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Characterisation of normed

linear spaces with Mazur’s

intersection property

J.R. Giles, D.A. Gregory, and Brailey Sims

Normed linear spaces possessing the euclidean space property that
every bounded closed convex set iIs an intersection of closed
balls, are characterised as those with dual ball having weak *
denting points norm dense in the unit sphere. A characterisation
of Banach spaces whose duals have a corresponding intersection
property is established. The question of the density of the
strongly exposed points of the ball is examined for spaces with

such properties.

It was Mazur [7] who drew attention to the euclidean space property
{I}:

every bourded closed convex set can be represented as an

intersection of clesed balls;

and he began the investigation to determine those normed linear spaces
which possess this property. Phelps [9] continued this investigation,
characterising finite dimensional spaces with property (I). Recently,
Sullivan [12] has given a characterisation of smooth spaces with property
(1).
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We develop Sullivan's key idea, and in Theorem 2.1 characterise normed
linear spaces with property (I) as those with dual ball naving weak *
denting points norm dense in the unit sphere. In this theorem we actually
give four equivalents for property (I), two of which had been given by
Phelps as necessary conditions, [9, p. 979], and two others related to

Sullivan's approach.

For a dual space the appropriate intersection property which

corresponds to property (I) is property (weak * 1I):

every bounded weak * closed convex set can be represented as
an intersection of closed balls. @»‘,

In Theorem 3.1 we characterise Banach spaces with property (weak * I)
on the dual as those with ball having denting points norm dense in the unit

sphere.

Phelps proved that a normed linear space has property (I) if the weak
* strongly exposed points of the dual ball are norm dense in the unit
sphere, [9, p. 977], and he raised the question of the necessity of this
condition for property (I). The corresponding question for property (weak
* T) concerns the norm density of the strongly exposed points of the ball
in the unit sphere. We show, in particular, that when a Banach space has
both property (I) and property (weak * I) on the dual, then both these
density properties hold.

1. Preliminaries

We consider real normed linear spaces. Given a normed linear space .
X,and y €X and »r >0 , we denote by Bly; r] the closed ball Q\v
{x € X : |lx-y| = »} . We denote by B(X) the closed unit ball
{z ¢ X : ||zl =1} and by S(X) the unit sphere {x € X : |z =1} . For
x € 5(X) , we denote by D(x) the set {f € 5(x*) : flz) =1} , and for

£ € S(X*) , we denote by D -(f) the set {z € S(X) : flz) =1} . (For

~1
(N
may be empty.] We say that X 1is smooth at =z € S(X) , if D(x) is a

every x € S(X) , D(z) is non-empty, but for some f € S(X*) , D

single point set. The set valued mapping « +— D(x) of S(X) into
subsets of S{X*) 1is called the duality mapping on X . The inmverse

duality mapping on X* is the set valued mapping f +— D_l(f) of D(5(X))



Normed linear spaces 107

into subsets of S(X) . A mapping x> f; of S(X) into S(X*) , where

i)

e € D(xz) , is called a support mapping on X .

A slice of the ball B(X) determined by f € S(X*) 1is a set of the
form S(B(X), f, 8) = {x € B(X) : flx) > 1-8} for some 0 <8 <1 . A
slice of the ball B(X*) determined by « € S(X) is sometimes called a
weak * slice of B(X*) . We say that x € 5(X) is a denting point of
3(X) if, for every € > 0 , x 1is contained in a slice of B(X) of
diameter less than € . We say that f € S(X*) is a weak * denting
point of B(X*) if, for every € > 0 , f is contained in a weak *
slice of B(X*) of diameter less than € . We say that x € S(X) is a
strongly exposed point of B(X) , if there exists an fF € S(X*) such that,
for every € > 0 , f determines a slice of B(X) containing =z and of
diameter less than € . We say that [ € S(X*) 1is a weak * strongly
exposed point of B(X*) , if there exists an z € S(X) such that, for
every € >0 , x determines a slice of B(X*) containing f and of
diameter less than € . A strongly exposed point is a denting point, but

the converse is not true even in finite dimensional spaces.
We have the following elementary but useful property for slices.

LEMMA 1.1. In a normed linear space X , consider x € S(X) . For
any slice determined by an § € S(X*) and containing « there exists an
€ >0 sueh that for all g € 5(X*) , where |f-gll < €, there exists a
slice determined by g which contains x and is contained in the slice

determined by f .

