BANACH SPACE GEOMETRY AND
THE FIXED POINT PROPERTY

BRAILEY SIMS

ABSTRACT. This is the text of four lectures given at the special international work-
shop on metric fixed point theory held at the University of Seville from September
25-29, 1995.

1. 'OREPLAY

Throughout X = (X, || -|]) will denote a real Banach space (although our results
remain valid if X' is over the complex field). The closed unit ball of X 1s By =
{z € X :||z]| < 1}, and the unit sphere of X is Sx := {x € X : [|z|| = 1}. The
dual space of X 1s the space X~ of all continuous linear functionals f : X — R
equipped with the norm ||f]| := sup f(Bx). Foreach z € X we define the evaluation
functional # : X* — . f — z(f) := f(z). The mapping J : £ ~ 7 is an isometric
isomorplism of X into .X** and we refer to X := J(.X') as the natural embedding
of X in X**. The space X is reflexive if X = X**. By the duality map on X
we understand D : N — 227 v {f € X* ¢ f(z) = |IFIMz]l = [|2))*}. D(2)
1s nonempty for each » € X courtesy of the Hahn-Banach theorem, and it 1s a
fundamental result of R. (". James that X is reflexive if and only if D is onto.

Besides the norm topology we will be concerned with the weak topology on X,
w = (X, X*), and the weak™ topology on X*, w* := ¢(X*, X). TFor what follows
it will be enough to recall the following.

In the case of the weak topology:

(1) For a sequence (z,) we have z, =z if and only if flzn) — f(z), for all
fex~.

(2) A subset A of X is w-compact if and only if it is w-sequentially compact
(the Eberline-Smullian theorem).

(3) The norm function on X is w-lower semi-continuous.

(4) The unit ball Bx is w-compact if and only if X is reflexive.

(5) Of ‘historical’ importance for metric fixed point theory is Mazur’s theorem:
for A C X we have tco A = ¥ A.
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In the case of the weak* topology:

(1) For anet (f,) we have [, lb—‘f if and onlv if f,(0) — fia) forall z € X.

(2) wr-compact sets are w*-sequentially compact if for example X is separable
(in which case the relative w*-topology ou HBx- 15 a meirie topology), or
more generally if X smoothable (that is. for some equivalent norm on X
the duality map D is single valued).

(3) An equivalent norm on X'* is the dnal norm of an equivalent norm on X if
and only if it 1s w*-lower semi-continuous.

(4) By is w*-deuse in Bx.. (Goldstein’s theorem).

We will concentrate on the w and w® topologies. While many of the results
extend to other locally convex linear topologies 7 for which the norm is 7-lower
semi-continuous, the results and arguments for the w or w* cases are typical.

In all that follows C' will denote a nonemipty closed bounded convex subset, and
T : (' — € a nonexpansive self mapping of C: that is, [|[Te — Ty|| < ||z — yl|, for
allz, ye C.

Examples of nonexpansive maps on appropriate domains include the following,

(1) Tsometries,

(2) Shifts,

(3) Multiplication operators,

(4) Resolvents of accretive operators,

(5) Contractions (that is, z £ y = ||Tz — Ty|| < ||]z — yl]). It is interesting

to note that while being a contraction is clearly more restrictive than being
a nonexpausive map, apart from the observations that contractions can
have at most one fixed point, almost nothing more seems to be kuown for
contractions than for nonexpansive maps.

(6) Strict contractions (that is, there exists k& € [0, 1) such that ||Tw — Ty|| <
El|z ~— y|, for all z, y € C). These are the subject of the celebrated Banach
contraction mapping principle, which ensures the existence of a (necessarily
unique) fixed point to which any orbit ». Tw. T%r. 73r. -~ is norm con-
vergent at a geometric rate.

We say X has the fixed point property, fpp. if on each nonempty closed bounded
convex subset C every nonexpansive sell mapping I lias a fixed pont.

We say X has the weak fixed point property. w-fpp , if on each nonempty w-
compact convex subset C' every nonexpansive sell mapping 7" has a fixed point.

We say the dual of X, X*, has the weak* fixed point property, w*-{pp , if on
each nonempty w*-compact convex subset C' every nonexpansive self mapping 7'

has a fixed point.

We will be concerned with sufficient conditions for each of these properties. Of
course all three properties coincide when X is reflexive.

Not all spaces enjoy these properties. For example:
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(1) cp fails the fpp. T': (zy, xo, x3, - ) — (1, &1, 22, ---) 18 a fixed point {ree
isometry on B} := {(z,) 2, — 0, 0 <2, <1}
£4[0, 1] fails the w—{pp . The baker transform followed by the ‘reflection’
S @) — 1—f(t) i1s a fixed point free isometry on the w-compact order interval
0 < f(1) < 1. Thisis a modification by R. Sine [Si] of the celebrated example
of D. Alspach [A] which provided the first instance of a Banach space failing
the w-1pp and so settled a question of more than 20 years standing. The
example is canouical in abstract L-spaces [B-S], and remains effectively the
only explicitly known example for the failure of the w—{pp (for an alternative
construction see Sclieclitmann [Sc]).

(3a) €, = ¢ equipped with the equivalent dual norm |[(z,)]| = ||(xn)|]y V
[[(z,)"||1 fails the w=—fpp for T(zy) = (1 = >  zn, €1, L2, --+) acting on
the w*-compact convex set C' = Bz'l [Lim].

