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A N E W  A P P R O A C H  T O  GENERALIZED M E T R I C  SPACES 

ZEAD MUSTAFA AND BRAILEY SIMS 

ABSTRACT. To overcome fundamental Aaws in B. C. Dhage's theory of gener- 
alized metric spaces, flaws that invalidate most of the results claimed for these 
spaces, we introduce an alternative more robust generalization of metric spaces. 
Namely, that of a G-metric space, where the G-metric satisfies the axioms: 

( 1 )  G ( x ,  y, z )  = 0 if x = y = z,  
(2) 0 < G ( x ,  x, y) ; whenever x # y, 
(3) G ( x ,  a ,  y) 5 G ( x ,  y, z )  whenever z # y, 
( 4 )  G is a symmetric function of its three variables, and 

(5) G ( x ,  Y ,  2 )  5 G(J-, a ,  a )  + G(a,  Y ,  z )  

During the sixties, 2-metric spaces were introduced by Gahler 161, [7] 

Definition 1. Let X be a nonempty set, and let R denote the real numbers. A 
function d : X x X x X + R+ satisfying the following properties: 

(Al)  For distinct points x ,  y E X ,  there is z E X ,  such that d(x, y, z) # 0 .  
(A2) d(x, y, z) = 0 if two of the triple x,  y, z E X are equal. 

(A3) d(x, y, 2) = d(x, 2, y) = . . . (symmetry in all three variables), 
(A4) d(x, y, 2)  < d(x, y, a )  + d(x, ( 1 , ~ )  + d(a, Y,  4, 

for all x ,  y, z , a  E X ,  

is called a 2-metric, on X. The set X equipped with such a 2-metric is called a 
2-metric space. 

It is clear that taking d(x, y, z) to be the area of the triangle with vertices at x ,  
y and z in ~"rovides an example of a 2 -metric. 

Gahler claimed that a 2-metric is a generalization of the usual notion of a metric, 
but different authors proved that there is no relation between these two functions. 
For instance Ha et a1 in [8] show that a 2-metric need not be a continuous function 
of its variables, whereas an ordinary metric is, further there is no easy relationship 
between results obtained in the two settings, in particular the contraction mapping 
theorern in metric spaces and in 2-metric spaces are unrelated. 

These considerations led Bapure Dhage in his PhD thesis [I9921 to introduce a 
new class of generalized metrics called D-metrics. 

Definition 2. A function D : X x X x X + R+ is a D-metric if it satisfies axioms 
(A3) and (A4), but with (Al) and (A2) replaced by the single axiom 

(AO) D(x,  y, z) = 0 if and only if x = y = z. 

An additional property sometimes imposed by Dhage on a D-metric is, 
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(A5) D(x ,y ,y)  I D(x ,z , z )  + D ( z , y , y )  for all x , y , z  E X .  
The perimeter of the triangle with vertices at x,  y and z in R2 provides the 

prototypical example of a D-metric. Indeed, for any metric space (X,  d) Dhage 
gave as examples of D-metrics on X ;  

(Es) Ds(d)(x, y, 2) = i (d(x ,  Y)  + d(y, 2) + d(x, 211, and 
(Em) Dm(d) (x, Y, 2) = max{d(x, Y ) ,  d(y, 2) d(x, 2) ). 
However, as exploited in [ lo] ,  for these to satisfy the axiorns of a D-metric it is 

not necessary that d satisfy the triangle inequality, only that it be a semi-metric. 
In a subsequerit series of papers Dhage attempted to develop topological struc- 

tures in such spaces. He claimed that D-metrics provide a generalization of ordinary 
metric functions and went on to present several fixed point results. Subsequently, 
these works have been the basis for over 40 papers by Dhage and other authors. 

But, in 2003 we demonstrated in [lo] that most of the claims concerning the 
fundamental topological properties of D-metric spaces are incorrect (also see, [9]). 
For instance a D-metric need not be a continuous function of its variables, the axiom 
(A4) is rarely sharp and, despite Dhage's attempts to construct such a topology, 
D-convergence of a sequence (x,) to x,  in the sense that D(xm,xn,x)  + 0 as 
n, m + oo, need not correspond to convergence in any topology. 

These considerations lead us to seek a more appropriate notion of generalized 
rnetric space. 