Proof. Suppose z € S{B(X), f, §) . Choose & < 5(f(x)-148) . Then
for |if-gll < € we have g(x) = flz) - ¢ > 1 - (6~€) ; so
x € 5(B(X), g, 6-) . Also for all y € S{B(X), g, 8-€) we have
fly) 2gly) —e>1-8; so y€sBX), f, ) .

From the Bishop-Phelps Theorem we make an immediate deduction.

COROLLARY 1.1. For a Banach space X , consider x € 5(X) . For any
slice determined by an f € S(X*) and containing x there exists a slice
Jetermined by a g € D(S(X)) which contains x and is contained in the

slice determined by f .

As we might guess, conditions for property (I) must involve some
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smoothness condition on the unit sphere, and the probler has been to find
the right condition for a characterisation. Both Mazir and Phelps
concentrated on conditions involving strong differentiabiii<y -f <he norm.
The norm of a normed space X is said to be strongly differeniizile

(Fréchet differentiable) at x € S(X) , if for all y € S(¥) sand real A ,

1im ﬂg:ﬁyﬂ:ﬂzﬂ
A=0 A

exists and is approached uniformly for all y € S(X) . If the norm is
strongly differentiable at x € S(X) , then X is smooth at x . The norm
of X is strongly differentiable at x € S(X) , if and only if fp € D(zx) N

is a weak * strongly exposed point of B(X*) by x . The norm of X*

is strongly differentiable at f € S{X*) , if and only if there exists an
z € S(X) such that f € D(z) and x 1is a strongly exposed point of B(X)
by f [10, Theorem 1].

Sullivan, instead of concentrating on the set of points of strong
differentiability of the norm in S{X) , considered more general sets. For

given € > 0 , consider the set ME(X) consisting of points x € S(X)
such that for some &(e, x) >0 ,

lethy +je=hyf=2 _

sup
0<A<S
y€S(X)

€

We note that the set of points of S{X) where the norm of X 1is strongly

differentiable is precisely the set n ME(X) . Sullivan also established
£>0

an important link with strong differentiability of the norm in the
followingresult[12, §3, Corocllary 6]. Another link is given in Corollary

2.2 below.
THEOREM 1.1. For a Banach space X , 1f ME(X) = 5(X) for some

0<e<1 then X <is an Asplund space (that is, every equivalent norm for
X 1is strongly differentiable on a norm dense subset of S(X) (8,
p. 7497).

However, the ME(X) sets in S(X) also relate to the weak *

denting points of B{(X*) and the ME(X*) sets in S(X*) relate to the
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ienting points of B(X)

LEMMA 1.2, (i) For a normed linear space X , consider A < S(X)
where D(A) is norm dense in S(X*) . Then 4 contains the denting
voints of B(X)

(i2) For a normed linear space X , consider A C 5(X*) where

D_l(A) is novm dense in S(X) . Then A contains the weak * denting
zotnts of B(X*) .

Proof. (Z) Consider &« € S(X) a denting point of B(X) . Since
2(4) 1is norm dense in S(X*) , we have by Lemma 1.1 that for each € > 0

tnere exists a y € S(X) n4 and fé € D(y) such that fé determines a

siice of B(X) which contains x and has diameter less than € . As

+ € A belongs to this slice, |lz-yll <€ , andso x €4 .
(12} This proof follows similarly, applying Lemma 1.1 to X* .
In particular, we can meke the following deduction.

COROLLARY 1.2. (7} For a normed linear space X , 1f for every
>0, D(ME(X)] is norm dense in S(X*) , then N ME(X) contains the
€>0

M

denting points of B(X)
(i1) For a normed linear space X , if for every € >0,

i-l(ME(X*)] is norm dense in S(X) , then N M_(X*) contains the weak
€>0

*  denting points of B(X*)

2. Characterisation of spaces with property (7I)
We approach our theorem by characterising points in M%(X) sets.

“emma 2.1 and the corresponding Lemma 3.1 generalise results given
Initially by §mu|ian, for points of strong differentiability of the norm
C11, p. 6h51.

