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A characterization of
Banach-star-algebras
by numerical range

Brailey Sims

It is known that in a B*-algebra every self-adjoint element is
hermitian. We give an elementary proof that this condition

characterizes B*-algebras among Banach*-algebras.

By A we mean a complex Banach*-algebra with a one, e , where
llell =1 . TFollowing F.F. Bonsall [2] we define the algebra nwmerical
range of an element a € 4 by V(a) = {f(a) : F € D(e)} , where D(e)

is the set of normalised states of 4 , that is
Dle) = {f ¢ 4* : Fle) = |fll = 1}

We say that an element h € A4 is self-adjoint if & = h* , and following
G. Lumer [3] we say that A is hermitian if V(kh) € R . Furthermore we

call h positive hermitian if V(h) < [0, )

G. Lumer [3] has proved that in a B*-algebra every self-adjoint
element is hermitian. By improving a result of |. Vidav [§], T.W. Palmer
[4] has shown that this property characterizes B*-algebras among

Banach*-algebras.

The aim of this paper is'to furnish a simpler proof of Palmer's

result. More precisely we establish the following theorem.

THEOREM A. A4 <is a B*-algebra if and only if every self-adjoint
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element of A ig hermitian.

Palmer actually shows that a Banach algebra in which every element a
has a decomposition a = w + Zv , where u and v are hermitian, is a
B*-algebra. However in this case a » a* = u - Zv defines an involution
[§, Hilfssatz 2¢] for which every self-adjoint element is hermitian, as in

Theorem A.
A.M. Sinclair [7] has proved the remarkable equality
(a) v(h) = k|l , for all hermitian % € 4

Using this we show that every self-adjoint element is hermitian if and
only if the square of every self-adjoint element is positive hermitian.
This equivalence and Sinclair's result provide the essential techniques

for our proof.

It is well known [Z] that the spectrum, 0(a) of any element a , is

contained in the numerical range of that element. Defining the spectral

radius of a by v(a) = sup{|/A| : X € o(a)} , and similarly the numerical

sup{|A] : A € V(a)} , we therefore obtain the

radius of a by w(a)

inequality
(b) via) = wla) , for all a € 4
H. Bohnenblust and S. Karlin [1, p. 129] have proved the following
inequality between the norm and the numerical radius.
1 . ‘
(c) > lall = w(a) < lafi , for all a € 4 .

We now investigate properties of A4 vwhen every self-adjoint element

is hermitian.
LEMMA 1. If every self-adjoint element of A is hermitian, then:
(i) every hermitian element is self-adjoint;
(ii) V(a*) = V(a) , for all a € 4 ;
(2i1) the iwolution * 1is continuous.

Proof. Take any f € D(e) and a € 4 , let a=u+1iv ,
a* =u - 1v (u, v self-adjoint) then
(i) if a 1is hermitian, f(a) = f(u) + 2f(v) € R , therefore

fw) =0 ,a11 f e Dle), so ww) =0 and hence by (c),
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v =0 and a = u , which is self-adjoint;

(i1) fla*) = flu) - ifw) = flu) + ifw) = ?(a) € V(a) , therefore
V(a*) € V(a) and by symmetry V(a*) = V(a) ;

4

(iii) from (ii) w(a) = w(a*) and consequently, by (c),
1l ) :
= llait = dlaXl = ellall /1
LEMMA 2. The self-adjoint elements of A are hermitian if and only

if the square of every self-adjoint element of A 1isg positive hermitian.

Proof. Let the square of every self-adjoint element of 4 be
positive hermitian; then for any self-adjoint % € 4 and f € D(e) ,
() = f[é(h+e)‘—%hz-%e) .  Therefore

Fflh) = % [(h+e)2) - %f(hz) - % € R and so V(h) c R .
Let every self-adjoint element be hermitian. Clearly we need only
consider self-adjoint 4 with V(k) <1 ; then, since v(h2) =1 , we

have a(h?2) c [0, 1] . Hence ole-#%) € [0, 1] and therefore

v(e-h2) =1 . By (a) and (b), v(k) = w(k) for any self-adjoint k € 4
Hence it follows that for any £ € D(e) ,

1 = f(h?) + fle=h?) = f(h?) + |fle-h?)| = F(B?) + v(e-h?) = f(h?) + 1
and therefore f(h2) = 0 . //

LEMMA 3. If every self-adjoint element of A 1is hermitian, then

il *l] = Mlze*]| For all « € 4, (that is, A is an Arems*-algebra).

Proof. Let 2 =u+4iv , x*=u ~1v (u, v self-adjoint); then
xx* + xtr = 2u¢ + 2v2 ., For any [ € D(e) , by Lemma 2, flu?), fw2) = o0,

so we have 25(u?), 2f(v?) = 2(f(u2)+f(v?)) = flax*+x*x) and therefore
cmax{w(u2), w(v2)} < w(zztrztz) < wlzz*) + w(xtc)
But
wlxx*) = v(xx*) = vixiz) = wlxtz)
and
w(u?) = v(u?) = v(u)? , (similarly for v) ,

by (a) and [5, Lemma 1.4.173].



196 Brailey Sims

Therefore,
(max{v(u), v(¥)})2 < v(xz*) = |zxt]

Further

ey el = i + ol = v(w) + v(v) = 2max{v(u), v(v)} ,
(Lemma 2 (ii)) therefore

L ezt = [maxtolu), v()))? .

Combining these inequalities we have,
lziillctil < bz . //

S. Shiralil and W.M. Ford [6] have proved that A 1is symmetric, that
is, -1 ¢ o(xx*) for any x € 4 , provided o(h) C R for all self-adjoint
h € A . We show that when every self-adjoint element of A 1is hermitian,

their proof may be shortened, as in the following lemma.

