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INTRODUCTION

Problems of optimization are among the most ubiquitious in mathematics and its many
applications. Consequently, the subject of optimization is extensive and necessarily the
selection of material for this course is an eclectic one. The emphasis throughout will be
on the underlying theory, from which we rigorously develop basic approaches to several
important classes of optimization problems. While we motivate and illustrate the problems
with simple instances of how they arise in practibe, we will not be overly concerned with
applications. Nor will we concern ourselves with important but more practical aspects of
the topic such as the development of computationally efficient algorithms.

The subject provides a natural vehicle for introducing several fundamental areas of Pure

Mathematies, in particular, the rudiments of functional analysis and convexity theory.

Chapter 1 is largely concerned with examples. On a first reading you should not
worry too much about the precise details of a problem or its formulation. Rather you
should attempt to gain the flavowr of what is being discussed. You should return to each

problem for a more detailed examination when it is discussed later in the course.

Chapter 2 introduces those aspects of functional analysis (largely in R"™) which underlie
much of the theory of optimization. Throughout this and subsequent chapters we will freely
identify any n-dimensional vector space X with R™. If X is to be equipped with an inner-
product (or norm) is it tacitly assumed to be that inherited under the identification from
the standard dot product for R™.

Chapter 3 develops the theory of convex sets and convex functions. A revision of first

and second year work on vectors and linear algebra might be appropriate at this stage.

Chapter 4 is concerned with linear programming. The simplex algorithm in tableau
form is formulated and justified.

Chapter 5 concerns non-linear problems. A geometric approach is developed which
leads naturally to the Karush, Kuhn-Tucker condition for convex problems and to the John
Multiplier Rule in the differentiable case. Besides the material of Chapter 3, it is assumed
that you are familiar with the basic multivariable calculus developed in second year.

Exercises are provided at the end of each chapter. You should attempt to do as many of
these as possible as you work through the notes. The more difficult ones are marked with

a #.
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Please accept my apology for any obscurities in the presentation and for the minor eITOrS

which undoubtedly occur. They are certainly my most original contribution to the sub ject.

I relied heavily on the book ‘Convex Functions’ by Roberts and Varberg (Academic Press,
1973} for the presentation in Chapters 3 and 4.

Chapter 5 was developed largely from the article, ‘Modern Multiplier Rules’ by B.H. Pour-
ciau (American Mathematical Monthly, Vol.87, no.6, 1980, pp-433-452), the book ‘Opti-
mization Theory: the Finite Dimensional Case’ by M. Hestenes (Wiley, 1975), and the
survey ‘Non Convex Optimization Problems’ by Ivar Ekeland (Bulletin of the American
Mathematical Society, Vol.1, No.3, May 1979).

Unfortunately the constraints imposed by a one semester introductory course have pre-
vent the inclusion of many important aspects of the subject. For example, it has not been
possible to consider; the fundamental notion of Duality for non-linear problems, the use of
penalty functions, important techniques such as Bellman’s method of Dynamic Program-

ming, or various other algorithms for handling non-linear problems.
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CHAPTER 1

The problem central to our study, and one which arises naturally in a great variety of

~ situations is the following optimization problem:

minimize:  f(z)
subject to: € C

That is, we seek a point zp € C such that f(zg) < f(z) forallz € C. Here f: X - Risa
given function, referred to as the objective function, defined on some ‘natural’ domain
X (usually X = R™, or some other vector space) and C is a specified subset of X known
as the constraint sef, or the set of feasible (= possible) solutions. If C = X we refer

to the problem as an unconstrained problem.

We may think of the problem as first determining
m = infimum {f(z):z € C}

and then, if it exists, a point zg € C for which f(zq) = m.

When such an zy exists we refer to it as an optimal solution, or simply a solution to
the problem. m is then referred to as the minimum of f on C, and we say f attains its

minimum on C at xg.

NOTE: The problem of maximizing f(z) can always be rephrased as that of minimiz-
ing —f(z). So maximization problems are also encompassed by the general optimization
problem set out above.

Possible strategies which we will pursue include:

o Finding necessary conditions for an optimal solution. All optimal solutions will sat-
isfy such conditions, however not all points satisfying them are necessarily optimal. For
example, the condition

f'(ze) =0
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is a necessary condition for the differentiable function J:R — R to be a minimum at Tg.
In general necessary conditions serve to narrow down our search for optimal solutions. If
however, we are lucky and there is only one point satisfying them and we ave sure that an
optimal solution exists then that point is the optimal solutiomn.

o Determining sufficient conditions for an optimal solution. Any point satisfying such
conditions is optimal, however not all (indeed any) optimal solutions need satisfy the
conditions. Useful sufficient conditions are the most dificult to find. Such conditions
cannot be used to search for solutions — they may miss them. At best they may serve to
verify that a suspected solution is indeed optimal, an example of a sufficient condition for
f:R—=R isf'z)20forallz € Rand f'(zq) = 0.

Only rarely is it possible to derive the elusive and highly prized necessary &nd sufficient
condition. '

e Solve the optimal programming problem,; that is, develop effective alporithms for
determining (or at least approximating) m = infimum {f(z) : * € C}, and if possible
also locating an optimal solution zy. Usually such algorithms are of an iterative nature:
starting with some initial point z; the algorithm generates an ‘improved’ point x5 with
f(za) < f(z1). Reapplying the algorithm with zo as starting point we obtain a better
approximate solution z3. Continuing in this fashion a sequence of ever-improving points
T1, %2, L3, Tg, ... 1S generated which hopefully, either terminates at an optimal solution, or
converges to one (in practice the process is terminated when an adequately close approxi-
mation is obtained).

The following considerations are of vital importance for the successful application of these

strategies.

o Establishing the existence of an optimal solution. Without an assurance that the
problem has a solution large amounts of computation may be wasted before the infeasibility
of the problem is realized, or even worse one may be led to accept an “approximation” to
the non-existent answer.

REMEMBER: “One good theory is worth a thousand computer runs”.
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° Verifying that the algorithm will indeed generate a sequence of approxima-

tions which converge and converge to a solution. Often this can be achieved only
if one can verify that the problem has a unique optimal solution, algorithms often

behave chaotically when there is more than one point to which they might converge.

e Obtain reliable estimates on the rate at which the sequence of approximations
converges to a solution. Such estimates allow the iterative procedure to be terminated

at a sensible stage.

¢ Determine bounds on the size of the problem and the complexity of the algo-
rithm. There is little point embarking on a lengthy computation without some assurance
that it can fit on the machine and be completed in realistic time.

We conclude this chapter by presenting a number of examples which lfustrate simple op-

timization problems and some of the circumstances from which they arise.
EXAMPLE 1. (a) Diet Problem

A University cafeteria intends to serve chilli, the basic ingredients being meat and beans
for which the following nutritional information is available.

units per ounce of max units | min units
constituents ingredient per serve | perserve
meat bean
indigestional 1 1 3 -
flatulate 1 5 - 10 -
sustainol 2 1 - 1

Suppose that the cost per ounce of meat is 50 cents and per ounce of beans is 10 cents.

We wish to know z;, the number of ounces of meat, and z;, the number of ounces of bean

to include per serving, so that the cost 50z + 10zz is & minimum subject to the



constraints

indigestinal: T1+ra <3 .
units flatulate: Ty + 5zy <10
units of sustainol: 2z +10 > 1

and the positivity constraints

T >0 | (It is hard to take meat out of the customer)
T2 > 0 (and even harder to take beans).

Thus, we have the problem

minimize: 50z + 10z4

subject to: T1+ T2 <3
T3 +9z2 <10
2z 42221
T1, 22 >0

Here the feasible region is the convex polygon illustrated below.

ST



From which we see that at least feasible solutions exist.

This is of course a trivialized version of a serious problem, although in reality both the
-numbers of ingredients and constituents would be much larger. Because the objective
function and each of the expressions in the constraints are linear in the variables (z; and

T2) the problem is known as a Linear programming problem.

Linear programming problems constitute perhaps the largest single class of problems en-
countered in practice, particularly from the field of economics and industry. Another
example of a linear programming problem is:

EXAMPLE 1. (b) Transportation problem:

Quantities by, by,...,b, of a certain good are to be supplied to n different destinations.

Suppose there are m. sources of supply (warehouses/factories) and that the i’th source is
able to supply an amount a;

(of course we require

n m
Db < D)
j=1 i=1
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If the cost of shipping one unit of the product from the #'th source to the j’th destination

is c;; and z;; denotes the amount shipped from i to 7, then we have the problem:

Find r;; i=1,2,...,mandj=12,...,n50 that
Zcij:nij (mn unknowns)
i,

is a minimum, subject to the consfraints;

(amount leaving i'th source) YT e i=12,...,m
(amount arriving at j'th destination) >,z =b; j=12,...,m
(positivity) zij = 0. i = L2,...,mj = 1,2,....7n.

a total of (m + n 4 mn constraints).

Similar problems arise in Manufacturing (to schedule production, minimize wastage, design
plant layouts), agriculture, engineering, Military operations and many other areas including

computing, statistics and mathematics itself.

EXAMPLE 2. Mechanics Stable equilibrium configurations are those for which the
energy of a system is minimal (more generally, Lagrangian mechanics tells us that physical
systems act in such a way as to minimize their action).

For example consider the equilibrium of two springs attached as illustrated

- unstretched




Since the energy in a spring with constant £ when extended from equilibrium by an amount
T is %kmz, to determine the equilibrium configuration for our two springs we seek z; and

xy for which k173 + 5koz3 is a minimum, subject to the constraints

$1+$:l
.'1.1120
112220.

(Verify that the solution to this is k171 = ka%2, i.e. the forces balance.)

Because of the nature of the objective function this is an example of a quadratic pro-

gramming problem - a special case of convex programming,.

EXAMPLE 3. Production cost for a metal can of prescribed volume V.

T
A

— a —

- .

Cost of production is the sum of
(i) Cost of material o surface area wdh + $mwd?
and
(ii) Cost of cutting and seaming o< length of ‘edges’, 2nd +h .

Thus our problem is:

T



Minimize: )
f(d,h) = cy(mdh + §7rd2) + co(2rd + h)

subject to the constraints; .
1 5
—rd*h =V
i

and limitations set by useage requirements such as
0<dn £d<dy

O0<hym <h<hpy
(It would be hard to drink out of a 1 foot diameter half inch high beer can!)

EXAMPLE 4. Games Theory

To illustrate, consider the following (not very exciting) 2 person game between players A.
Hog and B. Greedy.

A and B each have a large supply of 5 cent and 10 cent coins. At a given signal, each
displays a coin. If the sum of the displayed coins is odd A wins B’s coin; if it is even, B

wins A’s coin.

We can summarize by representing A’s winnings with the pay off matrix

B 5 10

A\
P=lpyl= " 510
10 5 -10

Not knowing how B will play, player A reasons to maximize his winnings (minimize his
losses) as follows.

~ If I choose 5 cents (¢ =1) the least I can win is min; p1; = —5 .

8
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If I choose 10 cents (i = 2) the least I can win is min; pa; = —10.

I should choose to maximize this; that is, to achieve
max min p;; = -5
i

so A plays 5 cents (worst when B also plays 5 cents).
Similarly, B chooses to minimize his maximum loss, that is

. . J=1j5=2
Min max p;; = min
i big 5 10

=5

so B also plays 5 cents (worst when A plays a 5 cent).

However, if B were to continue on this strategy, A would soon see the advantage of changing
to 10 cents, which presumably would be followed shortly by a change of B to 10 cents and,
then A back to 5 cents and so on.

‘This unstable situation is different if we change P to a new pay off matrix, such as

B 5 10

AN .
Q@ = [g;;] == 5 5 5
10 1 5

Note that gz; = 1 is the maximum entry of its column and the minimum entry of its row.

Such a point is known as a saddle point for the matrix Q.

In this situation we have

max ming;; =1 = min max g
T J 3 1

(at A playing 10 (at B plays 5 cents,
cents which is worst which is worst if A
if B plays 5 cents). plays 10 cents).



In this case, if A continues to play 10 cents nothing B can do will improve his situation,
and while ever B plays 5 cents, nothing A can do will improve his lot either. The strategy;
A plays 10 cents, B plays 5 cents, is stable._ -

These examples illustrate the situation in general two person games, which lead to a pay-off

function ¢z, y) and the optimization problems:

Find g at which  max, min, ¢(z,y) occurs and yy at which min, max, ¢(z,y)
which occurs.

For obvious reasons such a problem is known as a minimax problem.

Note that one always has the inequality
max min ¢(z,y) < minmax ¢z, y) e (%)
T oy ¥y oz

and that if there exists a saddle point (wo,yo) for ¢; that is ¢(z, yo) < ¢(z0, vo) < H(z0,y)
for all 2 and y, then one has equality in () and the solution (zg,yy) corresponds to a
stable strategy. (See exercise 2).

Returning to our original pay-off matrix, how might A and B proceed to play the game
when there is no stable strategy? Here we could seek a mixed strategy for A (and B},
one where A plays the various options available to him at random (so as to ‘confuse’ B)

but with probabilities chosen to maximize his expected gain. And similarly for B.

More specifically: if A plays option ¢ with probability a; and B option j with probability
b; (thus 3. a; = 2_;bi=1and a; > 0,b; > 0) then A’s expected gain is

T k(7 k13
E(a,b) := ij Z aipij = Z Z aibipij
i J=1 i=1

=1  i=1
where we are using the vectors a = (ay,...,a,;) and b = (b1,...,b,) to represent the

respective probability distributions for A and B which we wish to determine.

We then seek ag so that

max méin E(a,b) occwrs at a = ag
a

10
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Note:  In this case the objective function is min}, F(a, b), a function of a only while the

constraint set corresponds to a being a probability distribution.

In our particular game
E(Ei, b = —bagb; + 10a1by 4 Sasby — 10asby
and we seek a probability distribution (a1, aes)} which maximizes

f(a1,a2) = min{—501b1 + 10&1b2 + 5CLgb1 - 10a2b2 . bl + bg = 1, bl > O,bg > 0}

Similarly we seek by so that
m&n max E(a,b) occurs at b = bg.
a

As we shall see, such a pair (ag, bp) always exists and is a saddle point for E(a, b); a result
known as the fundamental theorem for matrix games. The problem of finding ag

(and bg) will be seen to reduce to a linear programming problem (and its dual).

EXAMPLE 5. Closest point problems (approximation theory).

Given a set A, an element p € A and some measure d(p, a} of the distance from p to each
point a € A, we seek to find the distance from p to A; that is,

gg{l d(p, a),

and if it exists an element ag € 4 for which

d(p,a0) = min d(p,a).

Such an element ap is a best approximation to p from A (or a closest point of A to
p).

11
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As an illustration, consider the statistical problem of linear regression (or, determining

the straight line of least squares best fit to a set of data).

Here we have n data points;

(-7-71;'9’1), (wz,yz), P

and seek mg and by at which the function

n

f(mab) = Z ('yi -

=1

is a minimum. Then y = mqx + by is the line of best fit to the data (in the sense that it is

the line which minimizes the sum of the squares of the residual errors at each data point).

Y
A

(xzryz) (x4rY4)

1r¥q)

(=

y (Tn,Yn)

[ma; +8])?

(x

6'¥¢)

y:mx+bo

To realize this as a closest point problem, let

Y= (y11y2r" .

12
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X :=(T1,Z2,...,%n)

and
e:=(1,1, ..., 1) eR”

then for any m and b;
Fim, b) = |ly — [mx + be]||?

the square of the distance from y to the point mx + be in R™.

Thus, what we are seeking is the point mox + bpe from the subspace M spanned by x and
e which is closest to the point y; that is, the best approximation from M to y.

13



Exercises

(1) Express the following Manufacturing problem as a linear programming problem. (Note,
at this stage you are not being asked to solve the problem.)
Suppose we own two mines each of which can be operated at any level (z; tons per
year, ¢ = 1,2) to yield ore containing lead, silver and zinc. When the mines are

operated at the unit level (one ton per year) we have the following information.