(3b) £y as ¢* fails the w”—{pp for an affine contraction [D-L, Sm]. To see this, it
is convenient to consider (; acting on ¢ via the action (,)(cn) = 2161 +
zglime, + x3ce + ryez 4+ - for (2,) € £ and all (¢,,) € ¢. Then, for
any & € (0, 1) and sequence (¢,) C (0, 1) with ) ¢, < oo take

—_
no
~—

(B(1—2)+ > (1= crp. 61 —a). (1= ex)za, (1 - es)ag, ---)

k=1
&Ly S l}

It 1s unknown whether or not every Banach space has the w-fpp for contractions.

acting on the w”-compact convex subset

]2

= {('l‘n] 0L, vy =

Hencefortli we concentrate on sufficient conditions for the w—{pp and w*-fpp ,
and so for the fpp in the case of reflexive spaces. [t Is a significant open question as to
whether or not the fpp imples reflexivity, although there is considerable evidence
in support of the conjecture thal it does. The converse question is perhaps the
fundamental open question in metric fixed point theory.

It is an interesting, but seldom used, result that the w—fpp is separably deter-
mined. To see this, suppose that C is a nonempty w-compact convex subset and
that 7" is a fixed point free nonexpansive mapping of C' into C'. Choose ¢ € C and
define Iy := {c} and inductively K, 4, := @ {T(K,)U K,}. Then

Ko 1= U K,
n

15 a separable, convex w-compact (by Mazur’s theorem) T-invariaut subset, on
which 7|k is a fixed point free nonexpansive self mapping.
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The above argument actually establishes the formally stronger result that any
minimal w-compact convex T-invariant set Is separable.

A similar result in the w*-case is potentially important, as then w*-compactness
could be assumed sequential. Unfortunately no such general result seems known.
The situation in C(£2)* has been investigated by M. Smyth [Sm]. If 2 is an infinite
compact Hausdorff space C'()* failure of the w*—fpp is separably determined (ei-
ther 1t contains an isometric copy of £;. and heuce of the Alspach example, or it is
an £1(T') and failure of the w*~fpp can be reduced to a separable example similar
to the £ example considered above). If, however, Q is nol dispersed thien C/(92)”
contains a nonseparable w*-compact convex subset ' which admits a nonexpansive
mapping T : ' — (' for which C is a minimal invariant subset. That is, C'(£2)*
contains inseparable minimal invariant subsets.

2. OPENING MOVES

Suppose X (X*) fails the w (w*)-fpp, then there exists a nonempty w (w*)-
compact convex subset ' and a fixed point free nonexpansive mapping 7' : ¢’ — .
By the compactness and Zorn’s lemma we may assume that C is minimal i the
sense that no proper nonempty w (w*)-compact convex subset of ' is invariant
under T'. We will refer to such a set as a minimal invariant set for 7 (that it is
nonempty w (w”)-compact and convex being understood). We note in passing that
for those of an intuitionist persuasion more constructive approaches to the existence
of such sets are possible [see G-K, for example].

In particular we readily see that such a minimal invariant set €' must contain
more than one point, an observation best expressed by diam (C) := sup{|lz — y]| :
z,y € C} >0, and that

(1) € =7TT(C), in the w-case, or

(2) C=7t" T(C), in the w*-case.

Our meta-strategy is to find further properties of such a minimal invariant set

which are known to be ruled out by (geometric) properties of the space (or of the
domain of T').

Lemma 2.1. Let T be a fired point free nonexpansive map and C' a minimal in-

vartant sel for T. If ¢ : C — R satisfies

(i) ¢ is a w (w* )-lower semi-continuous conver function, and
(it) ¥(Tz) < ¢(x), for allz € C

then 3 15 constant on C.

Proof. D := {z € C : y(2) = inf¢(C)} is a nonempty w (w*)-closed convex
T-invariant subset of C, and so by minimality D = C. O

From this we have the following basic observation of Brodskii and Mil'man [B-M].
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Theorem 2.2. : If C' is a w (w*)-compact minimal invariant sct for the fived
pomnt free nonczpansive mapping T then C is diametral in the sense that for all
nel’

diam (C) = rad(x, C'), — the radius of C about &

= sup |z -yl
yel

Proof. 1t suffices to verify that ¢i(z) := rad (z, C) satisfies the hypotheses of lemma
2.1, as then ' 1s a constant on C with value equal to

sup v(xr) = sup sup || — y}| = diam (C).
reC TEC yeC
To complete the proof we first note that ¢ is the supremum of convex w (w*)-lower

semi-continuous functions aud so is itself convex and w (w*)-lower semi-continuous.
We next show that

viey = sup e —yl|-
yeCOT(C)

In the w-case this follows immediately since ¢ = 0 T(C). In the w*-case (' =
co¥ T(C), so given € > 0 there exists a y. € C with ¥(z) — e < ||z — y || and a net
Yo — Ye With yo € coT(C). Thus,

v(e) — e <|lv —ye|| < liminf ||z — yal|
[a3
and so there exists a y € coT(D) with ¢(z) — 2¢ < ||z — y|.
It now follows by standard convexity arguments that

()= sup |z —yl|,
y€T(C)

and so ¢(Tx) < ¢(x), completing the proof. O

This has led to the concept of normal structure. We say that X (X*) has w
(w*)-normal structure if it does not contain any nontrivial w (w”)-compact convex
diametral subsets.

For example. If (e,,) denotes the usual basis in cq, then C = Ca{en} is a w-
compact (e, i0) convez diametral subsel. So ¢q fails to have w-normal structure.

Clearly
w (w*)-normal structure == w (w")-fpp.