LEMMA 2.1. PFor a normed linear space X , given € > 0 , the

Tollowing statements are equivalent:

(i) x € ME(X) H

(i1} x determines a slice of B(X*) of diameter less than ¢ ;



i10 J.R. Giles, D.A. Gregory, and Brailey Sims

(i11) for all sequences f, € S(X*) such that fn(x) > 1,
iim sup (If -f Il < € ;

(iv) for all sequences x € S(X) where x>z, and all

£, €z} ,

n

i sap If, -7, < -
n m

Proof. (i) = (4i). Suppose that diam S{B(X*), z, 8] 2 ¢ for all
0 <8 <1. Then there exist fn’ g, € B(X*) such that

fn(a:) >1 - l/n2 , gn(:c) > 1 - l/rz2 , and “fn—gnH >e - 1/n .

Choose y ¢ S(X) such that (f ~g ](yn] >e - 1/n .

n 9n
Then
1 1 1 1
lkl+zyn +‘x-—zle2fJx-F;yJ +gnF'_ZyJ
2 1
> 25y (#,-9,) (@)
3 €
>2-~—2-+;L-
n
Therefore,
lx+(1/m)y_(j+llx-(1/n)y_ |I~2
n 2 >e -2 forall m.
1/n n

(i1) = (241). 1If there exists a § > O such that

diam S{B(X*), z, 8) < £, then I, € S(B(X*), x, ) for m sufficiently
large.

(iid) = (iv). |f, (x)-1] = If; (m—mn)l < Hx-an , 50 that
n "

£y () » 1.

n

(iv) = (i). For any given y € S(X) and kn + 0+ , and for any



Normed l!inear spaces bl

T+ y ) x-)\ny

f €D and gn

n —
Te+h T P e LI

we have

lle+d yll+l=-A yl-2

A = fh(y) - gn(y)
n
= -
= 1f,-g,,l
°5, p: 108]. But
5o 2+) x+Any
e [E PP W - P
7] = e gl * e
= [lesh gl - J=hf + x| < 2] |
3: there exists a 0 < &(e, x) < 1, and, from (iv/},
lle+d yli+lle-2_yl-2
sup X <e.
0<A <8 n
n
y€S(X)

The following consequences are immediate from this lemma.

COROLLARY 2.1. For a normed linear space X , given € > 0 , the set
v ¥) s open in S(X)

Proof. Consider x € Me(X) . By Lemma 2.1 (77), &« determines a
:lire of B(X*) of diameter less than &£ . By Lemma 1.1 applied to X* ,
(7 y € 8(X) and |lz-yll is sufficiently small, y also determines a

E\-~-A,e of B(X*) of diameter less than € , so that by Lemma 2.1 (%),

€ ME(X)
Corollary 2.1 enables us to establish another link with strong
iiff=2rentiability of the norm.
COROLLARY 2.2. PFor a Banach space X , if Me(X) 18 norm dense in
T Y for every O < g < 1, then the norm of X <is strongly

[ zrentiable on a norm dense G(5 subset of S(X)

Proof. By the Baire Category Theorem, N ME(X) is norm dense in
€>0
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S(X) , put N M (X) is the subset of S(X) where the norm is strongly
€>0

differentiable.

The following reflexivity result is a special case of a lemma of

Sultivan [12, Lemma, §3.3], but the proof is somewhat simpler.

COROLLARY 2.3. If for a Banach space X there exists some
0 < e <1 such that D(ME(X*)) ig norm dense in S(X**) , then X <is

reflexive.

Proof. Since € < 1 , it is sufficient to show that each .E
F ¢ D(ME(X*)) is within ¢ distance of X . Since B(X) is weak #

dense in B(X**) each weak * slice of B(X**) containing F contains
some element of B(%) . But by Lemma 2.1 (Z%), F 1is in such a weak *#

slice of diameter less than ¢

In particular, using the Bishop~Phelps Theorem we can make the
following deduction from Corollary 2.3. This generalises the well known
result that a Banach space X is reflexive if the norm of X* is strongly

differentiable on S(X*)

COROLLARY 2.4. If for a Banach space X there exists some
0<e <1 such that ME(X*) = S(X*) , then X 4s reflexive.

We now give a characterisation of functionals which satisfy a certain
separation property. This is a local property which globally makes up
property (I).

