumann defines the adjoint operator R* by
(RE,g) = (f£,R*g) .

(c.f. Riesz definition giwven on page 46.)

An operator is said toc be Hermitian if R* = R and it is on these
operators that von Neumann concentrates. We list a few of his results.
U= elR is a unitary operatox;  that is . U*U = UU* =.I _where I. isetheg§dentity
operator on H.and such unitary operators are precisely the isometries of H,
I - AR is invertible for all values of A (real and complex) exterior to
the closed interval [m,M] where m = g.l.b.{(Rf,£):l£l= 1} ana
M = l.u.b.{(RE,f):|£l= 1}.

*
R is bounded if, whenever_wfﬁ + £ and,,an + g we have g==IRF.

Von Neumann alsc developed a number of deeper structural results for

Herxrmitian operators.

In later papers he studied the weak topology in Hilbert space, for
which he gave a neighbourhood definition {see page 36)}. This topology has

proved particularly valuable for the study of certain classes of operators.

Hilbert spaces and Hilbert space operators have been intensively
studied since the time of von Neumann and today an extensive theory exists
and continues to grow. The guantum mechanical motivation for Hilbert space
theory has been completely overshadowed by its importance in a great variety
of applications including the study of ordinary and partial differential
equations, probability theory and approximation theory.

Bourbaki

Starting in the late 1930's a'collective"of predominantly French
mathematicians began to write a systematic and encyclopedic account of
modern mathematics. More than sixty chapters of this treatise, entitled
Eléments de Mathématique, have already been published, the first in 1939.
The work is still incomplete, and by its very nature must presumably

remain so.

The authors have preferred to remain anonymous, writing, ‘asia team, -
under the pseudonym "Nicolas Bourbaki". Reasons for the choice of name
are obscure** Since several of the authors were at one time or another
associated with the University of Nancy, one suggestion is that the name
derives from that of a somewhat colourful French general, Charles--Denis

Sauter Bourbaki (1816 - 1897), a statue of whom is said to reside in Nancy.

* We should here recognise a special case of the closed graph theorem,

proved by Banach in his 1932 book.

** Tor some novel ideas on this see the article by S.K. Berberian in "The
Mathematical Intelligencer" Vol. 2. No. 2, 1980.
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Regardless of the mystery surround-
ing Bourbaki, his works have proved
extremely influential. They are written
for working mathematicians by a col-
lective of working mathematicians which
has included Jean Pieudonné (1906 - ),
André Weil (1906 - ), Henri Cartan
(1904 - }, Jacques Dixmiexr
(1924 -~ ) Alexandre Grothendieck
(1928 -~ ), Laurent Schwartz (1915 -~

) and Réne Thom (1923 - ) to
mention only a few,

Bourbaki chose a formal axiomatic
approach. Sfarting with set theory he
went on to consider Algebra, General
Topology, Topological Vector Spaces,
etc. His precise language and
inventive systematization of material

has done much to consolidate the role

of abstract methods both in mathematics,
in general, and in analysis, in . o

particular,

Bourbaki's own terminology has not always proved popular, however,
he has influenced the development of a more or less sténdard terminology.
For example, the modern meaning of the term "compact” derives from
Bourbaki and replaces Fréchet's "extremal"” or the Russian School's
"bicompact". |

Some mathematicians have objected to Bourbaki's mercilessly abstract
view of mathematics. They believe that the real problems and applications
of mathematics have been lost sight of. This is very likely due to the
incompleteness of the enterprise. Bourbaki has not yet completed
the central portion of his writings on analysis.

Only the fundamental Structure of Analysis has been dealt with, the
links with particular problems and applications are still to come (7).
Bourbaki has, however, been the first to emphasise that axicmatization
must be "purposeful”. Axiom systems should be founded on extensive
bodies of "concrete" mathematics. Such systems should reveal structures
which simplify and organise existing knowledge and should serve to sharpen
the working mathematicians "intuition", thereby alding the creative process.
As we have seen, this is how axiom systems evolved in the past and this is

how it should continue to be in the future.
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APPENDIX

Throughout this essay I have made reference to the published papers of
many mathematiﬁians. Many students, particularly those isolated from‘a
University library may never have had cause to examine a "research" paper in
mathematics. For this reason one is reprbduced here.

It is impossible to choose one paper which is typical of the thousands

published each year. I have selected a paper by
Shizo Kakutani
which appeared in

The Tohoku Math. Journal
Vol. 45 (1938) pp.188-1893.
The reasons for my choice include the following:
It is shorter than many;

It is on one problem, which grew directly out of material
considered in the essay;

The necessary background is less than that required for many
papers and so it might he accessible to an undergraduate
student with a minimum of preparation.
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