We can classify conditions on X (X*) as ‘strong” if they imply w (w*)-normal
structure, and ‘weak’ if they fail to imply w (w*)-normal structure while still en-
suring the w (w*)-fpp for X (X™*). In the next section we will survey some of the
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known strong conditions. Weak conditions usually involve ‘asymptotic’ structure in
X (X*) and are best dealt with after we have considered Banach space ultraprod-
ucts in section 4. First, however, in preparation for later we consider the remaining
nnportant structure known for a minimal invariant set C for T'.

Alongside the diametrality of . another important observation has been the
existence in C' of an approximate fixed point sequence for T. That is, a sequence
(an) C C with |la, — Tan|| — 0 (to obtain such a sequence, choose zo € C' and
take a, to be tlie unigue fixed point of the strict contraction (1—1/n)T + 1/n 2y
guaranteed courtesy of the Banach coniraction mapping principle).

Now, let (a,) be a given approximate fixed point sequence for T' in the minimal
invariant w (w*)-compact convex set (". Ior each subsequence (zy) of (an) consider

() = limsup||e — 2k ]
k

If ¢ is w (w*)-lower Sellli—COl]LillUO_L)lS, then lemma 2.1 applies to give ¢ has constant
- . Pl
value ¢ on C. Further, if 2, — 2y we have

diam (C) 2 ¢ = $(2) > limsup [lz — i,

\

liminf ||z — x|
«

> |le — zof], forallzed.

So, since C 1s diametral, we have ¢ = diam (), and we have arrived at the funda-
mental lemma of Goebel [G] and Karlovitz [Kal:

lim||c — a,|| = diam (C).

When this hiolds we refer to (a,,) as a diameterizing sequence for (.

In the w-case this is always the case (this was the result of Goebel and Karlovitz),
as w-lower semi-continuity is ensured for the functions ¢ defined above.

In the w*-case this may not be the case.

Example. In {,, = £ for
Uy = (07 0’ RIS 07 _1v _1’ )
N————
n 0's
and (z) := limsup,, ||z — a,|| we have for

w”

Tn ::(11"')17010)"')%"1“00 ::(lylslala"')
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et (ey) = 1 while Yles) = 2. So v oas not w™-lower semi-conlinuwous. Thas
crumple along with an example in a separable dual are given in [S920].

The question of when such v are w*-lower semi-continuous. and so a w*-Goebel
ind Karlovitz lemma pertains, has been taken up by M. A. Khamsi [Kh] and
S92D], who established the result for stable duals (and duals with shrinking strongly
monotone bases) and w*-orthogonal dual lattices: that is, Banach lattices for which

Fr 250 = [ fal ALFII| — 0, forall fe X",

I'lie extension of the Goebel /Karlovitz lemma to a wider class of dual spaces 1s an
open problem.

The Goebel/Karlovitz lemma appears to endow minimal invariant sets with a
richer structure than mere diametrality: namely, the existence of a diameltrizing
sequence. Unfortunately the existence of any nontrivial diameteral set implies the
existence of a diametral set containing a diameterizing sequence. To see this, sup-
pose D is a closed convex diaimetral set, with d := diam (D) > 0. Starting with any
z1 € D we may inductively choose a sequence (z,,) so that ||znt1 —(1/n) 3.7 zi|| >
d — 1/n*. Then an easy calculation shows that dist (z,41, co{zx}i_;) — d.
Thus (2,) is diameterizing for C':= T {x; }32, .

If D is w-compact then so too is C'. In general, we can not reach such a conclusion
in the w*-case. If, however, D is norim separable, as would be the case in a separable
dual, we may use the following device of C. Lennard [Le]. Let (y,) be a dense

sequence in D, and modify the construction of the sequence (2, ) by choosing it so
that

1 & 1
- : . d— —
|[£n41 o ké_l(lk +ye)ll > ok

then (x,) is diameterizing for all points of D. In particular it is diameterizing for
C =7 {xp}32,.

The following characterization of normal structure due to T. Landes [La84] will
be of subsequent importance.

Lemma 2.3. X contains a sequence which is diameterizing for ils closed conver
hull if and only if X contains a sequence (x,,) for which there is ¢ > 0 with lim,, || —
p||=c forallz € o {zn},.

Proof. Starting with z,, := x; extract a subsequence (2, ) so that [[2,,, ., —@,;|| <
(14+1/k)c, for j < k. Put

1
+ ——I

k
E e T

and let
¢:= —66{21‘7}20:1'
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A calculation shows that ||z, — zk|| < ¢ (take m > k), so diam (C') = ¢ and (z4) 18
diameterizing for C.

The converse 1s immediate. 0O
Note: If in addition (z,) is weak convergent then C'is w-compact.

Normalization. Given a nontrivial w (w*)-compact convex diametral set ¢ (xmini-
mal invariant for the fixed point free nonexpansive mapping T') and (,) a diameter-
izing sequence for C (an approximate fixed point sequence for T°) it is convenient
m the w-case, or in the w*-case when the w*-compactness is sequential, to pass
to a subsequence Ty, A ro and replace C' by (1/diam (C))(C' — zq), (&n) by
((1/diam (C))(zn, — xo) (and T by (1/diam (C))[T'(diam (C)x + 20) — zo]). I(l}ulhlS
way we may always assume without loss of generality that diam (C') = 1, 2, —

and so in particular , since 0 € C, ||z,|| — 1.

The arguments preceding lemma 2.3 make it clear that to establish the w (w”)-
fpp from weak conditions, where w (w*)-normal structure fails, will require delicate
arguments; arguments which make explicit use of the fact that the diameterizing
sequence Is an approximate fixed point sequence for a fixed point free nonexpansive
mapping. Such arguments are considered in section 5. In the next section we
consider some of the known strong conditions.