LEMMA 2.2. For a normed linear space X , given f € S(X*) , the ‘
following statements are equivalent:

(i) f€0N D{ME(XH 3

€>0

(i1) for every bounded set C with inf f(C) > 0 there exists

a closed ball containing C which does not contain O ;

(i11) given O < g < 1 there exists an z € S(X) and a
8(e) < 0 such that D(y) < B(f; €) for all
y € 5(X) nBlx; ) .

Proof. (%) = (i1). Let C be a bounded set with inf f(C) > 0 .
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There exists a k > 0 such that € < B[0; k] . Choose ¢ = % inf £(C) .

Zince f €D Mé/k(X)‘ there exists an =z € Mé/k<X) and an f € D(x)

such that Hflf&H < e/k . Consider the sequence of closed balls

3 = Blnex; (n-1)el . We show that there exists an n, such that
- g_Bn . Suppose otherwise, that for every »n there exists an
0
*n
=, € C\Bn . Write Yy, = e 5 then since {xn} is bounded, ¥, 0.
But
+ +| 2~ -2 - - -
e e e N e
o] Ty, ]
y (
n n-1)e-ne
> f + [5, p. 1087,
o|To,T| * 7 Tzl
f[xn]—e
Z Tzl - [f=F I > e/,
n

:x2 this contradicts a« € Mé/k(X) .

(ii) = (iii). Consider D = B(X) n £2(0) , and let wu € S(X) be

2
~.on that flu) > € . Write u' = %-u . Then f(D+') = %; > 0 and

€ D+ u' . So there exists a closed ball containing D + u' and not
cwzaining O . Therefore there exists a closed ball containing D and
- -= containing %' . The proof now follows identically that of Lemma 4.1

T “helps [9, p. 9793,

(i21) = (Z). Given € >0 and 0 < n < e/2 , there exists an
- € 3(X) and a &8(n) > 0 such that D(y) < B(f; n) for all
£ 5(X) n Blxy §) . 1In particular D(z) < B(f; n) , and for all

- ¢ 5(X) where € + x we have that lim sup Hf; -f; | =2n < e for all
’ n m

€Dz ) . But by Lemma 2.1 (fv) this implies that z € M_(X) . So

Soo<m o, wnere £ € DM (X)) .

The localised form of one of Mazur's results [7, p. 128] follows
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directly from Lemma 2.2 (Z1).

COROLLARY 2.5. For a nommed linear space X , let f € S(X*) have
any of the properties of Lemma 2.2, Then, for any bounded sequence {xn}

such that every closed ball containing a subsequence also eontains x , we
have that f{z ) > flz)

We say that the duality mapping x+> D{xz) on X is quasi-continuous
if, given f € S(X*) and 0 <€ < 1, there exists an & € S(X) and a
§(e, f) >0 such that D(y) < B(f; €) for all y € S(X) n Blx; &)

THEOREM 2.1. For a normed linear space X , the following statements q

are equivalent:
(i) X has property (I);
(11) the duality mapping on X 18 quasi-continuous;

(ii1) every support mapping on X maps norm dense sets in S(X)

to norm dense sets in S(X*) ;

(iv) for every € >0 , D(ME(X)) s norm dense in S(X*) ;

(v) the weak * denting points of B(X*) are norm dense in
S(x*)

Proof. (7) = (41). If the duality mapping is not quasi-continuous,
there exists an f € S(X*) which does not obey the property given in
Lemma 2.2 (1i2). So by Lemma 2.2 (717) there exists a bounded closed convex
set € with inf f(C) > 0 and every closed ball containing ( also
contains 0 . So then ( cannot be represented as an intersection of '

closed balls. (This is Phelps' Lemma 4.1 [9, p. 979].)

(i1) = (ii1). It follows directly from the definition of quasi-
continuity that for any support mapping ¢ on X , if A 1is norm dense in
S(X) , then ¢(4) 4is norm dense in S(X*) . (This is Phelps' Corollary
4.2 [9, p. 980].)

(i121) = (11). Suppose that the duality mapping is not quasi~-
continuous. Then there exists an f € S(X*) and an » > 0 such that, for
every x € S(X) and € > 0 , there exists a y € B(x; €) , where
D(y) ¢ B(f; r) . So there exists a norm dense set A in S5(X) and a
support mapping ¢ , where ¢(4) nB(f; r) =0 .
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(i2) = (iv). If the duality mapping is quasi-continuous, it follows

“rom Lemma 2.2 (Z) that S(X*) = 0 D ME(X)J .

