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ABSTRACT

Banach space properties that imply the weak fixed point property are inves-

tigated in a Banach lattice setting.
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1. INTRODUCTION

A Banach space is said to have the weak fixed point property (w-FPP) if

every nonexpansive mapping on every nonempty weak compact convex set

has a fixed point. The weak fixed point property and Banach lattices has

not been the subject of many papers in the last twenty or so years; see Sine

[23], Soardi [24], Maurey [15], Elton et al. [7], Borwein and Sims [3], Lin [12],

Sims [19] and [20], and Khamsi and Turpin [11]. This is despite the fact that

many examples have an order theoretic nature, see for example Borwein and

Sims [3].
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Hoping to generate renewed interest in the w-FPP and Banach lattices, this

paper revisits the property of weak orthogonality from Borwein and Sims [3]

and Sims [19]. We then consider Banach lattices with uniformly monotone

norm, a property that was exploited in Elton et al. [7]. Along the way,

other properties known to be associated with the w-FPP in Banach spaces

are studied in the context of Banach lattices.

2. PRELIMINARIES

The usual approach to proving that a particular Banach space has the w-FPP

is to assume that it does not have this property and obtain a contradiction.

Thus there is a nonempty weak compact convex set C with a fixed point free

nonexpansive mapping T where T : C → C. Using the weak compactness

of C and the nonexpansiveness of T it can be shown that there exists, in C,

a weak null sequence with certain properties involving the norm. So most

approaches to the w-FPP problem have involved weak null sequences and

their relationship to the norm. In Banach lattices, the lattice structure can

be added to this mix. The following definitions reflect this situation.

Opial’s condition, from Opial [17], states

if xn ⇀ 0 and x 6= 0 then lim sup
n
‖xn‖ < lim sup

n
‖xn − x‖.

Nonstrict Opial condition has the strict inequality replaced by ‘≤’. Uniform

Opial’s condition in Prus [18] is a strengthening of Opial’s condition:

for every ε > 0 there is an r > 0 such that

1 + r ≤ lim inf
n
‖xn + x‖

for each x ∈ X with ‖x‖ ≥ 1 and each sequence (xn), xn ⇀ 0, with

lim infn ‖xn‖ ≥ 1.
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There is an Opial’s modulus, introduced in Lin et al. [13], defined as

r(c) := inf{lim inf
n
‖xn + x‖ − 1 : ‖x‖ ≥ c, xn ⇀ 0 and lim inf

n
‖xn‖ ≥ 1}

for c > 0.

X has the uniform Opial’s condition if and only if r(c) > 0 for all c > 0 and

the nonstrict Opial condition if and only if r(c) ≥ 0 for all c > 0, see Dalby

[5].

A slightly different but related approach produces the following property,

due to Sims [22]. A Banach space has property(K) if there exists K ∈ [0, 1)

such that whenever xn ⇀ 0, ‖xn‖ → 1 and lim infn ‖xn − x‖ ≤ 1 we have

‖x‖ ≤ K.

If K is not the same across X but depends on the sequence (xn), then the

condition is called property (k). Property(K) with K = 0 is equivalent to

Opial’s condition and Dalby [5] showed that a Banach space has property(K)

if and only if r(1) > 0. Sims [22] proved that property(K) implies weak

normal structure.

Next some definitions for Banach lattices. A Banach lattice is said to be

weakly orthogonal if whenever xn ⇀ 0 then

lim
n
‖|xn| ∧ |x|‖ = 0 for all x ∈ X.

Sims [20] showed that weakly orthogonal Banach lattices have the w-FPP

and a Banach space X has the w-FPP if there exists a weakly orthogonal

Banach lattice Y with d(X, Y ) <
√

5−1 where d(X, Y ) is the Banach-Mazur

distance between X and Y . In [4], Dalby extended the distance to
√
33−3
2

.

Note that Borwein and Sims [3] used a slightly weaker definition of weak

orthogonality, namely when xn ⇀ 0 then

lim
m

lim
n
‖|xm| ∧ |xn|‖ = 0.
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It has become the practice to use the stronger definition when referring to

weak orthogonality, see for example Sims [19] and Garcia-Falset [8].

The norm of a Banach lattice is said to be uniformly monotone if given ε > 0

there is a δ > 0 such that if x, y ≥ 0 with ‖y‖ = 1 and ‖x+ y‖ ≤ 1 + δ then

‖x‖ ≤ ε.

An equivalent definition is:

There exists a strictly increasing continuous function δ on [0,1] with δ(0) = 0

so that if x, y ≥ 0 with 1 = ‖y‖ ≥ ‖x‖ then ‖x+ y‖ ≥ 1 + δ(‖x‖).