Definition 3. Let X be a nonempty set, and let G : X x X x X + R+, be a 
function satisfying: 

(GI) G(x, y, z) = 0 if x = y = z 
(G2) 0 < G(x, x,'y) ; for all x,  y E X,  with x # y, 
(G3) G(x, x, y) I G(x, y, z),  for all x,  y, z E X with z # y, 
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . ., (symmetry in all three variables), 

and 
(G5) G(x, y, z) 5 G(x, a ,  a)  + G(a, y, z), for all x,  y, z, a E X ,  (rectangle inequal- 

ity), 
then the function G is called a generalized metric, or, more specifically a G-metric 
on X ,  and the pair (X,  G) is a G-metric space. 

Clearly these properties are satisfied when G(x, y, z) is the perimeter of the trian- 
gle with vertices at x,  y and z in R2, further taking a in the interior of the triangle 
shows that (G5) is best possible. 

If (X, d) is an ordinary rnetric space, then Es and Em above define G-metrics on 
X ,  however, for this to be so it is now necessary that d satisfy the triangle inequality. 

Definition 4. Following Dhage's terminology, a G-metric space (X,  G) is symmetric 
if 

(G6) G(x, Y ,  Y)  = G(x, x,  Y ) ,  for all x,  y E X ,  

Clearly, any G-metric space where G derives from an underlying metric via Es 
or Em is symmetric. 

The following example presents the simplest instance of a nonsymmetric G-metric 
and so also one which does not arise from any metric in the above ways. 
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Example 1. Let X = {a, b), let, G(a,a,a.)  = G(b, b, b) = 0, G(a ,a ,  b) = 1, 
G(a, b, b) = 2 and extend G to all of X x X x X by synlnletry in the variables. 
Then it is easily verified that G is a G-metric, but G(a,  b, b) # G(a, a ,  b). 

The following useful properties of a G-metric are readily derived from the axioms. 

Proposition 1. Let (X,  G) be a G-metric space, then for any x,  y, z and a E X it 
follows that: 

(1) if G(x, y, z) = 0, then x = y = z, 
(2) G(x, Y,  2) I G(x, 2, Y)  + G(x, x ,  2))  

(3) G(x, Y,  Y)  I 2G(Y, x ,x ) ,  
(4) G(x, Y,  2) I G(x, a ,  2) + G(a, Y ,  4, 
( 5 )  G(x, Y,  2) I $(G(X, Y, a,) + G(x, a ,  2) + G(a, Y ,  4): 
(6) G ( ~ , Y ,  2) I (G(x, a ,  a )  + G(Y, a,  a )  + G(z ,a ,a ) ) ,  
(7) IG(x, y, z )  - G(x, Y ,  a)I I max{G(a, z , z ) ,  G(z, a ,  a,) ) ,  

(8) IG(x, Y ,  z) - G(x, Y, a)I F G(x, a ,  z), 
(9) (G(x, y, z) - G(Y, 2, z ) I  I max{G(x, z , z ) ,  G(z, x ,  41, 

(10) IG(x, y, Y) - G(Y, x,  x)l < max{G(y, x,  4, G(x, Y, Y)). 

Easy calculations establish the following. 

Proposition 2. Let (X, G) be a G-metric space and let k > 0, then G1 and G2 are 
also G-metrics on X ,  where, 

n 

Further, if X = U Ai is any partition of X then, 

G(x, Y ,  4, if for some i we have x,  y, z E A,, 
(3) G3 (2, Y ,  2) = 

k + G(x, y, z),  otherwise, 

is also a G-metric. 

Proposition 3. Let (X,  G) be a G-metric space, then the following are equivalent. 

(1) (X,  G) is symmetric. 

(2) G(x, Y, Y)  I G(:c, Y ,  a ) ,  for all X ,  Y ,  a E X. 
(3) G(x,y,z)  I G(x ,y , a )  +G(z ,y ,b) ,  for all : r ,y ,z ,a ,b  E X. 