Yields in lbs Cost of
lead |silver {zinc Operation
Mine 1 25 (1/4 1 $600
Mine 2 100 |[1/3 3/2 $400

Assuming linearity in the production facilities, if it is necessary to produce at least
5000 1bs of lead, 60 lbs of silver and 150 Ibs of zinc per year at what level should each

mine be operated if the overall cost of operation is to be minimized?

(2) (i) Assuming that all necessary maxima and minima exist, show that for a function
f(z,y) of two variables we always have

max min f(z,y) < min max f(z,y) .
Es Y Y z

(ii) Show that if f has a saddle point at (zg, yo) then the inequality in (i) is an equality
and the common value is f(zq, o).

14

L



CHAPTER 2 - Analytic Preliminaries

In this chapter we develop certain aspects of functional analysis relevant to optimization.

In particular, we will derive basic criteria for the existence of optimal solutions.

To motivate the topics to be discussed, consider the function

R : =%, x#0,
T — R $|—>{1, el

O

y=£(x)

f fails to attain a minimum on R because of the discontinuity at © = 0. This shows that a
continuity requirement on the objective function is essential for the existence of an optimal

solution. A consideration we take up shortly for functions f : R® — R.
Next consider the optimization problems

minimize: f(z) = 1
subject to: x> 1
and
minimize:  f(z) = 1
subject to: 1<z <2; thatis z € [1,2)

i\

Y
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Even though the objective function is continuous, both problems fail to have optimal
solutions. In the first case because the constraint set is unbounded and in the second
because the end point z = 2 is excluded.

On the other hand

minimize:  f{z)=1
subject to z € [1,2]

has the optimal solution 2 = 2.
Here f is continuous and the constraint set is a closed and bounded interval.

Thus, we need to study subsets of R™ to identify restrictions which might be placed on a
constraint set to ensure the existence of optimal solutions. From the above examples being
both closed and bounded is necessary.

Throughout we will be concerned with R™ equipped with the Euclidean norm.
x|} = vx-x
= \/:c§+mg—}—...+mﬁ

where x := (z1,T2,...,2Z5).

Much of what we do is however valid for an arbitrary normed linear space, that is a vector
space X together with a norm function || - || satisfying:

L Ix} >0 if x€X and x50
2. ||ax]i = |A| ||x|| for all x € X and scalars X .
3. lx+yll < |I=| + |yl for all x,y € X — the triangle inequality

That the Euclidean norm on R™ satisfies the triangle inequality follows from its definition
and the Cauchy-Schwarz inequality '

-yl < =l Iyl
(refer to your linear algebra course for detail).
By the distance between two points x and y of R™ we shall understand
dx,y) = |lx -yl .
The open ball of radius r and centre x is
Bi(x):={yeR": |y — x| <r}.

16
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The closed ball of radius r and centre x is
B x]:={yeR": ||y —x|| <r}.

A subset S of R" is bounded if it is contained in some ball centred on 0. Equivalently S
is bounded if

|x[] £ M forall x€ S andsome M >0.

Sequences and Convergence

Extending the definition in R we will say that a sequence of vectors (x,,)S2, in R™ con-
verges to x if, given € > 0 there exists N € N such that

lxn — x| <€ whenever n > N.

‘When this is the case we write lim,—,o X, = X%, or simply x, — x .
Thus, x, —+ x if and only if ||x, — x| — 0.

Let A be a subset of R™, we define the closure of A, denoted by A4, to be the set of those

points in R™ which are the limit of some sequence of points from A (such points are called
limit points of A).

That is,
A={xeR":3(x,) C A with Xn — X} .

Always A © A . To see this, for any x € A take x, = x for all n to obtain x € 4 .

We say that the set is closed if A = A . Thus, A is closed if and only if whenever (x,)

is a sequence of points of A with x,, — x we have x € A (that is, A contains all its limit
points).

17

™ S



Lemma: x € A if and only if for each € > 0 there exists an a € A with Ix—all <e.

Proof: (=) If x € A there exists (a,) C A with a, — x . Taking a = a, for any
suficiently large value of n we then have ||x —a|| < ¢ .

1

(«=) For each n € N, taking e = &+ we may choose a point of A, call it a,, with ||x — a,]| <

1/n . The resulting sequence (a,} is contained in A and converges to X, as ||x — a,| <
1/n—0. Thusx € A.

0

Theorem: A is the smallest closed set confaining A.

Proof: We must prove two things
(i) A is a closed set; that is, (4) = A
and
(i) if B is any closed set containing A, then 4 C B .

(i) Let x € (4), then for any € > 0 there exists by the lemma a point y € A with
[x —yl <e€/2.

Again by the Lemma, since y € A there exists a € A with ||y —a]| < /2.

By the triangle inequality

x—all=lx-y+y-al
<l =yl +lly —all

<E €
<5+g.

That is, ||x — alf < € and so by the lemmax € A .

(ii) Let x € A, then there exists a sequence (a,) C A with a, — x.

But A C B so (a,) is a sequence of elements of B converging to x and so, since B is
closed, we must have x € B. Thus 4 C B.

[

18
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boundary point

The boundary of A C R™ is defined to be
bdry A := A () R"\4)

That is, x € bdry A if and only if there exist sequences of points from both A and the
complement of A which converge to x.

A point of A which is not in the boundary of A4 is said to be an interior point of 4. The
set of all interior points of A, denoted by intA, is referred to as the interior of A. A set
all of whose points are interior is said to be an open set.

The previous lemma leads to an important characterization of interior points.

Theorem: Ifa is an interior point of A C R™ then there exists g9 > 0 such that B,,(a) C

A. That is, there is a ball centred on a lying entirely in A.

[The converse is also true, and is left as an exercise.]

Proof: Suppose no such ball exists. Then for each € > 0 we must have B.(a) € 4; that
is, for each € > 0 there exists x ¢ A with x € B.(a). In other words, for each ¢ > 0 there
exists x € X\ A with |la —x|| < ¢, and so by the lemma a € X\ A. Thus, since a € A, we
have a is in bdry A contradicting the fact that a is an interior point of A.

O
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Continuity

A function f: R* — R is continuous at xg if for each € > 0 there is a 6 > 0 so that

|£(x) — f(x0)| < € whenever |lx—xpl <46,

or equivalently, so that
f(xp) — € < f(x) < f(xg) + ¢ whenever |x— xol < 6.

From this we see that continuity at xg in fact imposes two conditions on f :
(1) For each ¢ > 0 there is a § > 0 so that f(xq) —€ < f(x) whenever ||x — xgf| < 6.
(2) For each € > 0 there is a § > 0 so that f(x) < f(xq) + € whenever |jx — xql| < 8.

We will say that a function f satisfying condition (1) is lower semi-continuous at xp.
Similarly, a function satisfying condition (2) is upper semi-continuous at xg. In terms
of these definitions f is continuous at xg if and only if it is both lower and upper semi-

continuous at Xg -

If you can see why the function illustrated in (a) below is lower semi-continuous, but not
upper semi-continuous at Xp, while that illustrated in (b) is upper semi-continuous, but

not lower semi-continuous at Xg, then you understand what the definitions are about.

(a) ¥ (¥
. y=£(x) :

Xq X0

A function which is lower semi-continuous, upper semi-continuous, or continuous at every
point xp of its domain is said to be (globally) lower serni-continuous, upper semi-continuous,
or continuous respectively.

Perhaps not surprisingly, lower (upper) semi-continuity will be an important condition if

we want to ensure a function achieves a minimum (maximum) value.

20
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Subsequences-and Compactness

Let (x,)72; be asequence in R™ and let (ng)$2, be astrictly increasing sequence of natural
numbers, then the sequence '

Xy Xnay e oy Kngyee -
which we denote by (xn, )72, is a subsequence of (x,,) .

For example: If z,, = % and we take ny = 2* then we obtain the subsequence (2, ) ;

1 1 1 1
RN EE CRRE S
of the sequence (z,);
11 1 l 1 1 1 1 1 1
12’3,4,5’6 ?7?819:"'! nﬁ"‘

Intuitively, we obtain a subsequence by deleting terms from the sequence, the only restric-
tions are that the remaining terms stay in their original order and that there be an infinite

number of them.
Note that a subsequence of a subsequence of (x,) is itself a sub-sequence of (x,).

Proposition: (x,) converges to x if and only if every subsequence of (x,) converges
to x.

Proof: (<=) If every subsequence converges to x, then since (xn) is a subsequence of itself

we have that x,, — x.

(=) Since x, — x, given € > 0 there is N € N with [|x, — x|| < ¢ whenever n > N.
Now since ny, is a strictly increasing sequence of natural numbers we have ny = k, and so

Ixn, = x||, < € whenever k > N. That is, x,, — x.

[

Definition: A subset K of R™ is compact if every sequence of points in X has a
subsequence which converges to a point of K.

In order to help understand compactness try to see why R is not a compact set.

‘m’ The importance for optimization of compactness and the other concepts developed so far

- Is illustrated by the following fundamental existence theorem for optimal solutions.
]

| Theorem: A lower semi-continuous function [ defined on a nonempty compact set K

I’I achieves its minimum on K; that is, there exists xq € K with f(x0) < f(x) for allx € K.
\

21
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Proof:  Let m := inf{f(x) : x € K} Then there exists a sequence of function values
f(x1), f(*2), -.., f(xn),... which converges to m from above. The underlying sequence
(xn), being a sequence of points in the_compact set I, has a subsequence (x,,) which
converges to a point x5 of K.

We will show that f(xg) = m thereby establishing the result.

From the definition of m we already know that m < f(xg). On the other hand, f is lower
semi-continuous and x,, — xg. Thus given any ¢ > 0 for all sufficiently large k& we will
have xy, sufficiently near to xg so that f(xp) — € < f(xy, ).

In particular then

f(x0) =€ < lim f(xn,) =m .

But, this is true for all € > 0 and so we conclude that f(xg) < m. Hence f (xg) = m, as
required to complete the proof.

[

Corollary (1): IfK is a nonempty compact set and f : K ~ R is upper semi-continuous
then f achieves its maximum on K.

Proof: If f is upper semi-continuous then —f is lower semi-continuous and a maximum
for f is a minimum for —f.

O

Corollary (2): If K is a nonempty compact set and f : K — R is continuous then I
achieves both its maximum and minimum on K.

In order to apply these last results we must be able to identify compact sets. Accordingly
the remainder of the chapter is devoted to characterizing the compact subsets of R".

Some necessary conditions for compactness are provided by the next two results.

Proposition: A compact set is closed.

Proof:  Let K be a compact set and let a,, be a sequence of points of K converging to x.

We must show x € K. Now K is compact so there exists a subsequence (a,,) converging

' to a point of K.

But, since (an) is convergent to x, every subsequence of (an) also converges to x. In
particular (a,,) converges to x and so we conclude that x € K = K.

g
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Proposition: A compact set is bounded.

Proof:  Let K be a compact set. Since the function f(x) := ||x[| is continuous (see
exercises), it achieves its maximum on K. Let M be the maximum value of f on K, then
necessarily M is finite (it is achieved as a value of f) and ||x|| € M for all x € K. That is,
K is bounded.

[

Results obtained up to this point in the chapter remain valid if R™ is replaced by any
normed linear space X. This is not true for the remaining results. They depend in an

essential way on X being finite dimensional.

‘We have shown so far that any compact set is closed and bounded. We now aim to show
that in R™ the converse is true. This is, any closed bounded subset of R™ is compact. We
begin by proving the result when n = 1; that is, in R.

Lemma: Any bounded sequence of real numbers has a convergent subsequence.

Proof: (z,) be a bounded sequence of points of R, it suffices to show that there is
a. subsequence (z,,)7>; which is either decreasing or increasing, for then, (z,,) being

bounded both above and below is necessarily convergent.

R
A
9 —————————————————— 5
, \/ \ /\/ N\
' : 211 subsequent
'\./ P , terms lie beneath
) | , .« the dotted lines
of T & Peak Pointsm_ 7 gL :

Call n € N a ‘peak point’ of (z,) if z, > z,, for all rn > n, then we have two possibilities:

(1) (z,) has an infinite number of peak points at ny < my < m3 < ..., in which case

Ty > Tnp > Tny > ... and 50 (25, )72, is the required decreasing subsequence.

(2) (zn) has only finitely may peak points at n, < 12 < ... < ngy, say, In this case let
Ny > np, then Ny is not a peak point so there exists Ny > N7 with TN, < Tpn,, further

1
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Theorem: A subset of R™ is compact if and only if it is closed and bounded.
Proof: (=) has already been proved.

(<) Let K be a closed bounded subset of R™ with ||x|] < M for all x € K and let (x,)
be a sequence of points of K, where x, = (zn(1),2,(2), ... za(m)). That is, T, (j) denotes

the j’th component of the n'th vector in the sequence. For all n and § we have

|20 ()] € VEL(1)2+ 2,22 + ... + 2, (m)? = ||xa|| < M .

Consequently, for each j the sequence of j’th components; (z,(7))5%,, is a bounded se-

quence of real numbers.

In particular then (z,(1)) is a bounded sequence of real numbers and so, applying the
previous lemma, there is a subsequence (z,, (1))}, convergent to some real number zy.
The corresponding subsequence (x,, ) of (x,,) therefore has its sequence of first components
converging to z1. Similarly z,,(2)§2,, the sequeﬁce of second components of (x,, ), is a
bounded sequence of real numbers and so we may pass to a further subsequence

(%ny, )§2; with @, (1) — 1 and @y, (2) — w2 for some real number 2. Continuing in
this way we eventually arrive at a subsequence of (x,,) which for simplicity we will denote

by (xp,) with Tp, (f) — xj, for j=1,2,...,m. r(»see,;;gl_i_@gl:ammgggggcjfgaigg)ﬂ

The proof is completed by showing that (x,,) — x = (31,%2,...,Tm). (That x € K
follows automatically, since (xp_) is a sequence in K and K is closed.)

Now,

Iotn, =l = /(g (1) = 22)2 + (2, (2) = 22)2 + .. + (29, (m) — 2)?

—0, aszp (j)—z; —0for j=1,2,...,m,

and so xp, is a subsequence of (x,) which converges to x € K as required.
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Exercises

(1) Using the 3 norm properties, show that
Hizll = Iy lll < = — ¥l - .

Hence deduce that the function x — ||x|| is continuous.

(2) Show that ||x|| := max{|z1], |zal,..., |zal} and x| := |z1] + 22| + .. . + 24|
where x = (z1,23,...,2,) ¢ R”® are both norm functions on R" .

(3) Show that B.(x) =x+ B.(0):={x+y:y € B.{(0)}.

(4) Show that S C R™ is bounded if and only if it is contained in some ball not necessarily
centred on the origin.

(56) Show that a convergent sequence has a unique limit; that is, if x, — x and x,, — y

then x =y.

*(6) Show that a convergent sequence (x,) is bounded; that is, {x, : neN} is a bounded

set.
(7) Show that the intersection of two closed sets is closed.
*(8) Show that the union of two closed sets is closed.
( -

9) Show that B,(x) = B,[x], for any x € R™ and r > 0.

*(10) For any set A C R”™ show that
A = ﬂn (A + Bl/n(o))

(11) If a € A € R™ is such that for some r > 0 we have B,.(a) C A, show that a is an
interior point of A. ’

12) For any set A C R™ show that A = (bdryA) U (intA4).

(12)

(13) Show that any finite subset of RY is compact.

(14) Show that a closed subset of a compact set is itself compact.
(15)

15) Show that in R™ the closest point problem to a compact set has a solution. That is,
if K is a nonempty compact subset of R™ and x ¢ K then there exists a point kg of
K with ||[x — ko|| < |lx— k|, for all k € K.