3. STRONG END GAMES

In this section we will be concerned with the following conditions on a Banach
space X, which are sufficient for w-normal structure.

(UC) Uniform convexity: For every € > (0 there is a 6 > 0 such that, z, y € By
and ||(1/2)(z —y)|| > 1— ¢ implies ||z — y|| < e. This may be rephrased as; if
C is a closed convex subset of By with diam (C) > ¢ then CN{§Bx) # 0. It
is well known (Mil’man/Pettis theorem) that (UC) = reflexivity. Indeed it
implies superreflexivity, and every superreflexive space admits an equivalent

(UC) norm.

(€0-InQ) ¢o-inquadrate: The same as (UC), but only for ¢ greater than or equal to
some given g € [0, 2). (€-InQ) is sufficient for superreflexivity.

(e9-UKK) ep-uniformly Kadec-Klee: Tor every ¢ > ‘txthere is a 6 > 0 such that,
2n =0, ||zall = 1, and sep (2n) = inf{||em — 2ol : m £ n} > ¢, implies
[[zo|| < 1—8. This may be replirased as; if C' is a w-compact convex subset of
Bx with a (sequential) measure of noncompactness v{C') := sup{sep (2, :
(zn) C C} > € then C N (6Bx) # 0. This generalization of R. Hufls
[H] notion of uniform Kadec-Klee was introduced by van Dulst and Sims
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[vanD-S], where it was shown to imply that tlie Chebychell centre {x €
C :rad (2, C) = infyecrad (y, C)} is norm compact. Whether or not the
asymptotic centre is norm compact in the same circumstalnces remains an
open question.

Generalized Gossez-Lami Dozo property: Whenever (2,) is a w-null se-
quence which is not norm convergent we have

liminf ||e,, || < limsup limsup ||z, — 24|,
n m n

(GGLD) was ntroduced by A. Jiménez-Melado [JM].

Asymptotic—P: Whenever (2,,) 1s a w-null sequence which is not norm con-
vergent we have

liminf ||z, || < ass-diam {2, },
n
where ass-diam {x,} := lim, diam{w;}3%, Is the asymptotic diameter of
the sequence (z,). Asvinptotic-P was introduced in [S-S].
Property-P: Whenever (r,) is a nonconstant w-null sequence we have
liminf ||z, || < diam {z,}.
i
Property-P was first considered by K. K.Tan and H. K. Xu [T-X].
Opial’s condition: Whenever 2, —0 and & # 0 we have
limsup ||z,]| < lmsup||z, + 2.
n n
This condition was introduced by Z. Opial [O] and shown to imply w-normal
structure by J. P. Gossez and E. Lami Dozo [G-L].

Weak Opial: Whenever (2,,) is a w-null sequence which is not norm cou-
vergent we lhave

liminf ||z, || < suplimsup ||zm — 25|,
n m n

this is equivalent to requiring that there exists £ € €6 {x, } with limsup,, |[x,]|
< limsup,, || — z,|[. This weakening of the Opial condition was introduced

by Tingley [T].

Most of the following implications are clear from the respective definitions.

(UC) = (elg), 0< <l = (e-UKK), 0< <1
il
(GGLD)
m
(ass-P)
U
0) = (WO) = (P)
s

w-n. str.
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[t is also clear that (GGLD) == (WO).

To see that, for 0 < ¢y < 1, (¢g-UKK) implies (ass-P), suppose there were an
2y —0 with liminf, ||zn|| = ass-diam {x,,} = 1. Then since we can choose m so
that |[z,|| is arbitrarily close to | and w — limy, &y — &n = 2, We can extract a
subsequence (z,, ) with sep (z,,,) > ¢o and choose an mg so that 1 > ||la,, — 2., >
[[Zm,l] > 1 —8. But then yy := &y, — v, defines a sequence which contradicts (¢p-
UKK). Whether or not (ep-UKK), for €g > 1, implies w-normal structure remains
unanswered. The result does, howé e follow if X satisfies an additional property

(WORTH) [$94].

N —

(O ay eI

We will show that the properties (GGLD) and (ass-P) coincide, as do {WO)
and (P). Apart {rom these equivalences all the other implications given above are
strict. In most cases this follows from standard examples. For mmstauce, all the
spaces L, with p # 2 fail to have (O), but for p > 3 satisfy limsup,, [le,]|} <
(1/2) limsup,, hmsup,, |lz, — 2,

full”.

|P whenever 2,, — 0, and so these spaces are ‘“WO-

The space ¢g equivalently renormed by

& = (& )leo + Z .

9n )

was considered by A. Jiménez-Melado [JM]. It enjoys (O) [van D], but lacks (ass-
P). Thus, while Opial’s condition implies property-P it fails to imply any of the
stronger conditions listed.

To separate w-normal structure and (P) is more delicate. We first note the
following two propositions.

Proposition 3.1. A Banach space has (WO) if and only of 1t has (P).

Proof. We need only prove (P) = (WO). Suppose X fails to have (WO), then we
can find z, =0 with l|zn]| = 1, but limsup,, ||, — .|| < 1 for all m. Construgt
from (z,) the sequence (z;) as i1 the proof of Landes’ result lemma 2.3. Then
2k =0, ||zx]] = 1, and diam {z;} < 1, so X fails to have (P). O

Proposition 3.2, If X has w-normal structure and satisfies the nonstrict Opial
condttion:

lunsup ||1n|| < lunsup [le +x,)l, forallz € X, =,

Quhenever Bp = 0>i/le1l X has (P).