Proof. That (1) implies (2) follows from (G3) whenever a # x, and from (X,  G) 
being synlnletric when a = x. Combining (2) of proposition 1 and (2) above we 
have 

G(x, y, 2) I G(x, Y, Y) + G(z, y, Y)  I G(x, Y, a )  + G(z, Y ,  b),  

so (2) implies (3). Finally, that (3) implies ( I )  follows by taking a = x, and b = y 
in (3). 
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For any nonempty set X ,  we have seen that from any metric on X we can con- 
struct a G-metric (by (E,) or (E,)), conversely, for any G-metric G on X ,  

(Ed) ~ G ( x ,  Y) = G(x, Y, Y) + G(x, 2, Y), 
is readily seen to define a metric on X ,  the metric associated with G, which satisfies, 

G(x, y, 2) 1 G ~ ( ~ G ) ( x ,  Y, 2) 1 2G(x, Y ,  2). 

Similarly, 
1 
-G(x, Y,  2 )  1 G,(~G)(x, Y, 2) 1 2G(x, Y,  2). 
2 

Further, starting from a metric d on X we have, 

Definition 5. Let (X, G) be a G-metric space then for xo E X ,  r > 0, the G-ball 
with centre xo and radius r is 

Proposition 4. Let (X, G) be a G-metric space, then for any xo E X and r > 0, 
uie have, 

(1) if G(xo, x,  y) < r then x, Y E BG(XO, r) ,  
(2) if y E BG(x0, r )  then there ezi.st.s a 6 > 0 such that BG(y, 6) C B(xo, r ) .  

Proof. (1) follow directly from (G3), while, (2) follows from (G5) with b = r - 

G(xo, Y, Y). 

It follows from (2) of the above proposition that the family of all G-balls, B = 

{BG(x, r )  : x E X,  r > 0), is the base of a topology r (G)  on X ,  the G-metric 
topology. 

Proposition 5. Let (X, G) be G-metric space, then for all xo E X ,  and r > 0 uie 
have 1 

Consequently, the G-metric topology r (G)  coincides with the metric topology 
arising from dG. Thus, while 'isometrically' distinct, every G-metric space is topo- 
logically equivalent to a metrics space. This allows us to readily transport many 
concepts and results from metric spaces into the G-metric space setting. 

3.1. Convergence and Continuity in G-metric spaces. 

Definition 6. Let (X. G) be a G-metric space. The sequence (x,) C X is G- 
con,vergent to s if it converges to x in the G-metric topology, T(G). 

Proposition 6. Let (X, G) be G-metric space, then for a sequence (2,) C X and 
point x E X the fol1owin.g are equivalent. 

(1) (2,) is G-convergent to x. 
(2) dG(xTL, x) + 0 ,  as n + oo (that is, (x,) converges to x relative to the metric 

dG). 
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(3) G(x,,, X n ,  X) + 0, as n + m .  
(4) G(x,,, x, x) + 0, as n + oo. 
(5) G(xm1xnlx) -0 ,  a s m , n + o o .  

Proof. The equivalence of (1) and (2) follows from proposition 5. That (2) implies 
(3) (and (4)) follows from (Ed), the definition of dG. (3) implies (4) is a consequence 
of (3) of proposition 1, while (4) entails (5) follows from (2) of proposition 1. Finally, 
that (5) implies (2) follows from (Ed) and (3) of proposition 1. 

Definition 7. Let (X,  G), ( X I ,  G I )  be G-metric spaces, a function f : X - X' is 
G-coiitiiiz~oz~s a t  a point xo E X if f-l(BG/ (f (xO), r ) )  E T(G), for all r > 0. We say 
f is G-continuous if it is G-continuous at all points of X ;  that is, continuous as a 
function from X with the ~ ( G ) - t o p o l o ~ ~  to X' with the T ( G ' ) - ~ O ~ O ~ O ~ ~ .  

Since G-metric topologies are metric topologies we have: 

Proposi t ion 7. Let (X, G),  ( X I ,  G I )  be G-metric spaces, then a function f : X - 
X I  is G-continuous at a point x E X if and only if it is G-sequentially continuous 
at x; that is, whenever (x,,) is G-convergent to s we have (f (x,)) is G-convergent 

to f ( 4 .  

Proposi t ion 8. let (X,  G) be a G-metric space, then the function G(x, y, z) is 
jointly continuous in all three of its variables. 