*(16) Show that in R™ the conclusion of (15) remains valid if it is only assumed that K is
nonempty and closed.

®




*(17) Show that the image of a compact set under a continuous function is compact. That is,
if f:R™ — R™ is continuous and K C R" is compact, then f(K) := {f(x):x € K}
is a compact subset of R™.

by
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CHAPTER. 3 - Convexity

3.1 Convex Sets

Let us begin by recalling that if x = (z1,...,2:) and y = (1, - ,Un) are two points in
R™ (or indeed any vector space), then a point on the line through x and y is of the form:

x4+ Aly = %) = (L= Nx+ Xy,

where \ is a real number. Points on the segment between x and y correspond to A values

in [0, 1]. See illustration below.

<0

Some Definitions: A subset C C R" is convex if it contains the line segment between
every pair of points in it. That is, if Ax + (1 — A)y € C whenever x,y € C and A € [0,1).

convex non-convex

A subset A C R™ is afine (a linear variety) if it contains the line through every pair of
points in it. That is, if Ax + (1 — M)y € A whenever x,y € Aand A€ R.

- Clearly, affine = convex

28



Facts:

(1) If & € R and C is a convex set then aC = {ax:x € C} is convex.
2C

(2) If C and D are convex sets then

C+D = {c+d:ceC deD}

is a convex sef.

=]

Proof: Let x3,%o € C+D and X € [0,1], then x3,=c1+ds and x5 = ¢q +ds for some
Cc1,C2 €  and d;,dz € D.

Hence
)\Xl -+ (1 — )\)Xg = }\(C}_ -+ dl) + (1 - )\)(Cg + dg)
= (Acy + (1 — A)ez) + (Ady + (1 — A)dz)
eC+D

as Acy + (1 — A)eo € C and Ady + (1 — A)dg € D since C and D are convex sets.

(3) Any intersection of convex sets is convex.

29
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(4) Ais an affine set if and only if it is the translate of some subspace M that is

A2X0+ﬂ{[

Proof: (<) See exercise.
(=>) Choose any xg € A and let M := A — xg.
Clearly, A = xg+ M, so it suffices to show that M is a subspace.

We will show M is closed under addition (that it is closed under scalar multiplication, and
hence a subspace, follows similarly).

Let m;,my € M then there exists a;,a; € A so that m) = a; —xy and my = a5 — Xo.

Thus
m; +my = (a; + ag — Xg) — Xo

a; + as
D) - X0 —XQ
S ——
cA
R S—
€A

Ay -

enM

=2

O

The subspace M defined in (4) is unique (that is, if A = xg + M and A = y5 + M’ then
M = M'. See exercises). We refer to this unique subspace as the subspace parallel to A.
A

Xp

By the dimension of the affine set A we will mean the dimension of the unique subspace
parallel to A; that is the dimension of M = A—xg where xq is any point of A.

More definitions: Let S be a subset of R™.

The convex hull of 5, denoted by co(S), is the smallest convex set containing S. co(S)

equals the intersection of all convex sets containing S.

The closed convex hull of 5 is the closure of co(S) and will be denoted by @5 (S).
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The affine hull of S, denoted by aff(.5) is the smallest affine set containing S.

If sy € S then
aff(S) =seg + M

where M is the subspace spanned by the vectors in the set S — sg.

For a convex set C we take the dimension of C to be the dimension of aff(C). It equals

the dimension of the subspace spanned by the vectors in C — ¢p for any cg € C

An affine set which is the translate of an (n — 1)-dimensional subspace in R™ is a hyper-
plane. Examples of hyperplanes are; a plane in R3, a line in R2.

Theorem: H is a hyperplane in R™ if and only if H = {x € R" : a-x = ¢} for some
non-zero vector a € R™ and sorme constant c.

[Note: This result should come as no surprise. In two dimensions a - x = ¢ is the general

equation of a line, while in three dimensions it is the equation of a plane.]

Proof: (<) Let H:={x:a x=c}, choose xg € H and let M/ = H — xp then
M={meR":a-m=20}

That is, M equals the collection of all vectors perpendicular to a, which is a subspace of

dimension n — 1 (why?). Hence H = xg + M is a hyperplane.

(=) Let H be a hyperplane and choose xq € H, then M := H —xg is an (n —1)-
dimensional subspace of R®. Choose a perpendicular to M then m e M & a-m = {)

S0
xEHESx—xeM

Sa-(x—x9)=0
—~a-Xp=a-Xg

taking ¢ := a - xp we therefore have H = {x: a-x = ¢} as required.

The hyperplane H := {x € R" : a-x = ¢} defines two closed half-spaces
Hi={xeR":a-x>c},
H_ ={xeR':a-x<c}

and corresponding open half-spaces where the inequalities are required to be strict
Hy={xeR":a-x>c},

ET_“—“{XER":a-x<c}

31




A. convex set which is the intersection of a finite number of closed half-spaces is termed a

convex polytope.
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The following theorem is basic to much of our later work.

Separatio-n Theorem: Let C be a closed convex set in R™ and let y be a point outside
of C. Then there exists a hyperplane H = {x € R" : a-x = ¢} withy € F_ and C C H,..

T
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That is,

Proof: Let xp be a closest point of C to y (such a point exists by exercise 16 of chapter
2. Then for any x € C the function

F(A) = lly = [x + (1 = Mol |

achieves its minimum on [0,1] at A = 0.

Now
FQ) = [ly — Ax— (1 - A)xo?

= (y — dx— (1= N)xo) - (¥ — xx — (1 — A)xq)

= ({y — %0) + A(x0 — %)) - (¥ — %0) + Alxo — %))

= (y — %o) - (¥ —xa) + 2X(y — xo) - (%0 — %)

+ A*(xp — x) - {x0 — %)

= ||y — xoll* + 2(y — %o0) - (X0 — %)X + lIxo — x[|*A?
So F() is a quadratic in . In particular it is differentiable on [0, 1] with

F'(A) = 2(y — x0) - (%0 — x) + 2Alixo — x|,
and so we must have

2(y —x0) - (x0 — %) = F’(O)lz 0.

Since this is true for all x € C, setting a = xy —y and ¢ = a - xo we have for all x €

that
a-x>c

=a-Xp
=a-y+a-(xo—Y)
=a-y + |l -yl
>a-y.

Hencea-y<c< 'm:g a - x as required.
xE
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Corollary 1: If C is a convex subset of R and y is in the boundary of C, then there
exists a # 0 such that

ary<a-xforall xe(C.

Proof: Sincey is in the boundary of C we can find a sequence (y,} with each y, outside

the closure of C and with y,, — y . By the separation theorem, for each n there exists
an 7 0 such that

a, - ¥n < infa, -x.
xeC

In particular then
aAp yn<a, -x forallxe(’

Dividing both sides by |ja||, we may without loss of generality assume that each a, has

lla,|| = 1. By the theorem on p.24, there exists a subsequence (an,) converging to some
vector a. (Note, that ||al| = limg[la,, || =1, s0 a #0.)

For each x € C we then have
aoy'-—_]iinank‘ynk Sli{nank 'X=a-x

which establishes the result.
O

Cordllary 2: Let D be a convex set with interior points and let C' be a nonemptyconvex
set which contains no interior points of D. Then there exists a hyperplane A with ¢ C H
and D C H_.

Proof

The interior of D is a non-empty convex set {see Exercise 8), thus € —intD is a nonempty
convex set with 0 € C — intD, and so either 0 € C —intD or 0 € bdry (C — intD).
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By the separation theorem, or corollary 1, there is therefore an a # 0 so that
0=a-0<a-x, whenever
x € C —intD. .
Thus, for any ¢ € C and d € intD we have
0<a-(c—d)

or

a-d<a-c.
Let c:=inf{a-c:c € C}, then
then
a-d<c<a-c.
for all c € C and d € intD.

That is,
CCHy and intDCH_

where
H={x:a-x=c}.
Since H_ is closed, it follows from exercise 8 and the theorem on page 16 that

DCmtDh cH_.

U

For a convex set C and y 111 the boundary of C a hyperplane H is a support Hyperplane
for Catyif CC H, andy € H.

Corollary 1 ensures the existence of a support hyperplane at each boundary point y of C;
namely:

H:={x:a-xc}

35
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with ¢ = a -y where a is given by corollary 1.

Extremal Structure

Definition: A point x of the convex set C is an extreme point of C' if whenever x =

Ay +(1—A)xg with A € (0,1) and x;,x32, € C we have x; = x,. That is x does not belong
to the interior of any line segment in C.

/% fxtreme points

For example, the extreme points of a convex polyhedron in R? (in fact in geﬁeral) are its

vertices.

Theorem: A closed bounded convex set C' of R™ is the convex hull of its extreme points.

Proof: OQur proof is by induction on n the dimension of C.

When n = 1 C is a closed bounded line segment

C={x:x=X+(1-A)b0<A<1}

n
o @

and the result is clearly true as C = co{a, b} . Now, suppose it is true for convex sets of
dimension n — 1 or less and let C be a convex set of dimension n.

Let xp € C. We consider two cases.

Case 1: xg is a boundary point of C. By corollary 1 above there exists a hyper-
plane H = {x : a-x = ¢} which supports C at xo. Let K = C 0 H, then xg €
K and K is a closed bounded convex set of dimension at most n — 1 (as K C H).
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So, by the induction hypothesis Xo is in the convex hull of the extreme points of K.

That xg is therefore in the convex hull of the extreme points of C' now follows from the

following lemma for which we interrupt the proof.
Lemma: For K and C as above, the extreme points of K are extreme points of C.

Proof: (of lemma). Let x be an extreme point of K and suppose x = Ax1 + (1 — A)xa
where x1,x2 € C and A € (0,1). We show that x; = X2 and hence that x is also an
extreme point of C.

Since x € K N H, we have

c=a-x=Ja-x1+(1—Aa-x2,
while

a-x;>cfor i=1,2,as CCHy .

It follows that a-Xx; = a-x3 = ¢ and so both x; and xs are in H and therefore in K. Since

x is an extreme point of K we must therefore have x; = Xz as required.

We now return to the proof of the theorem..
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Case 2: Xg is an interior point of C. Choose any Line L through xg, then LNC is a
line segment whose end points a and b are boundary points of C.

By Case 1, a and b are in the convex hull of the extreme points of C and xg is a convex
combinaiton of a and b. Thus, since the convex hull of the extreme points of C is, by

definition, a convex set, we must have that xg is in it.

[
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3.2 CONVEX FUNCTIONS

Definition: For C a convex subset of R™, a-function f : C — Ris convexifforx,y € C
and A € [0,1] we have

FOx+(1=Ny) < Afx)+1-NF) -

N

R" \

‘ >
[
?Mr"-x‘"-—-—-—--_..

i
P
o
—~
‘Ky
c

We say f is strictly convex if the inequality is strict whenever A € (0,1) and x # y.

Convex functions are precisely those functions which satisfy Jensen’s inequality

k k
f( z)\ixi ) < Z)\if(xi)

i=1 Ci=1

whenever .

Z)\i=1and Ai>0 for i=1,2,...,k. (Prove this.)

i=1
We say [ is concave if —fis convex.

Example: Any linear function f : R™ — R is both convex and concave.

-Theorem: Let C be a convex subset of R™ and let f : C — R be a convex function. If

f has a local minimum at xg € C, then f has a global minimum at xg.
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Proof: Given x € C by choosing A > 0 sufficiently small we can make Ax + (1-X)xg

as close to xg as we please, and so for a sufficiently small )\ we have

F(xo0) < f(Ax -+ (1 — A)xo), as f has a local minimum at xg
<Af(x) + (1~ A)f(xg), as f is convex.
Hence
0 < A[f() — f(xo0)]
or, since A >0

f(xo) < f(x)

as required.

Theorem: Let C be a convex subset of R™ and let f : C — R be a convex function. If

f attains a global maximum at some point xg in the interior of C, then f is constant on

C.
Proof:  Suppose not, then there exists y € C with f(y) < f(xo). Now choosing p > 1
sufficiently near to 1 we have that

z2:= Y+ u(xe —y)

is arbitrarily close to xp and hence in C' (% is in the interior of C).

Rearranging we see that

40

T e



is a convex combination of z and y.

Hence .
f(xo) < if(z) + —lii}-f(y) , by the convexity of f
< if(xg) + E—;—-l—f(x[)), as f(z) < f(xo), (maximum at xg), and f(y) < f(xo)
= f(xo)

a contradiction.

Theorem: Let C be a closed bounded convex subset of R™ and let f : C — R be a

continuous convex function. Then f attains a global maximum at an exireme point of C.

Proof: Since C is closed bounded, and hence compact, and f is continuous by the

theorem on page 21 there exists xp € C' at which [ attains its maxirmim.

Qur proof now proceeds by induction on the dimension of C. Clearly the claim is true if
dim{C} =0 as then C = {xp} .

Assume the result is true for all continuous convex functions defined on closed bounded

convex sets of dimension n — 1 or less, and suppose C has dimension n.

If xg is an interior point of C, then f is constant-on C' (by the previous theorem) and so
certainly f achieves its maximum (only) value at an extreme point of C. On the other
hand, if xg is a boundary point of C then there exists a hyperplane H supporting C at
Xg. Let K = CNH, then xy € K and f restricted to K is a continuous convex function
on a convex set of dimension at most n — 1 with maximum value f(xg). By the induction
hypothesis, this maximum is attained at some extreme point k of K. But, by the previous
lemma, k is an extreme point of C and

fk) = f(x0) = maximum of fon C .
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Application to Game Theory

Recall that in chapter 1 example 4 our problem was to find

n n
max mén E(a, b), where E(a,b)-—»z Z aibjpij
i==1 j=1

and a,b are probability densities, that is

abeC:={x=(z,...,on):2; > 0and z:cizl}.

1=1

Now, C is a convex subset of R™ with the n standard unit vectors
e; = (1,0,...0), e =(0,1,0, ...,0), ..., ep = (0,...,0,1)

as its extreme points {see Exercise 17).

(n=3)

Also for a fixed a the function E(a,b) is linear (and therefore concave) in b. Thus by the

previous theorem it attains its minimum at an extreme point of C.

That is,
fla):= g:lelgE(a, b)

= j=§],]é],,11'n E(a, Ej)

To maximize f over C is therefore to find the largest z such that
z< E(a,e1), z< E(a,eq), ..., z< E(a,eq)
for some a in C.
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Since E(a,e;) = Z?zl a;p;; our problem is to find a4,as,...,a, and z which maximize

f(2) := 2z subject to the constraints

Z“Zaipil = 2z P11Q1 — P10z — ... — Pty <0
Z“ZGiPiz = Z—P13G1 — Paoly — ... — Ppaln < 0
zmzaipin = Z—PDinl1 — Ponlz — - ™ Panln < 0

a1 +tas+...0, =1

01120

agzo

an = 0 )

A problem which we recognise as a linear programming problem.

For example, in our game between A. Hog and B. Greedy the best mixed strategy for 4 is

found by solving:

maximise: =z
subject to: z -+ Ha; — Has < 0
z — 10&1 + 100.2 <0

a1+a2:1
Gy, a'220 .

We may solve this problem graphically as follows.

Let z = ay, then as = 1 — z and the requirement a, > 0 becomes x < 1. Stated in terms

of z our problem is

maximise: z
subject to: 2 +5z—8(1 —2) <0, or 2+ 102 -5 <0
z - 10x+10(1-x) <0, or z— 202+ 10 <0

0<z2<1
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From the graph of the constraint set depicted below

x=1

""'_\z+10x=5

we readily see that the maximum feasible z value is 0 which occurs for z = %- That is,
Q1,03 = % and so A should play his 5 cent and 10 cent coin with equal frequency, in which
case his expected gain (the value of 2) is 0.

Exercises
(1) For a € R and C a convex subset of R™ show that aC is convex.