Proof. Suppose X fails (P}, and hence (WOQ), then there exists a sequence z,, — 0,
with ||z,|| — 1, and limsup, ||z — z,|| < 1, for all 2 € C' := @0 {x,}. But, by
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the nonstrict Opial condition limsup, ||[& — || > lin, ||z, || = 1. It follows that
diam (C') = 1 and {2,,) is a diameterizing sequence for C'. Thus X fails w-normal
structure. 0O

To separate (P) from w-normal structure we make use of results by T. Landes.
Landes [La86] introduced the weak sum property as follows.

Say a sequence (zy,) is Innit affine if 1(x) := lim,, ||& — 2, || exists and is affine on
5 {zn} (we can in fact drop the existence assumption and replace lim by limsup),
and nondecreasing if ¥(z, ) is nondecreasing. A space X' has the weak sum prop-
erty (WSP) if the only w-convergent nondecreasing limit affine sequences are the
constant sequences. The name derives from Landes’ result that the property is pre-
served under the taking of finite sums, and is the weakest Banach space property
so preserved which tmplies w-normal structure.

It is readily seen that (P) nuplies (WSP): If 2, 2.0 is a nonconstant nondecreas-
ing and limit affine sequence, then the function ¥ it defines is affine norm contin-
uous, and lience also w-continuous, on o {xy,}. Further ! := limy(x,) exists. It
follows, since ¥ is nondecreasing. that limy, ||z,|| = ¥(0) = 1 > limy, ||z, — z4]],

contradicting (WO) and hence (P).

Landes considers two renormings of cy.

Ny i= (e, [ -1I') and X = (co, || ")

where
j-1 9
l(a)]]" = sup Z ﬁ“ + (1 —1/3";
I gy
3
and
()l = 1)l V sup kalk 5
7ok
where
1/3%, for k < j,
fi=< (1-1/3) for k=7,
0 for k > j.

X| has (WSP), but not (P): en —0, |len]|’ = 1, and diam (e,) = 1, while, X4
s w-normal structure, but not (WSP).

Thus. in general, w-normal structure # (WSP) # (P).

Onir final result is the equivalence of (GGLD) and (ass-P).
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Proposition 3.3. A Banach space has (GGLD) if and only if 1t has (ass-P).

Proof. Tt is sufficient to prove the implication (ass-P) = liminf,, ||2,|| < sep (2,).
whenever (z,) is a w-null sequence which does not converge in norm. As then
(ass-P) = (GGLD) follows, and the reverse implication is clear.

Qur proof is based on a technique explored by T. Benavides. To obtain a contra-
diction suppose there exists a sequence x, — 0, with |Jan|| — 1, and sep (x,) < 1.
Given € > 0 define

A= {{xy, zm} t|lzm —za]| > 14+€}, and
B:={{xn, am} ||zm —an]l <1+ e€and 2y # 25}

Then AU B is the set of all two element subsets of {z,}52, and Ramsey’s theorem
ensures the existence of a subsequence (2, ) with { {zn,, @,;} 2n, # 2n,} cither
contained entirely in A, or entirely in B. Now sep{z,) < 1, so the above set lies
entirely in B. That is, ||z, = z,,]| < 1+¢, for all k and j, and so diam (2,,, ) < 1+e.

Repeated application of this, with € = 1/m, and a diagonalization argument,
vields a subsequence (z,,) with ass-diam{z,) < 1, but ||z,.|| — 1, so .\ fails to enjoy
(ass-P). O

Remark. w*-analogues for the above properties exist and similar results apply,
m particular they all yield w*-normal structure, at least in dual spaces where
w*-compactness is sequential. This last requirement can often he relaxed il the
properties are appropriately defined in terms of nets.

4. ULTRA-TECHNIQUES

In this section we develop the Banach space ultrapower and initiate its use as
a tool for studying the w-fpp . Throughout I will denote an index set, for our
purposes usually . For a more extensive and detailed developiment than is possible
here the reader is referred to [G-K], [A-K], or [S82a].

A filter on I is a nonempty family of subsets F C 27 satisfying

(i) F is closed under taking supersets. Thatis, A€ Fand ACBCI —
BeF.
(ii) F is closed under finite intersections. A, B€ F — ANB € F.

We say F is countably complete if it is closed under countable intersections.

Examples.
(1) 21
(2) The Fréchet filter {A C I: I\ A is finite }
(3) Forig eI, Fyy :={A CI:iy € A}. Filters of the form F;, for some ¢ € T
are termed trivial, or non-free filters.
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A filter F is proper if it does not equal the power set of I, 2/, Tquivalent
conditions are: § ¢ F, or F has the finite intersection property.

Henceforth by filter we will mean proper filter.
An ultrafilter I on I 1s a filter on I which is maximal with respect to ordering

of filters on I by inclusion: that is, if { C F and F is a filter on I, then F = I.
Zorn’s lemma ensures that every filter Lhas an extension to an ultrafilter.

Lemma 4.1. A [proper] filler U C 2! is an ultrafilter on [ if and only if for every
A C I precisely one of A or INA 1s in Y.

As a consequence of this lemma: For an ultrafilter i on 11{ 1 = AjUAU - UA,
then at least one of the sets Ay, Ag, - -+, Ap 1s 1 U, and an ultrafilter is nontrivial
{free) if and only if it contains no finite subsets.

It will henceforth be a standing assumption that all the filters and ultrafilters
with which we deal are nontrivial.

An ultrafilter I is countably incomplete if and only if there exist elements
Ay, Ay, -+, A, - In U with

I=A4D2A;1 24D DA, D - and NiLy A, = 0.
Countably incomplete ultrafilters are particularly convenient, as we shall see induc-
tive and diagonal type arguments are readily extended to then. Every ultrafilter ¢4
over N is necessarily countably incomplete (4, := {n, n+1,n+2,- -} €U).