Birkhoff [2] was responsible for the first version and the second version ap-

peared in Katznelson and Tzafriri [10]. Akcoglu and Sucheston [1] considered

both these and several other formulations. They showed that the two defini-

tions are equivalent and in Orlicz function spaces they are equivalent to the

∆2 condition.

Note that a Banach lattice, X, that has a uniformly monotone norm is weak

sequentially complete so it cannot contain a subspace isomorphic to c0. In

particular, X has order continuous norm. Recall that the norm is said to be

order continuous if inf{‖x‖ : x ∈ A} = 0 for every downward directed set

A ⊂ X such that inf(A) = 0.

The norm of a Banach lattice is said to be strictly monotone if x > y ≥ 0

implies ‖x‖ > ‖y‖.

X having a uniformly monotone norm is equivalent to X̃ := l∞(X)/c0(X)

having a strictly monotone norm. See for example Elton et al. [7].

Finally, a Banach lattice has a p-superadditive norm if

(‖x‖p + ‖y‖p)1/p ≤ ‖x+ y‖ for all disjoint x, y.

A p-superadditive norm is a uniformly monotone norm.
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The w-FPP is separably determined, see for example Goebel and Kirk [9].

So throughout this paper X will be assumed to be an infinite dimensional

separable Banach lattice. So if X is σ-Dedekind complete then the norm is

order continuous, see Lindenstrauss and Tzafriri [14] or Meyer-Nieberg [16]

for details.

3. RESULTS

First a result concerning the nonstrict Opial condition.

Proposition 1. If X is a Banach lattice with order continuous norm then

X satisfies the nonstrict Opial condition for positive weak null sequences.

Proof: Let xn ⇀ 0 where xn ≥ 0 for all n, then by proposition 2.3.4 of Meyer-

Nieberg [16], there exists a disjoint sequence, (x∗n), of positive elements in

BX∗ such that

lim sup
n

x∗n(xn) = lim sup
n
‖xn‖.

Order continuity of the norm implies that x∗n
∗
⇀ 0. So for any x ∈ X

lim sup
n
‖xn + x‖ ≥ lim sup

n
x∗n(xn + x)

= lim sup
n

x∗n(xn)

= lim sup
n
‖xn‖.

�

The situation involving Opial’s condition and uniform Opial’s condition is

left for the moment until weak orthogonality has been dealt with.

Proposition 2. If X is a Banach lattice with order continuous norm then

the lattice operations are weak sequentially continuous if and only if X is

weakly orthogonal, and hence has the w-FPP.
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Proof: (⇒) Let xn ⇀ 0 then |xn|⇀ 0. For x ∈ X let

yn := |xn| ∧ |x|.

Then yn ⇀ 0 and 0 ≤ yn ≤ |x|. If limn ‖yn‖ 6= 0 then by taking subsequences

we have infn ‖yn‖ ≥ α for some α > 0.

Let zn := yn/α then zn ⇀ 0, 0 ≤ zn ≤ |x|/α and ‖zn‖ ≥ 1 for all n.

By corollary 2.3.5 of Meyer-Nieberg [16], for 0 < β < 1 there exists a sub-

sequence (znk
) and disjoint (wk) such that 0 ≤ wk ≤ znk

and ‖wk‖ ≥ β > 0

for all k. So 0 ≤ wk ≤ |x|/α for all k. Then the order continuous norm and

theorem 2.4.2 of Meyer-Nieberg [16] means ‖wk‖ → 0, a contradiction.

(⇐) This follows the ideas contained in the proof of proposition 2.3.23 in

Meyer-Nieberg [16]. That is, let xn ⇀ 0 and by theorem 2.5.9 of [16], it

suffices to show that |xnk
| ⇀ 0 for every subsequence such that (|xnk

|) is

weak Cauchy.

From lemma 2.5.11 of [16], there exists an increasing, positive sequence (yk)

such that |xnk
| − yk ⇀ 0.

Weak orthogonality implies that

lim
k
‖ |xnk

| ∧ |x| ‖ = 0 for all x ∈ X

and

lim
k
‖ | |xnk

| − yk | ∧ |x| ‖ = 0 for all x ∈ X.

Therefore

|xnk
| ∧ |x|+ | |xnk

| − yk | ∧ |x| → 0.
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But

|xnk
| ∧ |x|+ | |xnk

| − yk | ∧ |x| ≥ (|xnk
|+ | |xnk

| − yk |) ∧ |x|

≥ |yk| ∧ |x|

= yk ∧ |x|

≥ 0.

Therefore limk ‖ yk ∧ |x| ‖ = 0.