Proof. Suppose (xk),  (y,) and (zn) are G-convergent to x ,  y and z respectively. 
Then, by (G5) we have, 

G(x, Y ,  z)  I G(Y, YWL, ~ m )  + G(yrn, ~ 1 2 )  

G(zlx,  ~ 7 n )  I G(x, X k ,  xk) + G(xk, YVL, 2) 

and 

G(z, xk. ~ 7 7 1 )  I G(z, zn, zn) + G(z,, y,, xk), 

so, 

G(xk, ~ 7 7 1 ,  zn) - G(xl g )  2) I G(xkl 2 7 2 )  + G(yrn, Y ,  Y)  + G(zn, 2 , ~ ) .  

But then, conlbinillg these using (3) of proposition 1 we have, 

SO G(xk, yWL, zn) -+ G(x, y, z) ,  as k ,  m,  n + oo and the result follows by proposi- 
tion 7. 

3.2. Completeness  of G-metric spaces. 

Definition 8. Let (X, G) be a G-metric space, then a sequence (x,) X is said 
to be G-Ca~~chyif  for every t > 0, there exists N E N such that G(z,,x,,xl) < E 

for all n ,  nl., 1 2 N. 

The next proposition follows directly from the definitions. 

Proposi t ion 9. In a G-metric space, (X,  G),  the following are equivalent. 
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(1) The sequence (x,) is G-Cauchy. 
(2) For every F > 0, there exists N E N such that G(x,, x,, x,) < t, for all 

n , m  2 N. 
(3) (x,) is a Cauchy sequence in the metric space (X,  dG). 

corollary 1. Every G-convergent sequence in a G-metric space is G-Cauchy. 

Corollary 2. If a G-Ca~~chy  sequence in a G-metric space (X,  G)  contains a G- 
convergent subsequence, then the sequence itself is G-convergent. 

Definition 9. A G-metric space (X,  G) is said to be G-complete if every G-Cauchy 
sequence in (X,  G)  is G-convergent in (X,  G).  

Proposition 10. A G-metric space (X,  G)  is G-complete if and only if (X,  dG) is 
a complete metric space. 

Corollary 3. if Y is a non-empty subset of a G-complete metric space (X,  G),  then 
(Y, GIy) is complete if and only 2f Y is G-closed in (X,  G). 

Corollary 4. Let (X,  G)  be a G-metric space and let {F,) be a descending sequence 
(Fl > F2 > F3, .  . . ) of non-empty G-closed subsets of X such that sup{G(x, y, z) : 
x ,  y, z E F,) - 0 as n - m, then (X,  G) is G-complete if and only if n r = l  F, 
consists of exactly one point. 

Thus one can readily develop and exploit a Baire Category theorem in G-metric 
spaces; every complete G-metric space is non-meager in itself. 

3.3. Compactness in G-metric spaces. 

Definition 10. Let (X,  G)  be a G-metric space, and let t > 0 be given, then a set 
A c X is ca.lled an t-net of (X,  G) if giver1 any x in X there is at  least one point a 
in A such that x E BG(a, t), if the set A is finite then A is called a finite t-net of 
(X,  G). Note that if A is an t-net then X = UaEARG(a, 6 ) .  

Definition 11. A G-metric space (X,  G) is called G-totally bounded if for every 
E > 0 there exists a finite €-net. 

Definition 12. A G-metric space (X,  G)  is said to be a compact G-metric space if 
it is G-complete and G-totally bounded. 

Proposition 11. For a G-metric space, (X,  G), the following are equivalent. 

(1) (X,  G)  is a compact G- metric space. 
(2) (X,  T(G)) is a compact topological space. 
(3) (X,  dG) is a compact metric space. 
(4) (X,  G) is G-sequentially compact; that is, if the sequence (x,) C X is such 

that sup{G(x,,, x,, x r )  : n ,  m ,  1 E N }  < m, then. (x,) has a G-convergent 
subsequence. 

In this section we discuss G-metric spaces arising as the product of G-metric 
spaces. 
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For i = 1 , 2 , .  . . , T I  let (Xi,  Gi) be G-metric spaces and let X = nT=l Xi,  then 
natural definitions for G-metrics on the product space X would be 

n 

G,(x, y, 2) = rnax {Gi(xi, yi, zi)) and GS(x, Y. 7)  = C G ~ ( z ~ ,  Yi, zi). 
1 j i j n ,  

i = l  

However, unless all the (Xi, Gi)  are symmetric, G, and G, may fail to he G-metrics. 