For a Hausdorff topological space (2, T), ultrafilter I/ on I, and (x;);er we say
U—-lmz; =T -l —limz; = g

if for every neighbourhood N of zy we have {i € I : z; € N} € U{. Limits along &/

are unique and satisfy all the usual limit theorems when € is a linear topological

space. If Q 1s compact then & — lim ; exists for all (2;)ier. H I is on [{ and (a,,)

is a bounded sequence in R tlien

Iimmfz, <Y —limz, <limsupa,.
n n

For a Banach space X and ultrafilter & on I we can form tlhe substitution space

Lo (X) = {(wi)zzef:II(I::Nl:lel?(l-mll < ool
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Ny(X) = {(2i)ier - U — lim|fzq] = 0}

1s a closed linear subspace of £, (X ).

The Banach space ultrapower of X over i is defined to be the quotient space
(X)

NV

with elements denoted [z;];; and the quotient norm canonically given by

[[zile]] = U —lim||al].

(X )i

The mapping
T X — (X))o [2] = [wily, wherez; =2, foralliel

Is an isometric embedding of X" into (X'}

For a closed bounded convex subset €' C X and nonexpansive mapping 7" :

C'—— C we define in (X)u

e = {[eide: ci€C, foralliel}.
Ci is convex subset, with diam (C') = diam (), containing the isometric copy J(C')
of C, and on which o )

T:C — C ey — [Teilu,
where the repreqentati\es ¢; are chiosen from C, i1s a well defined nonexpansive
mapping which leaves J({’) invariant.

Let ¢ be an ultrafilter over M. Then for ¢’ and T constructed as above we have
the following results.

Proposition 4.2. [f(an) is an approzimale fized point sequence for T', then [an ]
is a fized point of T. So T always has fized poinis in C.

Conversely, from a fixed point (indeed an approximate fixed point sequence) for
T in C we can readily extract an approximate fixed point sequence for 7. Although
we will not make use of it, it is worth noting the following significant observation

of B. Maurey [M] (see [El], or [A-K], for more details).

Lemma 4.3. ‘Belween’ any two fized poinis @ and bof T in C there is a fized
point & with

la il = Il — Bl = 5Bl

That is, the fized point set of T is melrically convex.

The following generalization of the Goebel/Karlovitz lemma, due to P. K. Lin
[Lin] has proved basic for establishing the w—{pp in the presence of weak condi-
tions. The proof of this and the next result illustrate ‘diagonal’” arguments over an
incomplete ultrafilter.
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Lemma 4.4. Suppese C is ¢ w-compact minimal invariant set for T'. If (a,) is
an approrimate fived point sequence for T in C then

lim||a, — Jx|| = diam(C), forallz €.

Proof. Suppose this were not the case. Without loss of generality we may take

diam (C') = diam (C') = 1, and by passing to a subsequence if necessary assume
that ||a, — T'a,|| < 1/n.

Then there are ¢g > 0, g € C, and ng € I with

llan, — Jxo|| < 1 —¢g, forall = > ny.

Let @, = [a?, ], with a?, € C, and define

Ap = {m i jal, — o] < L —€o/2},

and
By = {m: ||ah, — Tal|| < 2/n}.

Then A,, and B,, are n .

Put mg = 0 and for n € M inductively choose m, € A,NB,N{my_1+1, m,_1+
2, ---} €U. Then the sequence (afy, ) is such that

lay,, — Tag || < 2/n.
That is, (a}, ) is an approximate fixed point sequence for 7" in C. But,
llam, — 2|l < 1-eo/2,
é
an observation which is difficult to reconcile with the fact that (aj, ) is, by the -

Goebel/Karlovitz lemma, diameterizing for C. O

Propo~sition 4.5. The set C in (X)u 1s closed. Hence when X 1s a superreflexive
space C' 1s w-compact,

“roof. While the proof is true for any ultrafilter /4, we will only prove it in the case
when U is countably incomplete with 7 = Ay D Ay D A3 D --- DA, D -, each
L €U, and N4, =0

Suppose 11, [ti]i, -~ is a sequence of points in C, with each ¢ € C', which
averges to (2] € (X)y. By passing to a subsequence if necessary we may
«liout loss of generality assume that

1
W] = [zl = U =l = 2] < —.
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I'or each m € I let

By = {iel " —uwijl<2/minAa, € U
and put By := [ and t{ := 0, then

I=ByD>B1 2By - 2By -, and Ny_g B =1,

From this it follows that for each i € I there is a unique m such that i €
B\ Bmsi. Define y; := ¢, for this m, in particular then y; € C.

Now, given any m € 11, for each i € B,, there is a unique p > m with ¢ €
B\ Bpy1. thus,

lye =l = W =)l < 2/p < 2/m,
and so .
{0 Iy —will < 2/m} 2 B 304

We therefore liave that ¢ — limfy; — 2;]] = 0, which yields the desired conclusion
that [z;, e C. O

Remark. For the above results, and in many applications, a Banach space ultra-
power (X )z over I can be replaced by the space

(o (X)

CU(,Y)

where the quotient norm is canonically given by [|[zx]|| = limsup, ||z.||. Disad-
vantages and advantages are largely cosmetic and it 1s up to individual readers to
choose which setting 1s most to their taste.