But since (yk) is increasing so is (yk ∧ |x|) which means that yk = 0 for all k

and so |xnk
|⇀ 0. �

So Banach lattices with lattice operations weak sequentially continuous and

order continuous norm have the w-FPP, as do Banach spaces whose Banach-

Mazur distance from such lattices is less than
√
33−3
2

The lattice operations of any abstract M space are weak sequentially con-

tinuous. See for example Meyer-Nieberg [16], proposition 2.1.11. But lemma

1.b.10 of Lindenstrauss and Tzafriri [14] states that an abstract M space has

order continuous norm if and only if it is order isometric to c0(Γ), for some

index set Γ. So proposition 2 includes c0 but excludes any M space with

an order unit, for example C(K) where K is an infinite compact Hausdorff

space. Also see Borwein and Sims [3] for further consequences of proposition

2.

If the Banach lattice is atomic then by proposition 2.5.23 of Meyer-Nieberg

[16] the lattice operations are weak sequentially continuous and so we have

the following corollary.

Corollary 3. Let X be an atomic Banach lattice with order continuous

norm then X is weakly orthogonal, and hence has the w-FPP.
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It is well known that if X is a Banach lattice and c0 6↪→ X (by Lindenstrauss

and Tzafriri [14] this is equivalent to X not containing a sublattice order

isomorphic to c0) then X has order continuous norm which leads to the

following.

Corollary 4.. Let X be an atomic Banach lattice where c0 6↪→ X then X is

weakly orthogonal, and hence has the w-FPP.

Khamsi and Turpin [11] considered Banach spaces with a vector lattice struc-

ture satisfying:

(α) (x+ ≤ y+ and x− ≤ y−)⇒ ‖x‖ ≤ ‖y‖, x, y ∈ X;

(β) for some real constant k < 2, |x| ≤ |y| ⇒ ‖x‖ ≤ k‖y‖, x, y ∈ X.

Instead of the weak topology, the topology, τ , studied was the coarsest topol-

ogy on X for which the map x → ‖ |x| ∧ u ‖ is continuous at 0 for every

u ∈ X, u ≥ 0. Khamsi and Turpin showed that every nonexpansive map

on every nonempty τ -compact convex subset has a fixed point. For weakly

orthogonal Banach lattices this is the w-FPP result of Sims [19].

Garcia-Falset [8] extended this set up to have k ≤ 2 but required the addi-

tional condition of the alternate-signs Banach-Saks property. In this paper

Garcia-Falset called a Banach space, X, weakly orthogonal if X satisfies (α)

and (β) and if for each weakly null sequence (xn) in X, limn ‖ |xn|∧ |x| ‖ = 0

for every x ∈ X. To obtain the w-FPP the additional condition was the weak

Banach-Saks property.

Related to the foregoing is the following.

Question: If X is a weakly orthogonal Banach lattice with norm ‖ · ‖, does

X with the new norm ‖x‖1 := ‖x+‖∨ ‖x−‖ satisfy the w-FPP? It is straight

forward to show that ‖ · ‖1 is an equivalent Banach space norm that satisfies

(α) and (β). So (X, ‖·‖1) satisfies the w-FPP if X has the weak Banach-Saks
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property.

To obtain Opial’s condition, the condition that X must have an order con-

tinuous norm has to be strengthened to X having a uniformly monotone

norm.

Note that a Banach lattice that is weakly orthogonal has the Banach space

property, WORTH:

if xn ⇀ 0 then lim sup
n
‖xn − x‖ = lim sup

n
‖xn + x‖ for all x ∈ X.

This in turn implies the nonstrict Opial condition.

Proposition 5. If X is a Banach lattice with uniformly monotone norm and

whose lattice operations are weak sequentially continuous then X satisfies

Opial’s condition.

Proof: Recall that a uniformly monotone norm implies that c0 6↪→ X and so

by proposition 2, X is weakly orthogonal. Thus X has WORTH. Assume

that X does not satisfy Opial’s condition then there exists xn ⇀ 0 and a

nonzero x ∈ X such that

lim sup
n
‖xn‖ 6< lim sup

n
‖xn + x‖.

Since X satisfies the nonstrict Opial condition we have

lim sup
n
‖xn‖ = lim sup

n
‖xn + x‖.

Without loss of generality we may assume limn ‖xn‖ = limn ‖xn + x‖ = 1

and infn ‖xn‖ > 0. So xn/‖xn‖⇀ 0 and |xn|/‖xn‖⇀ 0.

Nonstrict Opial condition implies
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1 ≤ lim sup
n
‖xn/‖xn‖+ x‖

≤ lim sup
n
‖ |xn|/‖xn‖+ |x| ‖

= lim sup
n
‖ |xn|/‖xn‖ − |x| ‖ using WORTH

≤ lim sup
n
‖xn/‖xn‖+ x‖.