£>0

(iv) = (v). For given ¢ > 0 , we have by Lemma 2.1 (i7) that

LYE(X)] is contained in the set DE, the union of points in S{X*)

~<~lch are weak * interior to weak * slices of B{(X*) of diameter less

21 €& . So for each € > 0 , DE is norm open and norm dense in S{X*) .

* -he Baire Category Theorem N D_ is norm dense in S(X*)
€>0

5 but these

-2 rrecisely the weak * denting points of B(X*) .

fv) * (iv). Consider f € S(X*) , a weak * denting point of
> Given € >0 and 0 <n < g , there exists an x € S(X) such
== f Dbelongs to a slice determined by x of diameter less than n

v D{x) 1is contained in this slice. Therefore Hf&—fﬂ <n for any

. ¢ 2(x) , and by Lemma 2.1 (Z%), x € Mn(X) gMe(X) . So f¢€ D(ME(X)S .

‘Zv) = (Z). Consider a bounded closed convex set C and a point

- X\ . We may assume that y = 0 . By the Separation Theorem there

::=s a continuous linear functional f such that inf f(C) > 0 . Now

R DiME(X) , 50 by Lemma 2.2 (i) there exists a closed ball

=>»0
~-a2ining (€ which does not contain O
. weak * denting point is an extreme point. In a finite dimensional

.22 an extreme point is a weak * denting point, so Phelps' result [9,

2227 is immediate.

COROLLARY 2.6. A4 finite dimensional normed Llinear space X has

cozirts {I), if and only if the set of extreme points of B(X*) <s dense

T
“rom Corollary 2.3 the following result is immediate.

ZOROLLARY 2.7. 4 Banach space X whose dual X* has property (I)
-~ Tlexive.
‘zing the fact that N D ME(X) contains the weak * denting
€>0
-+ B(X*) and that for a reflexive space B{(X*) is the closed
<21 of its denting points [4, p. 25], we can deduce the following
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extension of Mazur's result given locally in Corollary 2.5.

COROLLARY 2.8. For a reflexive Banach space with property (I), a

bounded sequence {xn} converges weakly to x , 1f and only if every
closed ball containing a subsequence also contains x .

In his paper [9, p. 9827, Phelps asked whether X having property (I)
implies that the set of weak * strongly exposed points of B(X*) is norm
dense in S(X*) . In the light of Theorem 2.1 this question takes the

following form.

PROBLEM 2.1. If X has the set of weak * denting points of B(X¥p
norm dense in S(X*) , is the set of weak * strongly exposed points of

B(X*) norm dense in S{(X*) ?

If the norm of X 1is strongly differentiable on a norm dense set in
5(X) , then from Theorem 2.1 (4iZ) we have an affirmative answer to our
question. Asplund spaces satisfy this condition. So then all reflexive
Banach spaces and all separable Banach spaces with property (I) satisfy

this condition. This leads us to ask the further gquestion:

PROBLEM 2.2. Is every Banach space with property (I) an Asplund

space?

We point out that if X has the property that every point of D(S(X)]
is a weak * denting point of B(X*) , then the norm of X is strongly
differentiable on S{(X) . So from Theorem 2.1 (47%1) the set D[S(X)] of
weak * strongly exposed points of B(X*) 1is norm dense in S{(X*) , and
if X 1is a Banach space, then from Theorem 1.1, X is an Asplund space.

\

3. Characterisation of spaces with property (weak * 7I)

By developing Lemmas 3.1 and 3.2 for the dual space similar to Lemmas
2.1 and 2.2 we are able to establish a characterisation theorem for dual
spaces with property (weak #* I) similar to that given in Theorem 2.1 for

spaces with property (I).

LEMMA 3.1. For a Banach space X , given € > 0 , the following

statements are equivalent:

(i) f € ME(X*) H

(i2) f determines a slice of B(X) of diameter less than ¢ ;
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(iit) for all sequences z € S(X) such that f'(xn) > 1,

. _ < .
lim sup Hxn me [SH

(iv) for all sequences z, € S(X) and all f, ¢ D(.z:n] , where
n

. _ <e .
f'xn - f, 1lim sup ||xn me €

Proof. (Z) = (iZ) follows from (7) = (i4Z) in Lemma 2.1.
(11) = (i11) and (ii1) = (iv) follow as in Lemma 2.1.