5. WEAK ENDS

The results developed in the last section have been used to establish the w—fpp
from a variety of conditions on the space .X'. For example, B. Maurey [M] established
the w—fpp for ¢o, and by deeper arguments for the reflexive subspaces of £,[0, 1]
and the Hardy space H; (see also, [E] and [A-K] for more details). J. Borwein and
Sinis [B-S] generalized Maurey’s ¢y result to obtain the w-fpp for Banach lattices
with a Riesz angle

a(X) = sup{llle| V [yl | -2,y € Bx} < 2

and for which

iminf iminf || [za] A f2m|]] = 0, whenever x, 20.
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Lattices with this last property were referred to as weak orthogonal Banach lattices.
A formally stronger version of weak orthogonality:

liminf || |z, | Alz||] = 0, whenever a, “0and x € X,
n

was shown to tmply the w—fpp by Sims [S88], [S92a]. This was obtained using
arguments similar to those developed by P. K. Lin [Lin] to prove the w-fpp for
Banach spaces with a l-unconditional basis.

Several more ‘geometric’ variants of these conditions have been introduced. For
mstance A. Jiménez-Melado and . Lloréns-Fuster [IM-LF] considered thie property
of orthogonal convexity, gave examples of orthogonally convex spaces, and showed
that it entails the w—fpp . A Banach space X is orthogonally convex if for every
w-null sequence (z,,) with

D(z,) := limsup limsup ||z, — za]| > 0

m 71

there exists 8 > 1/2 such that

)

limsup limsup sup{||z|| : ||z — 2
m n

r—z,|| < /3H$m - -LnH}< D(xn>

The significance of a Riesz angle was transported to general Banach spaces by
J. Garcia-Falset: For ¢4 an ultra filter over I define

RX) = supltd —limlfe 4 2], 20 € Bx and 2, 2 0).
For example, R{cg) = 1, while R(A\_) =9, in general 1 < R(X) < 2.
{
:\

. N . ) )
Garcia-Falset [GF94] showed that a Banach space X has the w-fpp if R(X) < 2
and it satisfies the nonstrict Opial condition:

U —tim|fza]| < U ~lim|lz, + 2], whenever z # 0 and z, 20,

[Recently he has proved tlie result without requiriug the nonstrict Opial condition
(GF95).

We illustrate how the machinery of section 4. may be used by proving the special
‘ase when R{(X) = 1.

Proposition 5.1. If X is ¢ Banach space with R(X) = 1 then X has the w—fpp .

~f We first observe that R(X) = 1 implies the nonstrict Opial condition. If
~ were not the case we could find a sequence z,, — 0, with &/ —lim||z,|| = 1 and
- am|le + 2, < 1 for some 2 # 0. Since z +x, — 2 we have ||z|| < U —lm||x +
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Ty|| < 1. From the definition of R(X) we therefore have I —lim ||z — z,|| < 1. But.
then U — lim ||, || < U = lim(||2 + za|| + ||& — 20]])/2, & contradiction.

Now, suppose X fails the w-fpp . Let € be a w-compact convex set with
diam (') = 1 which is a minimal invariant set for the nonexpansive mappie 1.
and let (a,) be a w-null approximate fixed point sequence for T For an ultrafilier
U over I let C and T be defined as in section 4. Define

W o= {wel:||w=[an)]] <1/2, and T 2 € C with ||J& - Tz| < 1/}

Then, W is a T-invariant, closed convex nonempty (as (1/2)[a,] € W) set. whi-h,
by the standard construction using Banach contraction mapping principle. contams
an approximate fixed point sequence for T'. So by the generalized Goebel/Rarloviiz
lemma (lemma 4.4) sup{||«@|| : v € W} = 1.

On the other hand, let @ = [w,] € W, where without loss of generality w. = ("
for all n € I, and let v =w—4 — limw,,. Then, since a, —0, the w-lower seni-
continuity of the norm gives

(1/2) 2 |l = ]| := U = tim Juss — an] 2 [fo],
and the nonstrict Opial condition established above gives
[~ Jv|| :=U = lim||w, —v|]| <U —lim||w, — zo|| =: || — Taol] <1 2.
for some zy € C', which exists by the definition of W. Thus
]l < 1o = T+ T ol] < RO — Toll v [lel] < 172

A contradiction establishing the result. O

The above proof is typical of those for many of the results mentioned abiowve. A
numeric contradiction is arrived at, here 1 # 1/2, and by carefully analyziny the
proof the gap, here between 1/2 and 1, can be exploited to establish the w-t)p for
spaces whose Banach-Mazur distance from a space satisfying the conditions i< not
too great. We will not pursue such stability issues. The interested reader s dirieted
to the papers cited above.

As mentioned aboveﬁp osition 5.1 has been generalized to only requiring
R(X) < 2. Sincein a anach”laf{ice’ R(X) < a(X), this substantially extends
the result, of Borwein and Sims, byshewmgﬂmt—m—thepresem of-a Riesz-angle

y. A generalization in

o Gie = 54 oo E =

another duectlon is encompassed by the follomng
For the rest of this section &/ will be an ultrafilter on 4.

A weakly null type on a Banach space X is a function of the form

Yz (@) =U = Nm |z — 2,]),
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where (&) s a w-null sequence. We say 4, is nontrivial if ¢, 1(0) # 0: that
.00 ||zn|| £ 0. If X is a separable space we may replace (x,) by a subsequence so
“hat v (@) = limy, ||z — 2], for all z € X

As we have seen, weakly null types play an important role in metric fixed point
theory. Note, for example, our proof of the Brodskii-Mil'man theorem and the
(Goebel/Karlovitz lemma in section 2, many of the conditions considered in section
3 (for instance, Opial’s condition is essentially a statement concerning the behaviour
~f weakly null types), the definition of R(.X), and the proof for proposition 5.1 given
1bove.