LEMMA 4. If every self-adjoint element of A 1is hermitian then A

18 symmetrie.
Proof. For any f € D(e) , by Lemma 2,
flaxx*) + flztx) = 2f(u?) + 2f(v2) 20 {u, v as in Lemma 3)

so flzx*) 2 -f(x#*x) . Therefore if A <0, A € olx*x) = o(xx*) there

exists f € D(e) such that f(xx*) 2 -A =2 0 . Hence

\

sup{f(xx*)} = -inf{X : X € o(xx*)}
But
sup{f(xz*)} = sup{r : A € o(xx*)} ,
otherwise, for a > |zx*|| , we would have
w(oetxx*) = sup{f(oe+txx*)} # sup{X : A € clae+txzx*)} = v(ce+zx?)

contradicting (a). Therefore sup{X : XA € o{xx*)} = ~inf{A : A € o(xz*)}
thus establishing the result of [6, Lemma 5]. The result now follows by
the reasoning of [6, Section 3, p. 278]. //

LEMMA 5. If every self-adjoint element of A <is hermitian, then,

for an equivalent renorming, A <s a B*-algebra.

Proof. From Lemmas 2 and 1 (4i1), we have by [5, Theorem L.7.3] that



Banach-star~algebras 197

flzx?) 2 0 [f € D(e)) whenever O(xx*) < [0, @) , but if =82 € o{zx*) ,

then -1 € 0[5-lx[6_lx)* , contradicting Lemma L. Therefore f(ax*) 20 ,

for all f € D(e) , in which case the Cauchy-Schwartz inequality,
|f(xy*)|2 = flax*)f(yy*) , holds [5, 4.5 (2)]. Using this and (a) it is

easily verified that Hxﬂé = |lzx?l = w(zx*) = sup{flxx*) : F € D(e)} is a

norm on A satisfying Hng Hxx*ﬂo . But

P R 1 .12
ezl = 3 fefillet] 2 § e el

by Lemmas 3 and 1 (¢27); also,
x| = lizllic* < efizi?
by Lemma 1 (i<7). So
1
-z

173z < el < o2a]
2 0 ' ?

that is | ”o and || || are equivalent. //
COROLLARY 5.1. The two norms of Lemma 5 agree on the self-adjoint

elements.

Lemma 5 also follows from a result of B. Yood [9, Theorem 2.7]1. For
if every self-adjoint element h of A 1is hermitian, then its spectrum
is real and by (a) |k| = v(kh) . However, because of the additive
properties of the numerical range we have been able to give a more concise

and revealing proof.

We now introduce the following Lemma, which is implicit in the work
of Paimer [4].

LEMMA 6. If A <s a B*-algebra in an equivalent norm | Ho , 8uch
that for all self-adjoint elements h of A , |h| = Hhuo , them A 1is a
B*-algebra in the given norm.

Proof, Since A4 with | Ho is a B*-algebra, by [4, Lemma 1] its

unit ball, Bo ={x €4 : HxHO <1} 1is the closed convex hull of the set

of elements of the form exp(Zh) , where h is hermitian. By [§,

Hilfssatz 11, |lexp(Zh)ij =1 so Bo C B, that is (x| = Hx”o , for all
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x € A ; therefore |ax*| < jx|llc*] < HxHOHx*HO = me*”o = |lzz*| and so
A with || |} 1is a B*-algebra. //

Combining Lemma 6 with Lemma 5 and Corollary 5.1 we obtain the

sufficiency in Theorem A. Necessity follows from [3, Lemma 20].

As in [710, Corollary 1] Theorem A can be stated in the apparently

stronger form:

THEOREM Al. 4 s a B*-algebra if and only if the set of hermitian

self-adjoint elements of 4 1s dense in the set of self-adjoint elements.

Since the set of self-adjoint elements is closed in A4 , it is

sufficient to establish the following lemma.

LEMMA 7. The set of hermitian elements of A <8 closed.

Proof. Let {hn} be any sequence converging to h , with
V(hn) C R, for all n . For any € > 0 there exists # so that
th—hn < ¢ whenever n =¥ . If X € V(h) then A = f(h) for some
7 € D(e) . Let An = f[hn] for all »n , then
|An—k| = |f(hn—h]| = th—hH <=e for m=N . So A is the limit of a
sequence of real numbers and therefore A 1is real. //

[Added 16 November 1970]. We give an example to show that

If every hermitian element is self-adjoint, then A is not

necessarily a B*-algebra even under equivalent renorming.
Let X = 12 and take 4 = L(X) , all the 2 x 2 matrices with

complex entries.

If a = [111 alz} is such that V{(a) © R , then it is well known
a1 Azz

[Z] that f;(ax) € R for all « € X with |zl =1 and all f, € X* such
that f&(x) =Ifll=1. Let « = (1, 0) ; then fx = (1, 0) and so
fx(ax) € E implies that a;; € R . Similarly aj,, € R .

Now choose x = (1, A) for any complex A where O < |A| <1 . Then

f& = (1, 0), flax) =a;; + ajpA € B and therefore a;; = 0 . Similarly
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ay = 0. It follows that a € A 1is hermitian if and only if

a=l:g g} for o, B € R .

Define the involution + on A by

a1 A1z arl —4azi

az1  4az2 -aiz aszz
then every hermitian element is self-adjoint (but not conversely).
However * is not proper (that is aa* = 0 does not imply a = 0) ; for
1

example take aq = [0 0} ; and so A cannot be a B*-algebra for any norm.
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