(2) Let Cj, i € I be a family of convex subsets of R™, show that [;.; C; is a (possibly

empty) convex set.
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(3) For any xp € R" and subspace M of R™ show that xg + M is an affine subset of R".

(4) Let A be an affine set and suppose that A = x; + M, and 4 = x5 + M> where M
and My are subspaces. Show that A, = M.

(5) Let C be a convex subset of R™. If x1,---,%Xy, € C and Ar, Ag, ..., Ay are positive
numbers with > .-, A; = 1, show that 3.7, Aix; € C. [Hint; use induction on m, by
the definition of a convex set, it is true when m = 2..

(6) If AC B CR" show that co(4) C co(B).

*(7) (i) For A C R™ show that co(A) is the set consisting of all vectors of the form

T

S e

where m € N; ai,as,...,a, € A, and Ag, Ag, ..., A are positive numbers with
Yimidi=1.

(ii) Use (i), the last theorem of section 3.1 and Jensen’s inequality to give an alter-
native proof for the final theorem of this chapter.

8) Show that every closed convex subset of R™ is the intersection of the closed % - spaces
2

which contain it.
(9) Let D be a convex set.

(i) If x is an interior point of D and y € D, show that for A € (0,1} the point
Ax 4+ (1 — Ay is an interior point of D.

(ii) Using (i) deduce that the set of interior points of D,intD, is a convex set.
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and
(ii) D CintD  [in fact, intD=D].

*(10) Show that the closure of a convex set is itself convex. Hence deduce that for any set

S we have 0 S is the smallest closed convex set containing 5.

(11) Show x is an extreme point of C C R” if and only if whenever (¥ +2) = x with
¥,2 € C we must have y = z (= x).

*(12) Show that every convex polyhedron has only a finite number of extreme points.

(13) Let C be a convex subset of R™. Show that f : C — R is a convex function if and
only if its epigraph; '

epi(f) ={(x, ) e C xR: f(x) <y},

is a convex subset of R**!

k)

]Rn+1

(14) Let C be a convex subset of R™ and let f and g be convex functions from C into R.
Show that:

(i) af is a convex function whenever o > 0;
(ii) f+ g is a convex function;

(i) the maximum of f and g; (f V g)(x) := maximum {f(x), g(x)} is a convex func-

tion.
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(15) Let C be a convex subset of R™ and let f: C — R be a convex function. Show that

(i) Tor any y € R the (possibly empty) set Iy := {x € C : f(x) < v} is a convex
subset of C.

n
> R

(ii) The set of points in C at which f attains its minimum is a (possibly empty)
convex subset of C.

(iii) If f is strictly convex, the set described in (ii) contains at most one point.

(16) An affine function A : R™ — R has the form A(x) = Tx + b where T is a linear

transformation from R™ to R and b is a fixed number.

(i) Show that A(x) = a-x + b for some fixed vector a € R™. [Hence the affine
functions from R to R are precisely those functions whose graph is a straight
line.]

(ii) Show that A is both convex and concave.

(17) Let C be the set of probability density functions on {1,2,...,n} ; that is

T
Cw={p= (Pllpz,--wpn)i}:pj =1landp; >0for j=1,2,...,n}.
Jj=1

Show that x is an extreme point of C' if and only if it equals one of the n basis vectors

er =(1,0,...,0), e = (0,1,0,...,0), ..., ex = (0,...,0,1).
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(18) Find the optimal mixed strategy b = (b1, b3) for player B in our game with pay-off

matrix for A’s winnings

\ B 5 10
A

] -5 10
10 5 -10

*(19) Let f : R — R be a twice differentiable function. Prove that f is (strictly) convex if
and only if the second derivative of f is a (strictly) positive function.

(20) (i) Prove Jensen’s inequality.

(i) [General Arithmetic - Geometric Mean inequality]. For i =1,2,...,n let z; and
n

a; be strictly positive real numbers with Zai = 1. Prove that

i=1

{ny n
Ty T . Ty Sy + oy + ...+ iy,

[Hint: Write 27" as exp(a;fnz;) and note that exp(z) is a convex function on
R.]
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CHAPTER 4 - Linear Programming

In this chapter we explore linear programming probfems and the simplex algorithm for their
solution. Linear programming problems are undoubtedly the most frequently encountered

type of optimisation problem, and the simplex algorithm is one of the best known and
most commonly applied algorithms in the field.

We have seen several examples of a linear programming problem; Chapter 1 examples 1(a)
‘and (b), and also example 4 (see the end of Chapter 3).

The general form of such a problem is:

minimize: f(x)=c-x=c1z1+caza+...+cnln,

subject to: aj - X = a11%1 + a19Z2 + ... + Q1pTn = b
ag X = ap 21 + QgaT2 + 00+ QpaTn < by
Agst X = G4y 101+ 0+ Gkl nTn 2 bt

am'xza’m1$1+"'+amn$n2bm

z;>0for i€ C{1,2,---,n}

The first m constraints are a mixture of equality and inequality constraints. The last set
of constraints require that certain variables be positive and are consequently known as
positivity constraints. While these are just a special type of inequality constraint it will
prove convenient to distinguish them from the others.

Basic observation: The set of x's satisfying an equality consfraint a; - x = b; is a
hyperplane in R™. The x’s satisfying an.inequa.lity constraint a; - X é)bj: including a
positivity constraint {of the form ey - x > 0), constitute a closed % - space.

Hence the constraint set C (the set of feasible solutions, or those x's satisfying all the
constraints) is an intersection of hyperplanes and closed éwspaces and so forms a closed
convex set, indeed a polytope.

Thus if f achieves a finite minimum on C it is achieved at an extreme point of C and there
are only finitely many of these.
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Example Our diet problem, chapter 1 example 1:

minimize: 50z + 10z,
subject to: x4+ x5 <3
Ty + 5z <10
21+ 12 2> 1
z1 > 0,23 >0

has the constraint set whose extreme points are tabulated below (see Figure on
Page 4).

extreme points value of f

(0, 2) 20
(0,1) 10 +— minimum value
(3, 0) 150
(5/4,7/4) 80
(1/2,0) 25

So the minimum of the objective function is 10 which is achieved at z; = 0,z = 1. That
is, make the chilli mix 100 % beans, no meat.

- taste familiar!

From this point our development must necessarily be somewhat recipe-like, however all
the details are presented so that the rationale for what we do can be discerned. I hope
that this will indeed prove to be the case.

Our general plan of attack is:
1. Develop effective methods for locating the extreme points of C.

2. Develop an efficient algorithm for searching the extreme points to determine one at

which f is minimal.

In order to embrace all varieties of linear programming problems in a single approach it is
first necessary to replace each problem by an equivalent one (i.e. a problem with the same
constraint set and optimal solution as the original problem) which has a cannonical form

that can be assumed throughout our subsequent treatment.
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Reduction to Standard Form

Given a linear programming problem, if it is a maximisation problem replace the objective
function f(x) by —f(x) to obtain a minimisation problem. Then, starting with the given
linear programming problem in the form

minimize: f(x)=c"x,

subject to: a;-x=b;

ak-XSbk

gy X > byt

z;>0for ie’l

we perform the following series of steps. After describing each step in a general way it will
be illustrated by performing it on the following example.

Example:
minimize: T+ Ty + T3
subject to: =z 4215 =1
Ty —Tg+T3 > 2
T+ T3 <H
Te <0
and the positivity constraint :

»m120

Step 1 Replace each equality constraint a; -x = b; by the equivalent pair of inequalities

aj°XSbj

a;-x 2 by
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Applying Step 1 to the example we have

minimize: 1+ T2+ T3
subject to: 1+ 215 <1
T1 4+ 2z > 1

T1 — Tp+ T3 =2
Ty + T3 <O

Ty <0

o >0

Step 2 Rewrite cach inequality constraint of the form a;-x > b; (including those which
arose from Step 1, but excluding the positivity constraints) by "

(—a;)-x < (=by)

At this stage, apart from positivity constraints all constraints, m in number say, will be of
the form a; - x < b;.

Applying Step 2 to our example yields

minimize: 1+ o+ T3
subject to: 1+ 239 <1
—r1 + 2z < -1
—T1+ T — T3 < —2
T3 +x3 <D
e <0
z1 >0
Step 3 Introduce m new variables, Tn+1, Tnt2: .--» Znim, one for each constraint,

referred to as slack variables, using them to replace each of the constraints a; - x <

b; ( =1,2,---,m) by the equivalent requirement

a;j X+ Tnyj = by,
Tntj =0 (that is, a positivity constraint for £,;).

REMARK: Slack variables for inequalities which were originally > before Step 2 are
_ sometimes called surplus variables. The distinction between surplus and slack variables

is important for certain economic applications, but will not concern us here.
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After Step 3 our example becomes

minimize: Ty + oo 4 T3
subject to: 1+ 2z +3,y =1 .
—T1 — 2T + g5 = —1
—Z1 — T2 — T3 +Tg = —2 (underlined variables are slack variables)

1+ T3+ Ty =5
Ty +zg =10
T1, T4, Zs, Tg Ly, Tg = 0.
At this stage, excluding the positivity constraints, each constraint is an equality constraint

involving a slack variable. Also, with the possible exception of some of the original vari-
ables, all variables satisfy a positivity constraint.

Step 4 To ensure every variable satisfies a positivity constraint we may adopt either of
the following methods.

(i) Since every real number can be written as the difference of two positive ones,
if z; ( € {1,2,---,n}) fails to satisfy a positivity constraint express it as the
difference of two new variables

Tj = Uj — Uj
and require each of the new variables u; and v; to be positive.

(i) ¥ z; (7 € {1,2,---, n,) fails to satisfy a positivity constraint select one of the
equality constraints in which z; has a non-zero coefficient, solve this for z; and
use it to eliminate z; from the problem.

Relabelling variables, our problem is now reduced to standard form:
Minimize: c¢-x
Subject to: Ax =D

x>0

where x = (1,22 .., Zn, Tnt1s- - -, Tnam) and A is an m x (n + m) matrix of the form.

slack \::;Iiables

A=[al as - anp Eln-i-l an+m]

o

identity matrix

53



with the (column) vectors aj,as, -+, anim, denoting the m + n columns of A.

Using the method of Step 4 (i) for our example we arrive at the following standard form
for the problem. .

Minimize: 1+ ug — V2 + Uz — V3
subject to: T14+2us — 2+ x4 =1
—x1 — 2Us + 209 + x5 = —1
— 1+ Ug — Vg — Uz + V3 +Tg = —2
T1+uz—vz+z7 =25
Ug — Uz, +axg =0

T1, U2, Uz Us, U3, T4, Ts, L6, T7, Ta = 0.
Alternatively if we use Step 4 (ii) we obtain as a standard form the following problem,

Minimize: b — xv — Tg

- subject to: x1—21g+x4=1 (usingzy=—zgand zz3 =05z — 27)
—T1+ 228 +T5 = —1
—Tg+T7+ T =23

&1, T4, T5, TGy, T7, T8 Z 0.

Note z7 and xg should no longer be regarded as slack variables for this problem.

As noted in Step 4 it is usual to relabel the variables and express the standard form of the
problem in terms of the generic variables x = (z1,%2,**,Tn4m). Thus if we used Step
4(ii) and relabelled the variables as follows

T — I3
T deleted
x3 deleted
Ta —* T4
Iy —r Iy
Ig — Tg
Ty — T3

g — Iq.
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we would obtain as a standard form the equivalent problem:

Minimize: — x93 —z3
subject to: x, — 2z9 ¥4 =1
— Ty + 229 + 35 = —1
Za + T3z = 3

Z1, T3, T3, T4, Ts, Tg = 0.

That is,
Minimize: (0,—1,-1,0,0,0) - x
1 -2 01 0 0 1
subject to: -1 2 0 01 0|x=1[-1
0 -1 1 0 0 1 3
x>0
Remarks

1. Our reason for putting all our Linear Programming problems into this particular
standard form is, as we shall see, that from this form it is reiatively easy to determine

extreme points of the constraint set.

2. The standard form of a Linear Programming problem involves a considerable amount
of redundant information. The coefficients of initial equality constraints are dupli-
cated, the number of variables increased, particularly when positivity constraints are
absent and method (i) is adopted. Since Linear Programming problems are often
large this redundance should be avoided when “storing” the problem in a computer.
Although we will not pursue such matters, many algorithms have been devised which,
while “working” on the standard form, avoid redundant storage. These methods usu-
ally result from a careful analysis of how the data is used by the basic algorithms we
will develop.

As a further example consider our diet problem from Chapter 1:

minimize: 50z 4+ 10z5
subject to: T+ 22 <3
z1+ Bry < 10
2r1+ 1z 2> 1

I 20,1}2 20
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The standard form for this problem is:
minimize: 50z + 10zs = (50,10,0,0,0} - x

1 1,100 3

subject to: 1 5 01 0|lx=]10
-2 -1 0 0 1 -1
x>0

Basic Solutions
Consider a linear programming problem reduced to a standard form:
Minimize: c'X

subject to: Ax=Db
x>0

where, A is the m x (n 4 m) matrix

A:[al ag --- Ay fln+1 an—l—m}

o

identity matrix
In the arguments which follow it is important to recall that

Ax = z1a; + 22a3 + - -+ + Tnimndm.

Let a;,,aj,,...,4;,, be any m linearly independent columns of A. At least one such selec-
tion exists, as the last m columns are the unit vector basis
"17 107 107 "0
0] 1|1 0 0
of (0 1 10
101 L-J Lerd L1

such selections.

and there are at most (n—l—m) — (n+tm)n+m—1)...(n+1)

m m{m —1)...2.1
The (unique) vector x with x; = 0,7 # 71,72,...,Jm and

_ j, -
:I?jz

[ajl A, ajm] =b
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is clearly a solution of Ax = b. We call it a basic solution. “Basic” because the non-zero

entries x;,,%j,,...,%;, are the (unique) “coordinates” for the expansion of b in terms of
] . . . m
the basis a;,,a4,,...,a;_ of R™.

If in addition z;,%;, -+ - x5, > 0 (that is, x > 0) we call x a basic feasible solution, it

is basic and feasible as it satisfies all the constraints, including the positivity constraints.

EXAMPLE: For the standard form of our diet problem:
Minimize: 50z, + 10z,

Iy
1 1 1 0 0 I 3
subject to: 1 5 0 1 0 zz | =] 10
~2 -1 0 0 1| |z -1
I5
T1,Z3,T3,T4,T5 > 0
we have the following basic solutions.
Selection of Columns Basic solution
123 (-5/9, 19/9, 13/9, 0,0)
124 (-2,5, 0, -13, 0)
125 (6/4,7/4,0, 0, 2) a basic feasible solution
134 (1/2,0,5/2, 19/2, 0) a basic feasible solution
135 (10, 0, -7, 0, 19)
145 (3,0,0,7,5) a basic feasible solution
234 (0,1, 2, 5, 0) a basic feasible solution
235 (0,2,1,0,1) a basic feasible solution
245 (0,3,0,-5, 2)
345 (0, 0, 3, 10, -1)

Here, for example the basic solution corresponding to the selection 1 2 3 is obtained by
setting z4 = x5 = 0 and solving

1 1 1 Hig 3
15 0| |z:|=1]10
-2 -1 0 3 -1

The other basic solutions are obtained similarly.

Note that if (z1,z2, 23, T4, 25) satisfies the constraints of our standard form then (1, z2)
satisfies the original constraints (z3, 24, z5 were the additional slack variables introduced),
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so from the basic feasible solutions obtained above we have the following feasible solutions

for our original problem
(5/4, 7/4)
(1/2, 0)
(3, 0)
(0, 1)
(0, 2)
A comparison with the results of our previous graphical analysis shows thaﬁ these are

precisely the extreme points of the constraint set! This is no coincidence, as the following
theorem shows.