Recently N. Kalton [K] introduced propertv (M): Weakly null types are constant
i splieres about the origin. That is, for ,, =0 the weakly null type Ve (2) =
{ —lim, ||& — z,|| is a function of ||z|| only.

Examples of spaces with property (M) include ¢, €, for 1 < p < oo, indeed
1 the Orlicz sequence spaces with the As-condition. Subspaces of £;[0, 1] with
property (M) have the uniform Opial property of Prus [P], and so have w-normal
structure (see Kalton and Werner [K-W], for details).

Property (M) was one of the two essential ingredients in Kalton’s characterization
of those separable Banach spaces X for which the compact operators A(.\') form
an M-ideal in the algebra of all bounded linear operators, £(X). That is,

LX) = (IC(X)J‘ a3 V)l . for some closed subspace V.

Asvald Lima [Li] effectively proved that the dual of such a space is weak”-
amiformly Kadec-Klee (UKK*) and hence has weak* normal structure (see, [S82b],
v more details). This, combined with the réle of weakly null types noted above,
nakes it natural to inquire into connections between property (M), weak normal
~tructure, and the w—fpp .

Lemma 5.2. Fach of the following properties implies the one below 1.
(i) X has properiy (M).

(i) If 2, 20 and llz[] < [Jy]l then e,y (2) < YY)
(i) X satisfies the non-strict Opial condmon

Proof. Only (i) = (i) requires proof, and from the definition of property (M) it is
enough to show that 9, )(tx) is an increasing function of ¢ on [0, oc). To see this,
note that for 0 < ¢, < {5 there exists # € (0, 1) such that {2 = g(— 1‘2).L+(1 O)tax
nd so, since Y, ) is convex and by property (M) ¥, \(—laz) = ¥ y(tez), we
have d/(r,,)(tlz) < ﬁlﬁ(rn)(-‘iﬂ) + (1 - ﬁW(rn)(tzI) ¢(:r (t'7l O

Proposition 5.3. Let X be a Banach space with property (M). Then X has w-
rmal structure if and only if there is no nontrivial weakly null type which 1s
conlically equal to 1 on By
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1 . . w
Proof. (<=) Suppose X fails to have w-normal structure then By contains r,, — 0
with limy, ||z —x,|| = 1, for all z € {z,}52,. In particular, since 0 € ©o {24 }72,,
we have ||a,|| — 1.

Thus, ¥(;,)(0) = 1 and ¢, y(2;m) = 1, for all m. Further, since {[z,,,|| — 1. it
follows from lemma 5.2 that ¢, j equals 1 ou the open unit ball, and finee by
continuity on By .

(=) This follows immediately from lemma 2.3. O
As a cousequence of this lemma we have the following.

Theorem 5.4. A Banach space X with property (M) has weak normal structurc of
there exists a point xg € Sy al which the relative weak and norm lopoloye s agree.

Proof. Suppose X fails to have weak normal structure. Let ¥,y be the weakly null
type of proposition 5.3, and let 4y, := 2o — z,,. Thew, y, — xg and liminf, |[y,]] <
Yr)(®o) = 1, so there is a subsequence with ||y,, || — 1. But, then {y,,). and
hence (z,, ), is norm convergent, a difficult thing for a diametrizing sequence to
achieve. [

Corollary 5.5. X has property (M) and satisfies any of the following then X has
weak normal siructure.

(1) X has the Kadec-Klce property (the relative weak and norm topalogics agree
on Sx ).
(11) X is reflexive.
(i1) X has the Radon-Nikodym property.
(iv) X has the poini of continuily property: for every weakly closed bounded
subset A, the identily map (A, weak) to (A, norm) has al least onc pont of
continuity, see [E-W] for details.

A dual property to (M), property (M*), is defined in X* by reguiring that

Yyt X —BY f— U = lim||f = [l

be a fuuction of ||f|| only, whenever fnw—‘>0. Since (M*) iuiplies X~ has the
Radon-Nikodym we conclude that if X* has property (M*) then X~ has w*-normal
structure and hence the w*—fpp .

It follows from the work in Kalton [K] Lemma 3.6 and the discussion preceding
it that if X has property (M) and ¢y #+ X then X has w-normal structure. Thus,
for spaces with property (M) the presence of ¢y is the only impediment to weak
normal structure. It is not however an impediment for the w—fpp .
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Directly after these lectures were given in Seville, J. Garcia-Falset and myself
succeeded in proving the following, using an adaptation of the methods illustrated
1 proposition 5.1.

Theorem 5.6. Lel X be a Banach space with property (M) then X has thc w-[pp
(see, [GF-S], for details ).

[t can also be seen that if X is a separable, nonatomic o-order complete Banach
lattice which admits an equivalent norm with property (M), then X has the w—fpp .

We close this section with an observation by T. Dalby which justifies our earlier
claim that this work represents a generalization of proposition 5.1.

proposition 5.7. For a Banach space X, if R(X) =1 then X has property {M).

Proof. We have seen {proof of proposition 5.1) that R(X) = 1 umplies the nonstrict
Opial condition. Now, let z,, =0 and suppose z, y are such that ||z|| = ||y|| # 0,
then

lull = ll2]) < iminf [Jz + 2ol < Yoy (2).
Also, by the nonstrict Opial condition
U T | < U = L[+ ]| = o, (o)
et d = 3, y(2), then from the definition of R(X) we have
U - lignH(l/d)y + (I/d)z,|| < R(X) = 1.

Ihat is, ¥z, )(¥) < ¢(e,)(2), and the result follows from symmetry in 2 and y. O
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