‘tv) * ({11) . From the Bollobds estimates for the Bishop-Phelps
z-rem [1] we have that for every sequence z, € S(X) such that
"s.; > 1, there exists a sequence Y, ¢ S(X) and f‘y € D(yn) such that
n
s.%,n >0 and |[f-f | >0 .
Sy ¥,
‘441) = (). Suppose that f ¢ ME(X*) ; then from Lemma 2.1 (7<)
v2 exists a sequence F € S(X*#*) such that Fn(f) > 1, but
-7 =€ forall m,n . So for each n there exists f'n € S(x*)

. <hat I(Fn-Fn+l] [f'n)l > ¢ -1/n . Since B(X) 1is weak * dense in

, there exists a sequence xn € S(X) such that

|, (F )] <1m,
7 )£, )l <im,

z e oz (@ )]
| -r, JEJ - 1EE)E)] - 1, F,L) (7))

n
> e - 3/n

tv

- =y . > .
oswp el > e

~-= Lemmas 2.1 and 3.1 we make the following deduction.
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COROLLARY 3.1. For a normed linear space X , if =z € Mg(X) , then

z %%
x EME(X ).

LEMMA 3.2. For a Banach space X , given x € S(X) , the following
statements are equivalent:
. -1
(i) =z e n oM (x) ;
>0
(ii) for every bounded set C in X* with inf z(C) > 0 ,
there exists a closed dual ball containing C which does

not contain 0 ; .

.

(iii) given 0 < g <1 there exists an f € D(S(X)) and a

8(g) > 0 such that D_l(g) c B{x; €) for all
g € D(s(x)) n B(F; 6) .

Proof. (4) = (i1). Given € > 0 , D—l(ME(X*)] EDLME(X*)] ;  so

x € N DM (X*)] , and the result follows from Lemma 2.2 (71).

>0

(Z7) = (ii4). Given € > 0 , we have from Lemma 2.2 (£iZ), that there
exists an f' € $(X*) and a &8'(e) > 0 such that D(g) EB(&\:; €) for all
g € S(Xx*) nB(f's; §') . But by the Bishop-Phelps Theorem there exists an
fen(s(x)) anda 0<8<38' such that B(f; §) < B(f'; §") . So

0 Hg) < Blay €) for all g € D(S(X)) n B(f; &)
(i21) ® (). Given € > 0 and 0 < n < ¢/2 , there exists an

f €Dp(5(x)) and a 6&(n) >0 such that D—l(

_l(

f) € B(z; n) for all

g € D(5(x)) n B(f; 8) . In particular, D (f) € B(z; n) and for all v

> hY
z € S(X) and fxn € D(xn) , where fxn + f , we have that

lim sup Hxn-me < 2n < e . By Lemma 3.1 (Zv) this implies that
. -1
f * |, || < he *
Feu(xt) . so fawd <n where =z, €D (m_(x*))
The inverse duality mapping f+ D'l(f) on X* 1is quasi-continuous
if, given « € 8(X) and 0 < e < 1 , there exists an f € D(S(X)} and a
8(e, x) > 0 such that D-l(g) c B(x; €) for all g € p{s(x)) nB(f; §) .

THEOREM 3.1. For a Banach space X , the following statements are



sutvalent:
(i)
(i1)

(1i1)

(iv)

(v)

Proof.

crem 2.1, but using Lemmas 3.1 and 3.2.

Normed linear spaces

X* has property (weak * I) ;
the inverse duality mapping on X* <Zg quasi-continuous;

every support mapping om X* which maps D(S(X)) into
S(X) has the property that it maps norm dense sets in
D(5(X)) to morm dense sets in 5(X) ;

for every € >0, D_l[ME(X*)J i8 norm dense in S(X) ;

the denting points of B{(X) are norm dense in S(X) .

All the proofs follow a similar pattern to those given in

srllary 1.1,

“ur characterisation Theorem 3.1 raises the question dual to that

=2 by Theorem 2.1.