Fundamental Theorem of Linear Programming:  For the linear programming prob-
lem in standard form

minimize: c¢-x

subject to: [a; ag -+ ay Inxm]X =D,
A
x>0

the vector x is an extreme point of the constraint set C if and only if x is a basic feasible

solution for some selection of m linearly independent columns of A.

Proof: (<) Letx=(0,...,%4,...,%;.,0,...,0) > 0 be a basic feasible solution
(corresponding to the choice of linearly independent columns aj,,aj,,...a;, ). Assume
X = :i,—(y + 2} for some y,z € C. Since y, z > 0, both must have zero components in the
same places as x does.

Thus
b= Ay =yj a5 + Y585 + .- + Yjnjn
= Az = z;, 85, + 2585, + -+ + 2Ry
and so, since a;,,...a;,, are linearly independent, ¥j;, = 2, ¥j2 = Zjzs -+ Yim = Zjp-

That is, y = 2z and x is an extreme point of C.

(=) Letx=(0,...,0,z;,0...2z;,0...), be an extreme point of C where
Tjy, T jay - - - » Lj,, are the only non-zero (necessarily positive) components of x. Since Ax =b

we have
T4 a4 + T84, + ...+ za = b

Claim: aj,, 84y, .+,a;, are linearly independent.
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Once this claim is established we have, k < rank A = row rankA < m, so x is the basic
feasible solution corresponding to any choice of m linearly independent columns of A which
includes the & columns aj,,...a;,, thereby establishing the required result.
To verify the claim suppose yj, a5, + ... +yj;,a;, = 0 (and put ¥; = 0 when j $ ji. for any
k).
Choose a > 0 so that

IIEIl Tj, 2 @ max [ ¥j.]
(Here we have assumed x # 0. If x = 0 is an (extreme) point of C then b = Ax =0 and
so 0 is clearly a basic feasible solution.)

Let u = x+ay and v = x — ay, then u,v > 0 (by the choice of o) and Au =
Ax 4+ oAy = b+ 0 = b similarly Av = b.

Thus u,v € C. But x = 3(u+v), s0 u = v and hence y = 0. In particular

Yjis =Yjp = .. =¥5, =0

and so a;,,...,a;, are linearly independent.

[

We are now ready to develop the simplex method for solving linear programming problems.
This method devised by G.B. Dantzig in 1947 while working on military logistic problems
was first published by him in 1951. '

The essential idea is to move from one extreme point (basic feasible solution) to another in
a systematic, efficient and computationally expedient way until we arrive at the solution.

For computational convenience we first introduce a convenient representation of the prob-
lem which we will work with from now on.
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Tableau Form

The linear programming problem in standard form

minimize: c-x—d

(it is convenient for the algorithm we will develop to allow an

affine cost function.)

subject to: Ax=Db
x>0,

ai11
where A =

Gm1

is conveniently represented in the following tableau form.

I I Hy

a1 a1z din b]_ —In+1

a1 G2 Qzn | b2 | —Znt2

aml QOm2 tmn | bm | —Zn+m
€1 2 cn | d f

Note: (1) The body of the tableau corresponds to rewriting the constraints represented

by Ax = b, that is

@11T1 + -+ + Q1nZn + Tnp1 = b1

a21Z1 + -+ - + QgnZn + Tniz = bs

am1Z1 + "+ GmnTn + Tmtn = brm,s

in the form
@111 + 0+ @1nTn — b1 = —Tn1
an1T1 + -+ + GonTn — bz = —Tni2

am1T1 + -+ Gmaln —

(2) This tableau, together with the assumed positivity constrains x > 0, completely

summarizes the problem.
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(3)  The variables along the top border of a tableau are referred to as the nonbasic
variables for the tableau while those appearing down the right hand edge of the tablean
are its basic variables.

(4) The form of the tableau is such that the basic variables can be easily determined
from a knowledge of the non-basic ones. In particular, setting all the non-basic variables to
Zero gives Tny1 = by, Tnyz = b2, , Tnym = by, as a basic solution, though not necessarily
a basic feasible solution unless all the b; are positive. We refer to this particular basic

solution as the basic solution corresponding to the tableau.

EXAMPLE: The (initial) Tableau form of our Diet Problem is:

T1 Iz | —1

1 1 3 —I3
1 5 10 —@Iy
-2 ~1|-1| —zs

30 10| O f

For which the corresponding (nonfeasible) basic solution is x = (0,0, 3,10, —1).
The Pivoting Operation

"This operation transforms the problem (tableau) into an equivalent one with the réle of one
of the basic variables and one of the non-basic variables interchanged. The transformation
being effected by the usual elementary operations of linear algebra.

Before describing the operation generally consider the example of “pivoting” about the 5 in
the second row and second column of the above tableau. We aim to arrive at an equivalent
tableau with the réle of x5 and x4 interchanged. This may be achieved via the following
steps. Divide the z4-row (pivot row) by the coeflicient of 5 to obtain an equation in which
T2 has unit coefficient.

I T2 —1

1 1|3 | —z3
1/5 1 2 —T4/5
-2 -1 -1 —I5

50 10| 0 f

Now, subtract appropriate multiples of the new z4-row to eliminate z; from each of the
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other rows including the bottom row reprenting the objective function.

I Lo -1

4/5 0 1 —T3 + T4/5
1/5 1 '"-11',4/5
“'9/5 0 1 —T5 — Ly/s5

48 0 | —20| f+ 224

Now rearrange each of the equations to obtain the sought for tableau

T 4 -1

4/5 -1/5| 1 | —=3
15 15 | 2 | —z
—9/5 1/5 | 1| —ms

48 -2 | =201 f

Note:

(1) By carrying the objective function along as part of the tableau we have as a result of

the pivoting expressed it in terms of the new non-basic variables, £; and z4.

(2) As a result of the above pivot we have obtained an equivalent problem (tableau) from
which we can read off x1 = 0,72 =2,23 = 1,z4 = 0,35 = 1 as a basic feasible (since all
the b;’s of the new tableau are positive) solution (c.f. our earlier calculation of all basic
feasible solutions).

In general, pivoting about the I, J’th entry, a; 7, of a tableau:

Ly cer Ty e Ty e Ty | =1
ar ays ayj ain | b1 | —Tat1
ai1 aiJ aij Qin | b | —Zn+i
arn arg ar; @n | br | —Znsr
Im1 amJ tmj Qmn | bm | —Znim
Cl e CJ P Cj s C'rl, d f

-
e
e




the steps illustrated above will produce the new tableau:

Tni T -1
TR .. Ligar; d 3. migbr _ ,
ars Qij ars b; arg Tnti
1 ajj by _
ars arg ary T
_cr . _ gagarj _ciBp
agy Cj arg d ars f(x)

That is;
(1) The entry in the pivot position is replaced by its reciprocal.
(2) Each entry in the pivot row (except the pivot itself) is divided by the pivot value ary

(3) Each entry in the pivot column (except the pivot itself) is divided by the pivot value
and multiplied by —1.

(4) From each entry off the pivot row and column subtract the product of the entry of the
same column in the pivot row ar; and the entry of the same row in the pivot column
a;y divided by the pivot value.

Schematically, for ¢ # I and j # J;

arrs ar;
the 77'th entry becomes
aiJarg
Aijg ———
ary.

In many applications the tableaus are large (sometimes both m and n are of the order
of 1,000). When implementing the pivot operation by a computer, particularly in the case
of such large tableaus, it is desirable to overwite the existing tableau. A convenient and
efficient algorithm for effecting this is given by the following flow chart.

Labelling entries in the body of the table as #;; (i=1,...,m+1)
we have the following algorithm for pivoting about the I, J'th position:
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Interchange z; and 24 in the table border

replace tr; by th;, = %

replace all other entries of 'th row ty5;7 # J, by th; =15 x t};

replace all entries 25,4 5 I35 # J; by

Tij - tig X tIIJ

replace all other entries of J’th column, ¢;5;¢# I; by -ty X &,
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FUNDAMENTAL OBSERVATIONS:

1. As already noted, if

Ty v Ep | —1
a1 -cc Qip | by | —mpy
|
| Oml * CQmn | bm —ZInim
e oen | d | f

is @ tableau for a given linear programming problem, then
xg=1(0, ..., 0, b1,...,bm)
R
n
is a basic feasible solution if and only if
bl:bZ}---:meO- 7

2. For any x in the constraint set we have zy,...,z, > 0, and so f(x) = c1z1 +... +
enZn —d > —d=f(xg) if e,c,...,c0 > 0. It follows that

}CB=(O,...,0, bl,...,bm)
P
is an optimal solution if and only if b1,bs,....,0, 2> 0

and €15C2y+44,Cn 20-

3. Further, if ¢; (;)O for j = 1,2,...n then the vector xp given above is the
unique optimal solution.

This leads directly to the strategy for the simplex method, namely;

Stage I. By means of a suitable sequence of pivot operations transform to an equivalent
tableau in which all the b, (i = 1,2,...,m) > 0.

(For example, the effect of pivoting about 5 in the tableau of our diet problem.) That is,
locate a basic feasible solution, or equivalently an extreme point of the constraint set. A
tableu with all b; > 0 is sometimes said to be in feasible forin.

Stage II: ~ (if possible getting all ¢; > 0). Here we attempt to pivot to a new tableau
with all b; still positive but for which d,e < dorg ; that is, at the basic feasible solution
corresponding to the new tableau the value of the cost function is less than or equal to its

value at the previous basic feasible solution. “Geometrically” this means we move from
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one extreme point to another (adjacent one) at which the cost is no greater. Since there

n+m

are only a finite number of extreme points, at most ( M

), provided we continue to move
to untried extreme points (that is, we don’t return to a previously encountered extreme
point cyeling does not occur) we must eventu‘ally arrive at an extreme point where the
cost is minimal or else find that there is no solution (the "minimum” cost is —c0). As
we shall see the simplex method allows us to easily recognise this last possibility should it

occur.

Since many naturally occuring problems are initially in feasible form (ie all b;’s are
positive) and since stage II is easier to describe (and indeed needed in Stage I) we begin

by presenting the algorithm for it.
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STAGEII ALGORITHM

Starting with the tableaun

Xp ... Xj ... Xp -1

ap; & Agn by X1
aj 3 ajp b; —Xn4i
ml A 4mn b —Xnam
) ¢; Cy d f

in feasible form ie. by 20,b,20,...,b,20

’___ I L]

N Stop, Optimal solution is
o (0,...,0,by,...,by)
with min f=d

Is there
at least one
Cj < 0

Select J so that cy is
minimum of the ¢; s
ie. J such that

oy Scj j=1,2,...,n

(Note cy<0)

Yes

for all i? i.e. are all entries
of columnn I negative?

Stap, no optimal solution
exists; "min " =- e
(See the following Remark 1)

- b
From among those i with a;;> 0 choose Iso that ._%I_ <
il &g

i.e. Find I at which the minimum of

;

& Replace the tableau with the new one obtained by pivoting about the
I, J'th entry.
(See the following Remark 2)

{_:ij Dagp>0 } oceurs ,
i

66a

Xt



EXAMPLE we saw that a feasible tableau, corresponding to the extreme point (0, 2,
1, 0, 1}, for the Diet problem was:

T1 T4 | —1

TR
b |
-4 31|
48 -2 -20]| f

applying the algorithm leads to pivoting about the 3, 2 entry to prod&ce:
I 5 -1
(—-1) 1 2 —Ig

(2) —1| 1 | —z
-9 5 5 _-—5174

30 10 |-10| ¥

So optimal solution is z1 = 0,23 = 1,23 = 2,74 = 5,z5 = 0 with min f = 10, see our

earlier graphical solution.

Note: The tableau entries enclosed in brackets (that is, the new a;; which are not in the
pivot row or column) are not needed to decide whether or not the tableau is optimal, nor
to find the optimal solution in the case when it is an optimal tableau. Thus calculation of
these entries should be left until last and need only be made if the tableau is not optimal
so a further pass through the algorithm is required.

The following remarks analyse in detail key steps in the Stage II algorith.

REMARXK 1: In the case when the pivot colum (J) has been selected and the entries
a;; are negative for all 7, we have for any A > 0 that the vector x obtained by setting
the J'th non—basic variable equal to A and all the other non—basic variables equal to 0 and
then using the tableau to solve for the remaining (basic) variables [the i'th basic variable
will be b; — a;74], is a feasible solution.

Further f(x,) = —d 4 cjA, where ¢; < 0, so letting A — oo we see that

Jnf f(x) = —co.

REMARK 2: Our choice of I ensures that the new tableau resulting from a pivot about

br
the I, J'th entry remains feasible. To see this note that if a;; > 0, then by choice — < -a—-;
1J i
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a;rby

and so new b; = b; — > 0. On the other hand if a;; < 0 the inequality

arg
i 7b
b; — A 2> 0 is ensured (as b; > 0 and by choice ay; > 0). Hence the new tableau is
arr -
feasible.

Further, since ¢y < 0 we have that

Cjb[
Cimav&.r =lgld ~ —— > doid-

arg

That is, the value of the objective function is decreased (never increased).

REMARK 3: As each step of the algorithm, when encountered, can always be carried
out we are sure that either the algorithm must terminate at one of the two stops (and
so an optimal solution found), or since there are only a finite number of feasiple tableaus
(extreme points) available it must cycle back to a previously encountered tablean. We now
analyse this possibility of eycling. We show that by a slight modification of the algorithm
(which in no way affects its working) we can prevent cycling from occuring. If cycling is
precluded, the algorithm must then terminate at an optimal solution. This shows that any
linear programming problem represented by a feasible tableau has a solution.
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Cycling:  As already noted the possibility of the above algorithm cycling cannot be
excluded, indeed this phenomenon has been shown to occur in specially constructed ex-
amples. None-the-less the situation does not seem common in applications of the simplex
method to problems which arise in natural way;. Further, it can be shown that any linear
programming problem may be “perturbed” in such a way that the degeneracies which lead
to cycling are excluded. In practice this often means that round off errors which build up
from iteration to iteration perturb the problem sufficiently to prevent indefinite cycling.

Relatively recently R.G. Bland [1977] proposed a remarkably simple modification to
the Stage II algorithm presented above which prevents cycling. Bland’s modification
is now included in many implementations of the simplex algorithm. It consists of the
following. When selecting the pivot column, choose J so that ¢; < 0 and so that
the associated variable, zr, has the smallest possible valued subscript. (note,
that for the simplex algorithm to function it was not necessary that ¢y be fmjm'mal, only
that ¢y be strictly negative.)

In case of a tie when selecting the pivot row; that is, when there is more
than one value of I for which E%I} < Eb',-l} for all ¢ with a;; > 0, break the tie by
choosing [ so that the associated variable has the smallest possible subscript.

To see that Bland's Modification precludes cycling, we suppose that we have a tableau

in feasible form for which the modified algorithm cycles and derive a contradiction.

Delete from the tableau those rows and columns which do not contain pivots occurring
in the cycle to obtain a new tableau for which the algorithm still cycles and such that during
the course of the cycle each variable is swapped from the top of the tableaux to the right
hand side and subsequently back again {(on completion of the cycle, the tableau is returned
to its initial form).

For the algorithm to have cycled the cost —d must have remained constant throughout
the cycle (it can only decrease and must return to its initial value). Since the new cost
after pivoting about the I'th row is —d + ¢;br/ar; (where c; < 0), and since each row is

involved in a pivot during the cycle we must have by = o for all 1.

Let N be the largest valued subscript of any variable associated with the problem,
then the tableau from which ¢p is swapped from the top border to the right hand side has

69




the form:

N -1
0
0
0
;>0 ecy<0 >0\ 4d |f

For J to have been selected, all the c; with j # J must be positive or else a variable with
smaller subscript could be swapped); while the tableau from which zy is swapped from
the right hand side to its original position in the top border has the form:

... 1 0
Tgr-c Tk o Tg, | 1
0 Thppr — Qij
aig =0
(E#1)
ary >0 0 —TNy —dary
<0 0 | —Zeppnr —Gmy
>0 Cr;<0 >0 | d f

(Since all b;’s are zero, all rows with a;; > 0 are tied and so for the row associated with
zn to be chosen all other rows, being associated with variables of smaller index, must have
a;y < 0).