Therefore

1 ≤ lim sup
n
‖ |xn|/‖xn‖+ |x| ‖ = lim sup

n
‖xn/‖xn‖+ x‖.

Also

lim sup
n
‖xn/‖xn‖+ x‖ ≤ lim sup

n
‖xn/‖xn‖ − xn‖+ lim

n
‖xn + x‖

= lim
n
|1/‖xn‖ − 1| ‖xn‖+ lim

n
‖xn + x‖

= 1.

Thus using the weak lower semi-continuity of the norm

1 = lim sup
n
‖ |xn|/‖xn‖+ |x| ‖ ≥ ‖ |x| ‖.

This means that ‖ |x| ‖ ≤ ‖ |xn|/‖xn‖ ‖ for all n. The uniformly monotone

norm means there exists a strictly increasing continuous function δ on [0, 1]

where

‖ |xn|/‖xn‖+ |x| ‖ ≥ 1 + δ(‖x‖) for all n.

Letting n→∞ we have

1 = lim sup
n
‖ |xn|/‖xn‖+ |x| ‖ ≥ 1 + δ(‖x‖) > 1.
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A contradiction.

�

It can be shown that a Banach lattice satisfying the conditions of proposition

5 has property(K) and so has weak normal structure.

Uniform Opial’s condition can be found by using the spaces lp, 1 < p < ∞,

as guides.

Proposition 6. If X is a Banach lattice with p-superadditive norm, 1 <

p <∞, and whose lattices operations are weak sequentially continuous then

X satisfies the uniform Opial’s condition with r(c) ≥ (1 + cp)1/p − 1.

Proof: Recall that a norm is p-superadditive if

‖x‖p + ‖y‖p ≤ ‖x+ y‖p for all disjoint x, y.

It can be shown that this condition is equivalent to the same inequality where

x and y are merely ≥ 0. See for example proposition 2.8.2 of Meyer-Nieberg

[16].

Let xn ⇀ 0, lim infn ‖xn‖ ≥ 1 and ‖x‖ ≥ c > 0. Then

‖ |xn| ‖p + ‖ |x| ‖p ≤ ‖ |xn|+ |x| ‖p for all n.

So (
lim inf

n
‖xn‖p + ‖x‖p

)1/p
≤ lim inf

n
‖ |xn|+ |x| ‖.

Using weak orthogonality and a similar argument to that in proposition 5 we

have

lim inf
n
‖ |xn|+ |x| ‖ = lim inf

n
‖xn + x‖

and thus

lim inf
n
‖xn + x‖ ≥ (1 + cp)1/p = 1 + [(1 + cp)1/p − 1].
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Which means that X satisfies the uniform Opial’s condition with

r(c) ≥ (1 + cp)1/p − 1.

�

This proposition covers the cases of lp, 1 < p <∞. Note that if the norm is

p-additive and X is atomic and separable then X is isometrically isomorphic

to lp.

It is a long standing conjecture in metric fixed point theory that reflexivity

and the fixed point property are linked. This means that the presence or

absence of c0 and l1 is of interest, which leads to the following proposition.

Proposition 7. Let X be a Banach space. If c0 ↪→ X then X does not have

property(K).

Proof: c0 ↪→ X if and only if there exists a sequence (εn) in (0, 1) where

ε→ 0 and a sequence (xn) in X such that

(1−εn) sup
k≥n
|tk| ≤ ‖

∞∑
k=n

tkxk‖ ≤ (1+εn) sup
k≥n
|tk| for all (tk) ∈ c0, for all n ∈ N.

Without loss of generality εn ↓ 0. Note that xn ⇀ 0 and limn ‖xn‖ = 1.

Fix n ∈ N then

1− εn ≤ ‖xn − xk‖ ≤ 1 + εn for all k > n.

So

1− εn ≤ lim
k
‖xn − xk‖ ≤ 1 + εn.

Therefore r(‖xn‖) ≤ limk ‖xn − xk‖ − 1 for all n and r(‖xn‖) ≤ εn for all n.

Taking n → ∞ we have r(1) ≤ 0 which implies r(1) = 0. But X has

property(K) if and only if r(1) > 0.
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�

Another way of viewing this is: if X has an equivalent norm which satisfies

property(K) then X does not contain an isomorphic copy of c0.

Note: Thus if X is a Banach lattice where l1 6↪→ X and X has property(K)

then X is reflexive.

Dalby [6] showed that if X∗ statisfies the condition that R(X∗) < 2 and

has the nonstrict *Opial property then X satisfied property(K). So if X

is a Banach lattice with X∗ order continuous, R(X∗) < 2 and having the

nonstrict *Opial property then X is reflexive.
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