Example 2. Let X1 denote the G-metric space defined in Example 1 and let 
X2 = {1,2) with G2(2, y, z) = max{lx - y( ,  Iy - 21, Ix - 21). Then G,,(x, y, z) = 

max{Gl (xl ,  yl, z l ) ,  G2(x2, y2, z2)) is not a G-metric on X = X1 x Xp. It satisfies 
all the axioms except (G3). For instance, if x = (a, l), y = (b, 1) and z = (a ,  2) then 
G,(x, y, Y)  = 2, but G,,,(.c, y ,z )  = 1. 

Theorem 4.1. For i = 1 , .  . . , n let (X,, Gi) be G-metric spaces, let X = nT=l Xi, 
then for G defined by either 

(X,  G)  is a symmetric G-metric space, if and only if each (Xi, Gi) is symmetric. 

Proof. That (X,  G)  is syin~netric when all the (Xi,  Gi) are is easily checked, with 
(G3) following from (2) of Proposition 3. 

Conversely, arbitrarily choose elements pi E Xi for i = 1,2.  . . . ,TI.. Given j E 
{ 1 , 2 , . . .  , n )  and xj ,  yj E X j  let 

and 

Y = (~1,~2,...,~j-l,yj,pj+l,. . .  , p , )  E X 

Then Gj(xj ,  yj, yj) = G(x,Y,  Y) = G(Y,x ,x)  = Gj(yj, xj ,  x ~ ) ,  as required. 

This leads us to seek alternative constructions for products of (not necessarily 
symmetric ) G-metric spaces. 

Theorem 4.2. For i = 1, . . . , n, let (Xi, G,) be G-metric spaces, then the following 
define symmetvic G-metrics on X = nT=l X, 

Proof. UTe only prove ( I ) ,  the other cases follow by similar arguments. Further, 
most of the axioms are readily established, so by way of illustration, we only verify 
(G3) and (G5). 

Let x = (XI ,  x2, .  . . , x,), y = (yl, y2,. . . , y,), z = (zl, 22,. . . , z,) and a = 

(a l ,  a2, . . . , a,) be elelnents of X .  
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(G3) By (E,),  for each i ,  we have, 

2 
G.5 ( d ~ , )  ( x i ,  yi, yi) = - dG, (xz, ~ i )  3 

1 
5 5 ( d ~ ,  (xi  , R )  + dGt (xi  , zi) f dGt (z i ,  w ) )  = Gs (dq)  (x i ,  yi, 2,) , 

and it follows that G T ( x ,  y, y) < G y ( x ,  y, z ) .  This also shows via (2) of 
Proposition 3 that GF is symmetric. 

(G5) Again, by (E,), for each i we have, 

+ d ~ ,  (yi ,  zi) + d~~ (x i ,  ai) + d ~ ,  (ai,  z i ) )  

= Gs(dG,)(xi, ail ai) + G , ( d ~ , ) ( a i ,  yi, zi) 

and so, G F ( x ,  Y ,  z )  I G y ( x ,  a, a )  + GF (a ,  y, z ) .  

Theorem 4.3. For i = 1 , .  . . , n ,  let ( X i ,  G,) be G-metric spaces and let X = 

then all the G-metrics ( G i ) ,  where j, k E { s ,  m} are equivalent and the topology they 
induce is the product topology of the r ( G i ) .  

Proof. Starting from the definitions easy calculations yield, 

G',"(x, y, z )  I G;(x, y , z )  I G&(x,  y, 2 )  I 3Gi(x,  y, 2 )  I 3nG',"(x, Y ,  z ) ,  

for all x ,  y, z E X .  

The following theorem is also easily verified. 

Theorem 4.4. For i = 1 , .  . . , n ,  let ( X i ,  Gi )  be G-metric spaces and let X = 

IT:=, Xi .  Then for all choices of j, k E { s ,  m},  the product ( X ,  G:) is a complete 
(compact) G-metric space if and on.ly if each of the ( X i ,  Gi )  is G-complete (conr- 
pact). 

These results provide the basis for carrying out analysis in G-metric spaces, in 
particular for the development of G-metric fixed point theory for mappings satisfying 
a variety of contractive type conditions. This will be taken up in a subsequent paper. 
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