It is easily seen that a solution (which is neither basic or feasible, positivity is violated) to
this second tablean; that is, a solution to Ax = b, is:
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T, =000 =1,2,...,n; #J), 2, =1

and zy, .. = —aiy{(i = 1,2,...,m) all of which are positive except xy,,; = z§y = —ars
which is negative. See outer border of the second tableau).

From the second tableau we see that for this solution
f=—-d+cd; <—d (as cf;<0)

On the other hand, substituting this solution into the expression for f obtained from the

first tableau we have .
f=—d—ciag+) ¢z,
=1

where z; = 0,1 or —a;;(i #I) andso z; >0, yielding f > —d.

A contradiction, since the effect of pivoting is to use the relationship Ax = b to express f
in terms of a different set of arguments and so the expression for f from any tableau may
be used to evaluate f(x) for any solution x of Ax = b.

REMARK The following is an example, due to Beale (1955), of a linear programming
problem which may cycle when the simplex algorithm as described on pages 64, 65 is

employed.
minimize: —0.75z1 + 150z — 0.02z3 + 624

subject to:  0.25z7 — 60z — 0.04z3 +9z4 <0
0.50z1; —90z3 — 0.0223 4324 <0

T3 <1

T, Ta, 3, x4 =20

If in the standard algorithm ties are resolved by always choosing the lowest number row
or column to pivot in, the example exhibits a cycle of length 6.

STAGE 1 ALGORITHM, obtaining, if possible, an initial feasible tableau -
one with all b; > 0. Geometrically: locating an extreme point of the constraint set. Our
approach is that due to Rockafellar {1964].
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STAGEI ALGORITHM

Starting with the tableau
ST ¢ Xg -1

aj b; ~Xn+i
cy - ¢ - Cn 0 f

Areall b; =20

No

Construct the augmented tableau

Xn -1

\\ —Xn+

€t

NN ¢

Cn

Select I so that
. bISbi forall i

l

Yes Finish, tablean is

already feasible

Pivot about the —1 in the I, 0'th position to obtain
the new tableau;

Use Stage II algorithm to obtain the
“solution tableau" for the L.P. problem
represented by the shaded part, top

(m+1)x(n+2) block, of the new tableay |«<@—— 1
carrying the last row (corresponding
to theoriginal cost function) along

through the pivots.

the resulting min
value for g > 0

No &

of the variables along the
‘top of the table

Xnel X1 --- X -.- Xp -1
-1 8 - ay; bi=by | —Xpsi
-1 — a5 ~by

+ ay +by g
0 G 0 f

Stop the original problem has empty
constraint set and 5o no solution.

i.e iy resulting
entry in (m+1),
(n+2)'th place < 0

Is x one

Choose any non-zero entry in
the first n+1 places of the row
corresponding to —xq as a
pivot to obtain a (still feasible)
tableau with xq in the top row

Delete the m+1'th row corres-
to g and the column to corres-
ponding xq to obtain an equiv-
alent tableau for the original
problem which is in feasible
form 3
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EXAMPLE Diet Problem

I1 Ig -1
1 1|3 |-z
1 5] 10 —I4
-2 —-1]|-1 —Is
50 10} 0 | f(x)
augmented tableaun
iy} ] g —1
-1 1 1 3 | —z3
-1 1 5 | 10 | —zy4
-1 -2 —-1|-1]| —z5
1 0 0|0 |gx
0 50 10| 0 | f(x)
Ty T1 xq | —1
-1 3 2 4 —I3
-1 3 6 | 11 | —za
—1 2 1 1 —ZXg
1 -2 —-1)-1]|gx)
0 50 101 0 | f(x)
applying Stage 1I:
I5 Ip T -1
N I
1
"3 3 3 | 3 | T
0 1 0 0 | g(x)
25 —25 —15| —-25| f(x)




deleting row and column gives as a tableau in feasible form:

Ts Ta I
1 1 -
2 3 3 |~
N 3 e
1 1 1
T2 2 2 —I1
25 —15| —25 | f(x)
solving by Stage IL.
£Ls I -1
-1 2 —I3
-9 ] —ZI4

-1 2 1 —Tg

10 30 | 10| f(x)

i.e. min cost of 10 at (0,1, 2, 5,0). See the previous solution.

DUALITY

Given a linear programming problem in standard form prior to introduction of slack
variables, here referred to as the Primal Problem P;

Minimize: f(x)=c¢-x
Subject to: Ax <b
x>0
That is;
Minimize: c¢1z1+ -+ chZn

211  Qyn T by
2
Cmi Qmn <
(m x n) :
Tn b,
T1,T9y...,Ty = 0
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We may associate the Dual Problem P*;
Minimize: f3(y)=bh-y
Subject to: (—AT)y <c
y=20
That is;
Minimize:  b1y1 -+ - - + bnYm

n €1
=11 ... Qi .
=Qln —Omn i <
(n % m) : .
Um Cn
Y1y-- - 4n =0

Observation: The dual of the dual problem is
Minimize: c¢-x ‘
Subject to: —(——AT)TX <b ie. Ax<b
x>0
which we recognise as the primal problem.
This observation, that (P*)" = P, is one reason for calling the problems P and P* “dual”.

DUALITY THEOREM of linear programming [Gale, Klee and Rockafellar, 1951].

Let C be the constraint set of the primal problem P and let C* be the constraint set for

the dual problem FP* defined above. Then

(1) If x € C and y € C* we have f*(y) < —f(x)

(ii) If xp € C and yp € C* are such that f*(yo) = —f(xo) then xg is an optimal solution
for P and yg is an optimal solution for P*. '

(iii} If one of the problems P or P* has an optimal solution xg or yg, respectively, then so
does the other and F*(yq) = — f(xo).

Proof:
(i)
ff(y)=b-y
>Ax-y as y20yeC”) and Ax < b(xeC)
:x-ATy
>-—x-¢ as x>0 and yeC* so —ATy<c or ATy > —c
= f(a) .
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(i) If f*(yo} = ~f(x0); ¥o); yo € C*,%g € C, then since by (i)
[*(y) = —f(zoy for all y we see that Sflellgl.f*(y = —f(xo) = f*(¥o)..
Similarly for f.

(iii} Our proof of this is obtained by forging the Link between the Simplex Method
of Solution for the Primal and Dual Problems.

Introducing slack variables 2,41, ..., Zpm our primal problem is expressed in tableau
form by:
Ty . T e T -1

—1 ai Qi by ~Tnt1

i Qi bi — T

—Ym Ol Emn b —Ini4m

-1 1 c; Cn 04 f(x)

~Ym41 —Ym4j .""ym-i-n —f* (y)

Introducing slack variables ym41, - - ., Ym+n for the dual problem we see that it may be
represented on the same tableau as indicated. Applying our fundamental observations
to this tableau for the dual problem we see that for a basic feasible solution we require
all ¢; > 0 and for that solution to be optimal b; > 0 V;. But, this is precisely what
the simplex algorithm achieves in solving the primal problem. Thus, whenever the
primal problem has a solution (obtainable by the Simplex Method) so does the dual
problem and, by the duality observation, vice versa.

EXAMPLE
For our diet problem:
Primal problem:
Minimize: 50z + 1032 =: f(x)
Subject to: z1+x2 <3
Ty + 519 < 10
—2z1 — T2 < —1

Ty, T2 2> 0

Dual problem:
Minimize: 3y, + 10ys —y3 =: [+ (z)
Subject to: —11 — Y2 + 2y3 <50
—y1 =9Y2 +y3 <10
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Y, ¥y2 20

Combined tableau:

L3 Ta -1
—1i 1 1 3 —1I3
—Yaz 1 ] 10 —I4
—ys -2 -1 -1 —I5
-1 50 10 0 F(x)

—ya —ys —f*x(x)

Stage I
Augmented tableau

Ny I I3 —1
-y —1 1 3 —T3
—ys —1 -1 5 —T4
-y —1 =2 -1 -1 —Ig
1 0 0 0 g(x)
-1 0 &0 10 0 f(x)
—ys —ys | —F*(x)

Ty Y To -1

—-y2  —1 3 6 11 | —za
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Stage II solution for min g

Ty g Ty -1
“n 5 P 3| 5 |-
3 -3 3| B |-m
w4 3 4|} |

0 1 0 0
-1 25 =25 -15]| —25 f

—Y3 *k  ~ys | —f*

Note: * and 2y remain aligned and so are deleted together.

feasible tableau

Iy i) I
— 1 1 5] -
n 9 ) P I3
—qy - 1 g s |
y—2 3 2 2 T4
- i i 1 —
Y4 2 2 7 T3

—Yz ~Ys | —f*
Stage IT
Ty T —1
-1 -1 2 | —x3
—Y2 -9 9 | —T4

-1 10 30 |-10]| f
—Y3 —ys | —fx

whence min f =10 at (0,1,2,5,0)
min f* = —10 at (0,0, 30, 0).

Note: (1) The correspondences:
Y & Tppr 0=1,2,...,m
Ym+1+—T1 i=1,2,...,n
are preserved throughout, and may be used to fill in the y-borders without the need of

carrying them through the pivots.
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(2) Dual problems are of theoretical importance and arise naturally in Games theory
(see Exercise 13). Further, if the coefficients of the objective function are all positive (often
the case for a cost function) then the dual problem is in feasible form and so may be solved
using only stage II of the algorithm with its dual solution giving a solution to the original

problem.
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BExercises
If you have access to and familiarity with a, computer, you are urged to solve the problems
indicated with a # by developing programmes to
(i) input a tableau
(ii) output a tableau
(iii) perform a pivot about a specified tableau entry
(iv) effect stage II of the simplex algorithm
(v) effect stage I of the simplex algorithm

(vi) determine the solution to the dual problem.

1) Convert the following optimization problem into a linear programming problem.
Minimize:  |z| + |y|
Subject to: z+y<1.

2) Convert each of the following linear programming problems into standard form.
(a) Maximise: z; + 4zy + x4
Subject to: 2z — 2zy + x5 = 4
T -3 >1
Tz 20; 23>0

(b) The linear programming problem which results from question 1.
(c) Minimize: 3z; — 2z,
Subject to: 2x; — x5 > —2
X]— 229 <3
Ty -+ 2w <11
z1 20,253 >0

3) Graphically determine the extreme points of the constraint set of problem 2(c). Hence
solve the problem.

4} Determine all basic solutions for the standard form of the problem in 2{c). Identify
the basic feasible solutions. Verify the solution obtained in 3).
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*5. (3iven a linear programming problems in the form

Minimize: c-X

Subject to: Ax<b
x>0

where A is an m X n matrix, let the problem

Minimize: ¢5-Xg

Subject to: [Ailn]xs =b ..{2)
x>0

correspond to a standard form of the problem (1).

Show that there is a one-to-one correspondence between the constraint set C' for
problem (1) and the constraint set C; € R"™*™ of (2). Show that under this

correspondence extreme points of C correspond to extreme points of Cs.,
6) Express the linear programming problems of question 2) in Tableau form.

#£7) For the tableau
Ty To 3 T4 | —1

2 -2 -2 1 4 —&5
-2 2 2 -1|-4]| -~z
-1 1 0 1 —1 —T7

-1 1 -4 -1} 80

Perform a pivot about: (i) the (2, 3) position
(ii) the (2, 1) position

#8) Solve using the simplex method the linear programming problem in 2(c).

*9) Estimate approximately the worst case complexity (maximum number of operations
+,—, x and = necessary) for the simplex algorithm when applied to a tableau of size

n % 1 which is in feasible form.

#10) Solve, using the simplex method;

Minimize: —3z3 4 2z2
Subject to: 4x1 4+ 32 <16
T1+ 3 27

2$1—$2 §—4
$1_>_01$2 ZO
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*11) Estimate the (worst case) complexity for stage I of the simplex algorithm, Combine
this with (9) to obtain an estimate for the over-all complexity of the simplex method.
[Note: Extensive experience has shown that the algorithm can be expected to reach
an optimum solution after the order of n privot operations]

#12) For the problem;
Minimize: 5z, — 3z,
Subject to: 2z, — Ty + 4z < 4
T1t+To+ 223 <5
21 —xo+ 13 <1
T1,Tq,z3 > 0.

(a) Find a solution using the simplex method.
(b) What is the dual problem? .
(c) What is the solution to the dual problem?

13) For our game theory example (seé end of Chapter 3), show that the Linear program-

ming problems for A and B’s optimal strategy are dual problems. Use the simplex
algorithm to solve for both strategies.

#14) For the linear programming problems of 2(c) and (10), find the respective dual prob-
lems and their solutions.

*15) For a linear programming problem in the form;
Minimize: c¢-x
Subject to: Ax=Db (A an m x (n 4 m) matrix)
x>0
show that the dual problem may be expressed as
Minimize: -b.z |
Subject to: ATz < ¢
(note the absence of positivity constraints)

[Hint: take 2 = (Ymi1 ~ ¥1, Ymez — V2, ..., Yom — Ym)]
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CHAPTER. 5 - Non-Linear Optimization

For x € R™ we consider the problem;

Minimize:  fy(x)

fi(x) <0
Subject to: . f,(x) <0 f(x) < O(f : R® — R™)
fm(x) <O

where the fi(i = 0,...,m) are given (not necessarily linear) functions of the'n variables
T1,Z2,...,Zn.

To gain perspective on our method of approach we examine a few examples of the case
n=2m-=1.

(1} To get us thinking in the right direction we begin by exploring the linear program-
ming problem;

Minimize:  fo(z1, T2) = 29 — 2

Subject to: fi(z1, z2) =31+ 22 —1<0
- 21 20, 33 >0,

but from a different geometric view point.

Define the (affine) mapping

T:R2 o RZ : (581, 2?2) = (f1($1:$2)1f0(m11m2))
= (21 + 32— 1, T3 —31)

= (21 + T2, T2 — 21} — (1,0)

=[] 2] - o
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image of :&2 axis

image of x
axis

W is':!_-';,' N

We see that the image under T of the positive quadrant C+ (consxstmg of those x’s satis-

fying the positivity constraint) is the cone illustrated. Translated our problem becomes,
Find;

Minimum: v
Subject to: u <0
('u.,'u) € T(C+)

Clearly this is —1, at (0, 1) = T(1,0). So the solutlon isminfy=—-1atz; =1,25 =0,
the correctness of which is easily verified.

~ A similar transformation and reinterpretation of the non-linear case is possible.
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(2) Minimize: 2z+y
Subject to: 242 <1 -

Define: ‘
T:R?* - R?: (z,y) — (u,v) := (=% + 9% — 1,22 + 7)

Since there are no positivity constraints we seek the image of all of R2 under T (T'(R?),
the range of T').

To do this, consider the image under T of the line y = mx (since R? is the union of
such lines over all m, T(R?) will be the union of the images).
Now
(m+2)
m2 +1
Thus T(R?) is the union of the family of parabolas v2 = k(u -+ 1) where k ranges over all
m+2)?
possible values of 5—51)1—

'u=(m—|—2):1:andu:(mz-!—l):r:z—:l=M.a2 (u-}-l)

ie. 0

(m+2)?
mgx me+1

b IA
=1 B
IA

(2m + 4)(m? + 1) — 2(m + 2)?m
(m2 +1)2
=2m?+3m—-2=0
(2m—-1)(m+2) =
So

34
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In terms of u, v our problem becomes;

Minimize: v
Subject to: u <0
(ua 'U) € T(Rz)

Clearly the solution is ~/5 at (0,—/5) = T(——%, —Z)-
That is, the minimum is —/5 at s=-Z, y=-2.

Note:  Here T(R?) is convex, in general however, even when fo and f; are comvex
functions, this need not be the case.

Jo=x% 442 and fr =z =>v=\/u+42 > /uand u > 0.
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(3) A nonconvex example

Minimize:  fo(z,y) =22+ y+1° *
Subject to:  fi(z,y) == -y <0
Define:

T:R* = R”: (2,9) = (w,9) = (=1, 2% +y +1°)

To determine T(R?) observe: All points (c,y) on the line & = ¢ transform to points (u, v)
satisfying: v = ¢ — u — u® or points on the curve u + 13 + v = 2 > 0.

Thus T(R?) is the union, over all values of ¢, of such curves. That is,

T(R?) = {(u,v) :u+fq3+v > 0}
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In terms of u,v our problem is;

Minimizé: v *
Subject to: u <0
(u,v) € T(R?)

Clearly the solution is 0 at (0, 0).
Somin fyis0at z =0,y =0.
Remark Clearly any problem of the form;

Minimize:  fo(z,y)
Subject to:  fi(z,y) <0,

can be analysed in this way. The possibility of extending into higher dimensions (more
constraint equations and unknowns) is also obvious. However, as the last two examples
serve to illustrate, explicitly determining the range of T is in general a forbidding task.
Instead of attempting this we shall seek distinguishing properties of the point in the image

space where the minimum occurs (such properties then give necessary conditions for a
solution).
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MULTIPLIER RULES - THE BASIC STRATEGY

Given the following problem: For x ¢ R* *

Minimize:  fo(x)
Subject to: fi(x) <0

() <0,
define T:R" = R™H :x e (f1(%), ..., fm(x),fg(x)).

Now suppose the minimum value of f; subject to o'qr constraints is mg, then
W= {(u1y ey Um,v) tug 0,000, U, < 0,0 < mg}
is clearly a convex subset of R™*! with interior points, and we have
| WNTR") =¢

while, W NT(R™) consists precisely of the image under T of those points xg satisfying the
constraints at which the minimum occurs. The converse is also true.

Rm-l.

A
o
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For motivation, we begin by considering the case when T(R™) is a convex subset of R™+1
(illustrated by Example (2) above). In this case we can separate W and T(R") by a

hyperplane (A1, :.., Am, Ao).(uy,. .. 1Um, V) = €, where [|A|| = 1. That is, for us, ..., wu,, <0
and v < mg we have

/\1U1 -l—...—l—Amum—i-)\gv SAT(XQ) SA_T(X)

Since u3,...,%y, and v can assume arbitrarily large negative values it follows that
Aoy A1,. .., Ay must all be positive (otherwise the lower inequality would be violated).

Further, observing that for any j € {1,... , 11}

(Fioxo)s- o, 5 k0)s ., Folxo))e W

we have

Mfi(xo)+...+ %)\jfj(xo) e Ao f (%) < A T(xo) = Ao fi(xo) + . --z\jfj(xﬁ) +...
or 1
—5Afi(x%0) < 0.

On the other hand, since Aj 2 0 and f;(x0) < 0 we have m%)\}fj(xﬂ) > 0.
That is, for j =1,2,...,m we have A, f;(xq) = 0.
Thus we have proved (in the case T(R") is convex) the convex multiplier rule.

Convex Multiplier Rule

m
There exists positive Ag, A1, ..., Am, not all zero, such that if P(x) = ZAjfj (x) then
=0

Aofo(xo0) = d(xg) < ¢(x) for all x € R™.

That is, ¢ has an unconstrained (global) minimum at x; (the point where fg is a
min subject to the constraints) and

Ajfj(}{g) =0 jzl,z,...,m
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(constraints where A; 5 0 are said to be active, these are the constraints where fi(x0) =0
so small changes in x can violate them.)

Example

For the problem of Example 2, we see that the separating hyperplane is v + %2 VB, = —/5,
that is,

/\021,;\1'—_?‘
5
¢(m,y)=2=ﬂ+y+—\§(m2+y2—l)
V5 2 V5 2’
=—(z+ +5- W+ V5
et ) (f)‘
whichhasaminimumof—\/gat:n=atm:—%,y=~%.

Also note fl(mwj—g, —-J—E) = (-~ﬁ)2 + (——:/1—-)2 1= 0, that is, f1 is an active constraint.

[#]

We now observe how the above rule could have been used to solve the problem.

We seek g2, A > 0 (not both zero) and Tg, Yo 0 that ¢z, y) := u(2z+y)+A(z?+y2—1)
has a global minimum at (zo, o) and A(z3 +32 — 1) =0.

Now, if pu = 0, then A 5 0 so z2 + 32 = 1 and ¢(zg, yo) = 0 which is not a minimum
as ¢(0,0) = —-A < 0.

So we must have p # 0. Dividing ¢ by z and replacing % by A we obtain the equivalent
problem:

2z + y+ A(z? + 4% — 1) is a minimum at (zo, o)
and

M2 +y2—-1)=0.

In.case A = 0,zy and yp are unconstrained and ¢(z,y) = 2z + y has no minimum. Thus
the only possibility for a solution is to have A # 0.
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Differentiating we obtain:

17,

a—i=2+2)\$=0 at ¢p = ——
O 1
L =142\ = = ——
By +2Xy =0 at yg 7N

and from z2 + 32 — 1 = 0 we have

3\13 N 4}\2 —1=0
or
Since we require A > 0 the only possibility is A= 1/2—5 in which case xg = u—‘g—ﬁ and

Yo = -—%. Thus the point (-% , —%) is the only possible location of a minimum for fy
satisfying the constraint. Since a minimum exists (continuous function on a compact set)
this must be its location. (cf. previous graphical solution).

Even when its is true, establishing the convexity of T(R™) is usually not practicable.
Accordingly we now turn to the general case where T(R™) need not be convex (cf.
Example 3 and the problem in the Note at the end of Example 2). Here the strategy is
to “approximate” T(R") (at least locally near T'(xg)) by a convex set K and then use an

argument similar to that above, separating W and K, to obtain a multiplier rule. We
distinguish two cases. '

(1) The convex case; fo, f1,..., fm are convex functions.

(2) The smooth case; fo, f1,..., fm are continuously differentiable (at xq).

1. The convex case: In this case we construct a convex set K so that WNK = ¢ and
T(R") € K. Since separating K from W also separates T(R™) we can use precisely
the same argument as before to obtain
convex multiplier Rule:

I fo,f1,.--,fm : R* — R are convex functions and x minimizes fy subject to the
constraints fj (x) £0(j = 1,2,...,m;x € R™) then there exists positive Ao, A1,. .. Am
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(not all zero) so that for
(%) := ZA,- f3(x) we have
=0

Ao fo(xo) = d(xo) < $(x)} for all x € R"

and
Ajfi{xg)=0for j=1,2,...,m.

Construction of K:
For x € R™ Jet

K(x) = {('LL]_,'U.’Q,. .. ,‘U.m,'U) : fl(x) S U1y .. '1fm(x) S um:fﬁ(x) S ‘U}“

and set

K := U K(x)

x € Rn

.I.,, -_;ﬁ“ < ')"... 'ﬁ"L

e * I‘i

Y

DI --'-;;',;5,.

*:.rr: e
Jy?fr “J-. ::.--.-;,f.,"-‘-f ]

'1 v by
" -'-:‘:'{‘:9.' W :"4.'"'?.3‘
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We verify that X has the desired properties.
That K 2 T'(R") is obvious, since T'(x) € K(x). '

To show W N K = ¢: suppose not, then there exist (uy,...,um,v) € WNK.
But this implies v < mgp and fo(x) < v for some x€ R®, with fj(x) < u; <0 (j =
1,2,...,m) by the definition of W. That is, fo(x) < mg and x satisfies the constraints,
contradicting the definition of mg.

To show K is convex, let u = (u1,u2,...,%mn,v) and r = (r1,72,...,7m, s) be points
of K. That is for some x and y we have

u € K(x) and r € K(y).
Then for 0 < A <1 we have
w =AMty oy Um0+ (L= A) (1540« 3 Tmy 5)

= (M + (1= A1, .., v+ (1= As)

2 (M) + {1 = N fily), - -, Afo(x) + (1 = A fo(y))

2 (filx+ (1= Ny)..., fo(Ax+ (1 - A)y))
sow € K(Ax+(1-Ay)CK.
Applying this to the problem in the Note at the end of Example 2, we seek

A >0, > 0 (not both zero) and zg, ¥y so that
p(z? + y?) + Az* is a global minimum at (o, ¥o)
and .
,\:7:0 ={.

If 1 = 0 than ) # 0 and so z = 0 in which case the minimum is at any peint (0,7). If £ # 0
then in case A = 0 we have a minimum at (0, 0), while if  # 0, taking partial derivatives
we require '

2z +4z°X =0
and
2y =0
together with
zt =0.

Leading again to a minimum at (0,0). So our search for a solution to the original problem
is narrowed down to points of the form (0,y). From which we readily see that the minimum
is 0 at (0,0).
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Corollary:  Karush, Kuhn-Tucker Condition for Optimality:

(1) Let C be the feasible set {x € R™ : f;(x) < 0,7=1,2,...,m} for the problem

Minimize:  fo(x)
Subject to: fi(x) <0

fi m(x) <0
Ifno f;{j =1,2,...,m) is identically zero on C, then the conclusions of the Convex
Multiplier Rule hold with a Ao > 0.

(2) Conversely: If the conclusions of the convex Multiplier Rule hold with a
Ao > 0 then xg is an optimal solution.

Note: (2) gives a sufficient condition for optimality. For example, we see that (0, 0) is the
optimal solution for the problem in the Note to Example 2.

Proof:

(1) Suppose not, ie Agp = 0 is the only possible value for Ag. Then

0 = Apfo(x0) = ¢(x0) < d(x)
on the other hand if x € C _
B(x) : = Aofo(x) + M fi(x) + ... + A fin (%)

= 0+ (+ve)(—ve) + . .. + (+ve)(—ve)
<0

That is, ¢(x) =0 on C.
Since each term A; f;(x) < 0, they too must all be zero, but not all the X; are zero so
we must have at least ocne f;(x) =0 on C contrary to our assumption.

(2) Suppose Ag > 0 then for x € C we have

$(x0) < B(x)
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or
Mo fofxo) < Aofo(x) + M fi(x) + - - Amfm(x)

"

<0

Thus, Ao fo(xo) < Aofo(x) and, since Ag > 0, we have

fo(xo) £ fo(x).

Remark: A useful resulf in this context, which we state without proof, is the following

sufficient condition for convexity of f : R™ — R, which generalises; f : R — R is convex if
f” 2 0.

* 2
Theorem: Let f : R® — R have continuous second order partial derivatives ,23 = 33%-3%;

throughout a convex open set U C R™. Then f is convex on U if and only if the Hessian
matrix

2 2
11 . flﬂ

H{x) = { e (partial derivatives calculated at x)
m o fin

is positive semi-definite for each x € U; that is,
yTH(x)y >0 for all y € R".
Moreover, f is strictly convex if H(x) is positive definite on U; that is,
yTH(x)y > 0 for all y € R®,y #0.

A convenient criteria for this is that each of the matrices

fh ff fis
5 f]?l ffZ
[fll]: ) fg-l f222 f223 a---:H

3 i s o e
fa1 fa Jfas

have strictly positive determinant.
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2. The Smooth Case

Here, as example 3 typifies, T(R™) is neither convex, nor can it be included in any

convex set (the smallest would be its convex hull) which remains disjoint from W, even
locally. Thus we must find a different construction for K.

Lyl

7B

1

Preliminaries:

Recall: £: R™ — R™ is differentiable at xg € R™ if there exists an affine function
A:R"™ — R™: x— A(x) := L(x) + b, where L is linear, such that
£(x) = A(x) + r(x)x — ol
where
r(x) - 0as x—xp.

Clearly f = (fi,. .., fm) is differentiable if and only if each of the f; : R* = R(i =1,...,m)
is differentiable.

If f is differentiable at %o we have f(xg) = L(xg) + b, that is b = f(xg) — L(xo), and if L
corresponds to the matrix [£:;] with respect to the standard bases, letting x = xp + he;

96

.
-”‘,;‘ Kilawer



(4=1,2...,n) we have

£(xo0 + he;) — £(x0) = hL(e;) + r(xo + he;)h

50,

fi(xo + he;) — filx) _ £ij +ri(X0 + hey).

Since 7;(xg + he;) — 0 as A — 0 we have

g,

-_ij

Xg
ie. L is the Jacobian of f at g, Df |x0 (or Df(xp)) represented by the m x n matrix

|

*a {(mxn)

DE(xg) = [gfi_

Iy

Theorem: f: R* — R™ is differentiable at xq if and only if all the partial derivatives g:‘:_%‘
exist and are continuous at xg.

Examples

(1) f:R2 = R: (z,9) — 22 + 42

has 9F
Df(:r(:h yﬂ) = |:6_£: "5-5]

= [23;0, 2y0] .

So, b = x% + & ~ 220 — 2y
and we have

2?4yt = 2z0% + 2y0 — g — yg + r(x)v/(z — 30)2 + (¥ — ¥0)2 .

From which we see

r(x) = V(z —z0)2 + (y — y0)?.

Note, r(x} — 0 as x — xg.

97

-




(2) T:R* - R?: (m!y)H (—yamz'i"y'i'yg)
has

o -1
DT("“)“[zmo' 1+3y§]

which is continuous and so T is differentiable.

Our idea, in the case of a differentiable T : R® — R™*1 is to replace (“approximate” near
and Tzg) the set T(R") by

K = A(R") = DT|,_(R") + T(xq) — DT|, (%o} -

We begin by showing that K can be separated from W. Assume this were not true then
Knint W # ¢.

- — T ¢ — T T, A S g

That is, there exists x; € R™ s.t. (u11,...U1m, 1) = A(x)) € int W 80 231,...,%tm <0
and vy < mg. That is, there exists p > 0 such that uj1,...,%1m < —p and vy < Mo —p.

For any h > 0 let
(Uh1,- - Uhm, Un) = A(hxy 4 (1 = h)x0) = hA(x1) + (1 — h)Txq.
Then vy, < mg — hp and up; < —hp.
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Now, from the differentiability of T we have
[T (haxy + (1 ~ h)xo) — A(haxy + (1 — h)xo))|
< le(hxs + (L~ Wxo)Afx — xo] -
< %E, for h sufficiently small (since hx; + (1—h)xg — xgandsor— 0, as h — 0).

In particular then, taking & sufficiently small we will have that T'(hx; + (1 - h)xy)
has its first m components negative indeed less than hp/2 and its last component less than
Mo — hp/2 < mg contradicting the choice of xg and myg.

Now, since K and W can be separated and T(xo) € W we have there exist
A1y..y Am, Ag not all zero, so that

At + oo Aty + Aot < A - T'(xq)
<A Afx)

whenever (u1,...,un,v) € W and x € R™. Here A= (A1, Az, 00y Ay Ag)-
So
A T(XQ) <Ai- [.DT(XQ)X + Txg — DT(X{])X{)]

or

A DT(xg)(x —x0) > 0 for all x € R™.
That is, A- DT(xg)y > 0 for all y € R*. Now suppose A - DT(xp)yq > 0 for some

Yo € R®, then ) - DT(XU)(-—Y{));() a contradiction. Thus A- DT(xp)y = 0 for all
y e R™

In particular then,

n
o a1 |
gz, 9z, .
Aty Am, Ag) [ } = 0for all y1,¥2,...,Yn.
5:171 “ e axn )
L Y
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That is, if ¢ := A1 fr + ... + Apufin + Ao fo, we have

.

99 8¢ 061 |7

5;;, " By an] = (0 forall yi,...,¥n.
- U

That Ag, A1,...,An = 0 follows as in the proof of the convex Multiplier Rule, as does
Aifi(xg) =0fori=1,2,...,m.

Thus we have proved, John Multiplier Rule:

Given fo, fi,. 1 fm:B* 5 Rlet C:={x e R": fi(x) < Ofori=1,2,...,m} K
fo, f1s+ .., fm are continuously differentiable at xp € C and fy(xo) < fo(x) forallx € C
then there exists Ao, A1,..-,Am = 0 (not all zero) so that if

$(x) =D M fi(x)
§=0

5= (¥0) =0 (i=1,...,n) [That is, %o is a stationary point of $.]

and
)\jfj(Xg) =0 (J = 1,2,. ..,m)
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Illustrative Application (to Example 3)

Minimize:  fo(z,y) = 2% + y + °
Subject to: fi(z,y) =—y <0
Let ¢(z,y) = dox® + Aoy + Aoy® — A1y, then we require

2AU$Q =0
(Ag — AL) + 3,\0yg =0
A1y =0

If Ao # 0 then 29 = 0 in which case \; # 0 implies yg = 0 and A\; = Ag while \; =0
implies 3y2 = —1 (which is impossible). On the other hand Ag = 0 = A; = 0 which is
dissallowed. So the only solution is with Ag = A; > 0'in which case To = Yo = 0 (cf. earlier
graphical solution).

Since Multiplier methods have led us to consider unconstrained optimization problems
it is appropriate that we conclude the course with a brief examination of such problems.

Unconstrained Optimization

The following result, known as Ekeland’s variational pripcipal, was established by
I. Ekeland in 1973 for all normed linear spaces. We will only consider it for the finite

dimensional space R™, in which case we can give a very simple proof, due to J.B. Hiriart-
Urruty in 1983.

‘Theorem: Let V be a closed subset of R™ and f : V — R a lower semi-continuous function
which is bounded below. Given € > 0 let u € V be such that

£u) < Inf £(x) +e,

then for every A > 0 there exists v € V with

(1} f(v) < f(u),

101




(2) flu—v| < /A,
(3) for all x € V, f(x) 2 f(v) — Allv—x]|. .

Proof: Let g(x) := f(x) + Allx — uf|, then g is also lower semi-continuous and bounded
below. The set Vg := {x € V : g(%x) < f(u)} is closed, non-empty [u € Vo], and bounded
[if there existed x, € Vg with ||x,| — oo then g(x,) — o0, contradicting g(xn) < f(u],
hence V} is compact, and so g restricted to Vy achieves its minimum at some point v. This
is necessarily also 2 minimum for g on V, so '

) +Av—u|| < fx)+Ax—u|, forall xeV N €3)

Substituting x = u we get
FE) + AV —ull < £(u) ,
from which (1) follows.

Further, since f(u) < 1161{, f(x)+ e < f(v) + ¢, we also have
X

Flu) ~ e+ Allv +ull < f(v) + Alv + ull < f(u)

from which we readily deduce (2).

To verify (3) we need only note that from (*) we have

Fx) 2 Fv) 4+ A{llv — uf| - [lx — ul]]
> f(v) = Aliv = x|,

s |lv—ul - fx—uf=—lv-x].

Corollary 1 If V is a closed subset of R*, f : V — R is lower semi-continuous and
bounded below. Then for any € > 0 and u € V with

flu) < nf fx) +e,
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there exists v € V with
(i) |lv—u| <, and

(if) f(x) > fF(v) —¢lv—x| forall xe V.

That is:  There exists a ‘small’ perturbation of f; g(x) := f (x)+ellv—x|, which achieves

its minimum at the point v near to u where f is almost a minimum - hence the name
‘variational principle’.

Proof: Replace € by ¢® and A by ¢ in the theorem.

Corollary 2 If V is a closed subset of R™ f B v — R is lower semi-continuous and
bounded below, then for any e > 0 there exists v € V such that

fv) < ;g%f(x) + €
and for all x € V we have f(x) > F(v) —ellx—v|.

Proof: Take A = ¢ in Theorem. Note: We also haye |[v —u]f < 1.
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Corollary 3 If f is differentiable on V, then given € > 0 there exists v € V such that

F(v) < inf F00) +e,

and

|Df(v)x| < €llx], for all x € R".
Proof: Choose v as in Corollary (2), then for ¢ > 0 and x € R™ we have
Fv+1x) = f(v) = tDf(v)(x) + (v + tx)tl|x|| > —etl|z].

That is, Df(v)(x) +r(v + tx})||x|| > —e]x||, let £ — 0, so r{v +tx) — 0,
to obtain .
Df(v)(x) 2 —¢||x|| for all x.

Substituting —x for x leads to
—ellx|| < Df(v)(x) < ellx]}| -
Note: Expressing Df as the Jacobian, we have

I
)

gLl | 7 |] el

L Ty,

Taking x =

%(v)l < e foralli.

If f achieves a minimum at v we may use ¢ = 0 in the above argument to obtain the well
known result:

Proposition 4 If f is differentiable on V and achieves a minimum at v € V then
Df(v=0.

In particular %(v) = 0 for all 4.

Proof: Immediate.
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Remark: Proposition 4 gives us an often used necessary condition for a minimum of a
differentiable function. The numerical stability of this necessary condition is ensured by

Corollary 3. That is, among the points where the derivative is almost zero there are points
at which the minimum is almost achieved. *

This leaves us with the practical problem of finding, at least approximately, the minimum
of

fR* SR

One approach to this is via what are known as gradient methods, we will consider the sim-

plest of these. The method of Steepest descent consists of searching for the minimum
by moving on the ‘surface’

Z-—_-f(X),

initially ‘downhill’ as steeply as possible and then continuing in the same direction until
we cease to go down, at which point a new initial direction is choser.

The direction of steepest descent from x is the projection,

d:= “—Dflx: (—'E"f— a_f)’

8z ' B,

of the ‘downward’ normal to the surface at x, that is: perpendicular to the level curve
(contour line) for the surface through x, see diagram.

Thus from x we move to the point
X" i=x4t*d,
where t* is the smallest value of £ > 0 at which the function

F(t) = f(x+td)

has a (local) minimum.

Starting with any point xg this leads to a sequence of successive approximations for the
minimum’s location;
XD‘ xl yxz ] “« v 1 X-n_, ey

- where x,41 = x7 .
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Contour line for = = £(%)
with a minimum at m .

Example: To illustrate, let us compute a cou;ple of successive approximations to the
minimum [—3 at (1,1)] for the function

flz,y) =20 +14° — 4 — 2y,
starting at the origin, xo = (0,0) .

At xg; d=(—4z+4,-2y+2)
(0,0)

= (4,2),

fr(t) = f(4t,2t)
= 36t% — 20t,

which has & minimum at £ =& .

Thus, x; = (%, §) = (1.11, 0.56) .

At X1
d = (~0.44, 0.88)
F*(t) = f(1.11 — 0.44¢, 0.56 + 0.88¢)
4 = 1.16t2 — 0.97t — 2.8

which has a minimum at t* = 0.42.
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Thus, z; = (0.93,0.93) at which the function value is —2.984.

Thus we see that after two iterations we havé located the minimum to within reasonable
accuracy.

The method of steepest descent leads at each iteration to the problem of minimizing a
function of one variable

fF"R—=R.

When the form of f* is complicated we may need to seek its minimum numerically, We
close with a consideration of this problem.

Suppose f : R — R has a unique minimum in the interval (a, b), at z*, and is unimodal;
that is,

Ty <z <z orz* <zy <zy, implies

£o1) > flza) > f(a*) .

-Every strictly convex function is unimodal, but not conversely - see sketch.

AN

A unimodal function.

Our aim is to locate z*, at least to within a given accuracy. Vital to accomplishing this
is the observation that if a < 21 < z, < b then z* > z1 if f{z1) > fzz), and z* < z; if

fm1) < f=ma).

107



Y4\ YN

9
L4 |
1 - \
: 1
i a‘ ? 1
] 1 I
: ! ' i
i | i t
A 1 ! {
—t—t—3—>x —it —3—>x
a Xy X3 b a X1 X . b
\‘»——J W
minimum minimum

One approach is to evaluate f at x; = a+ 3(b—a) and £z = a+ 4(b— a) thereby locating
z* to within one of the intervals (a,z] or [z1,b) both of which have length 2(b — a). We
can now evaluate f one-third and two-thirds the way along the new interval and so locate
z* to within an interval of length (%)2(13 —a).

Repeating this procedure we can locate z* to within an interval of length (2) 2 (b—a) using
-2n evaluations of f. ' ‘

While this is an easily implemented (often adequate) algorithm it is possible to do better;
that is, to achieve comparable accuracy with fewer evaluations. Each iteration of the above
algorithm requires two new evaluations of the function. It would be ‘nice’ to use one of

the last pair of evaluations as one of the values used at the next step, this is achieved with
a Fibonacci search.

A key observation is that if the minimum of f is known to lie between z; and z, and

the value of f is known at z3, with 2; < ©3 < 3, then evaluating f at a fourth point z4
located ‘symmetrically’ so that x5 — 24 = 23 — 2;.

/——\'
x1 x4 X3 X2
\____/
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enables us to identify the minimum as lying between z; and 3 or between x4 and Tq, and
so to within an accuracy of z3 — &1 (= z5 — z4).

Further, as a moment’s thought will show, any other location for x4 may result in the

minimum being located less precisely. Also note that the whole procedure is only possible
provided z3 is not the midpoint of z; and z,.

We could now repeat the procedure starting with the three points @; < T4 < Tg, OT
T4 < T3 < Tp, whichever is relevant, and locating a new point xs.

Following this strategy with z; = a and z, = b, and letting
£y 1= @y ~ 1
by = 33 — 71 (= T3 — T4)
f3 =34 — 21(= 23 — T5)
or

Lo — 273(2 Ty — {L‘4),

we.seek a decreasing of lengths £; > €3 > £3 > ... > fn > 0 such that g

Ek=ek+1 +Ek+2 (kzls ...,TL—2) :
and £n = 31, so that the process stops at the n’th step with the minimum
of f located to within an interval of length £

n—1-
Working backward, with £, := §, we have
bn1=26
en_g —_ En_]_ -{‘“ﬂn = 26-{-‘6 =36
En--3 = En_z + En—l =36 + 26 = 56
e by a+ b o=56+35=86
bk = lnept1 + lnpy2= Fi6 + Fy_16
= Fp16

......
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where Fp =1, Fy =1, F3 =2, F3 =3,Fy =5, F; =8, F5 = 13, Fy = 21, Fg = 34,
Fy = 55,... is the celebrated Fibonacci sequence (satisfying F4+1 = F + Fr-1).

From this we see that

That is, to locate the minimum of f to within 2(b — a)/F, using n — 1 evaluations of f we
should:

(1) Evaluate f at a + F};—;‘-(b —a) and the symmetrica]ly' placed point in (a, b);

(2) Pick out the new interval within which the minimum must lie, and evaluate f at the

point symmetrically placed in this interval with respect to the interior point already
used; '

(3) Repeat (2) until it terminates.
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As an example, suppose we wish to locate the minimum of f (z) = 2z* — z which is known
to lie between 0 and 1.

To confine the minimum to an interval at len
uncertainty of 2/55 = 0.036.

The resulting iterations are set out below., Numbers in brackets are the value of f at the
relevant point.

gth at most 0.05 we use n = 9, giving an

(1) X . X3
0 X3 1
34/55
(-0.326)
X4
21/55
. (0.339)
@ Xy X4 , X3,
0 2155 34/55
(=0.339)
X5 ’
13/55
~0.230)
(3) X5 X4 X3
13/55 21/55 ) 34/55
(-0.339)- . 4
Xg
26/35
0.373)
G X4 Xg X3
21/55 26/55 34/55
(-0.3728) '
X7
29/55
+0.3727)
&) X4 X5 X7
21/55 E 26/55 29/55
(-0.373)
Xg
24/55
(-0.364)--
6) Xg Xg : X7
24/55 26/55 - 29/55
(-0.373) f
Xg
27/55
@ ‘s iy (-0.375)
9 ' X7
26/55 27/35 29/55
(—0.374755)
X10
28/55 ;
(~0.374749)
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From which we conclude that the minimum occurs between z = 26/55 = 0.491 and = =
28/55 = 0.509.

Of course, the actual minimum in this case is at z = 1/2.

Exercises

(1) Using graphical methods solve the following non linear optimization problems.

(a) Minimize: %+ y?
Subject to: 1—y <0

(b) Minimize: ¥y
Subject to: z?—13? <0

(c) Minimize: 2 — 3zy + y?
Subject to: zy <0

(d) Minimize: z2%y
Subject to: . —y <0

(e) Minimize: xyz
Subject to: z?2+49y%2+22-3<0, x>0, y>0, 2>0.

[Remark: this is the problem of finding the box of largest volume centred at the
origin which can be fitted inside the sphere of radius /3 about the origin.]

(2) In (a) and {c) of (1) find values of yz and X so that the functions
| w(z? +y%) + Al -y)
and
p(z? — 3zy + y?) + Azy
respectively have a global minimum of the same value and at the same place as the

minimum of the original constrained problems.
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(3) Using the convex Multiplier Rule (and if applicable the Karush, Kuhn-Tucker condi-

tion) locate optimal solutions to 1(a) and (c).

(4) Show that the function flz,y) =22 +y* —zy

is strictly convex.

(5) By considering the matrix M = {2 _?1] show that the condition
m11 iz 13
mi1 M2
m , 1m m m g ey M
ol [T 2]

m31 T3z "33
have positive determinants is not sufficient to ensure that the quadratic form

xTMx

is positive semi-definite.

(6) Solve the following problem.
Minimize: -+ 3% — 2y
Subject to: —1+2%2<0

y<0

(7) Starting at the point (1,1) use the method of steepest descent to find 3 sucessive
approximations to the minimum of flz,y) = 922 — 8zy + 3y°.

(8) In the method of steepest descent, show that at each change in the direction of descent
the new direction is orthogonal to the old one.

(9) Starting at the initial point (1, 2, 2) use the method of steepest descent to find 2
further successive approximations to the maximum of

flz,y,2) = 4z — 22 + 9y — y* + 102 — 22% — 1/2yz.

(10} The function
f(z) = (3 — 4z)/(1 +2?)
is known to have its minimum between 1 and 6.5 Use a Finonacci search to locate the

minimum to an accuracy of £0.1.
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APPENDIX — Suprema and Infima

Let S be a non-empty subset of the real numbers R. We say S is bounded below if

there exists a real number o such that « <s, forall se€ S, and refer to « as a lower
bound for S.

The infimum of S, denoted by inf S, is the ‘greatest lower bound’ for 5. That is M =inf 5
if and only if

(i) M < s for all s € S (M is a lower bound for 5) and
(i) if @ is a lower bound for 5, then a@ < M (M is the greatest lower bound for 3).

It is a fundamental property of R that every non-empty subset S which is bounded below
has an infimum.

Note:  The infimum of S need not belong to S. For example inf(0,1) =0 but 0 & (0,1).
If it hapens that inf S is a member of S we usually refer to it as the minimum of S and

denote it by min 5.
It will be convenient to write inf § = —oco in the case when S is not bounded below.

The following simple result is assumed frequently in these notes.

Proposition: For {} # 5 C R there exists a sequence (s, ) of points of S with s, — inf S
(from above).

Note: In case inf S = —oo, this must be interpreted as ‘s,, diverges to —oo’; that is, given
any real number r, there exists N € N such that n > N = s, <.

Proof: Incase M =infS > —oq, for each n € N there must exist a point of 5, call it s,
with s, < M + % (otherwise M + % would be a lower bound for S, contradicting the fact
that M is the greatest lower bound). But then, since M is a lower bound, M < s, < M -I-;l;
and so as n — oo we have s, — M. The proof in case inf S = —oo is similar and is left as

an exercise.

0

The supremum (or least upper bound) of S may be defined and analysed similarly.
Alternatively questions concerning suprema may be converted into questions about infima
by noting that

supS = —inf{—s: 3 € S}
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