PROBLEM 3.1. If X has the set of denting pointe of B(X) norm

weo tn S(X) , 1is the set of strongly exposed points of B(X)

v
iy

The proof (v) = (iv) also uses

norm dense

- connection with the guestion dual to that raised in Problem 2.2 we

- -~ne following remark. A normed linear space X 1s locally wuniformly

- i, if for every x € S{X) and sequence x, € S(X) such that

o o=r > 2, we have xn +>x . It follows that in a locally uniformly

"

. and s

pac

e X , every point of S(X) is a strongly exposed point of

0, from Theorem 3.1 (v), X* has property (weak * I). Using

7227 we note that a Banach space X with property (weak * I) on

X*

- recessarily weak * Asplund, that is, not every equivalent dual

— Ti:r X* need be strongly differentiable on a norm dense subset of

72, p. 103]. The space ¢ can be equivalently renormed to be

0

.__» uniformly rotund, but Zl is not weak #* Asplund.

1. Spaces with property (I) and property (weak * TI) on the dual

~: ~=zve drawn attention to two significant questions in Problems 2.1

It is of interest to examine their solutions for spaces which
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combine all the special features associated with property (I) and property

(weak * I) on the dual.

THEGREM 4.1, A Banach space X has property (I) and X* has
property (weak * I), if and only if the set of strongly exposed points of
B(X) is norm dense in S(X) and the set of weak * strongly exposed
points of B{(X*) is norm dense in S(X*)

Proof. Suppose that X has property (I) and X* has property
(weak * I). From Theorem 2.1 (iv), for every € > 0 , D(ME(X)] is norm

dense in S(X*) and from Theorem 3.1 (v), the denting points of B(X) are \
norm dense in S(X) . From Corollary 1.2 (i) we deduce that, for every
€ >0, ME(X) is norm dense in S(X) . But from Corollary 2.2 the norm

is strongly differentiable on a norm dense subset of S(X) . Similarly,
using Theorems 3.1 (Zv/), 2.1 (v), and Corollary 1.2 (7Z), we have that the
set of points where the norm of X* 1s strongly differentiable is norm
dense in S(X*) . Applying Theorems 2.1 (Z7Z) and 3.1 (i71) we have our

result.

Conversely, the proof follows directly from Theorems 2.1 (v) and 3.1
(v).

There are many examples of the spaces of Theorem 4.1.

THEOREM 4.2, Any weakly compactly generated Banach space with weakly
compactly gemerated dual can be equivalently renormed to have property (I)
and property (weak * I) on the dual.

Proof. Such a space X can be equivalently renormed so that both X
and X* are locally uniformly rotund [6, p. 185]. It follows that every
point of S(X) is a strongly exposed point of B(X) and every point of
D[S(X)] is a weak * strongly exposed point of B(X*) . The result
follows from the Bishop-Phelps Theorem and Theorem 4.1.

5. Uniform conditions
It seems reasonable to enquire about the special features of a normed

linear space X when the M%(X) sets satisfy a uniform condition.

The norm of a normed linear space X 1is said to bve untformly strongly

differentiable (uniformly Fréchet differentiable) on a set 4 < S(X) if
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“rall x €A and y € S(X) ,

lx+Ayll-lz

1lim 3

A0

xists and is approached uniformly for all x € 4 and y € S{X) ; or

-iiivalently, for any given € > O , there exists a &(g) > 0 such that
rall x €4 ,

letyll + |lz-yll < 2 + €llyl] for all y € X , where |yl < &
" given €, § > 0 , we denote by MS,G(X) the set of points of S(X)
e o7 that
lz+yll + llz-yll < 2 + €llyll for 11 y € X , where |yl < §

The following lemma provides the mechanism for determining those

- z22s which satisfy conditions analogous to those studied for property

LEMMA 5.1. For a normed linear space X , suppose that for some
>0, D[ME 6<X)) ig norm dense in S(X*) . Then for any

2. >e>0 and f, g € S(X*) , vhere |f-g| > € » we have

e <2 - [el-e)é .

Proof. Since D(ME S(X)) is norm dense in S(X*) , we have for every
b

>

7l = sup{|flx)]| : = € A%’s(X)}

“w - O, g €8(x*),

S+al o= sup{(fHg)(x) :x € M 6(X)}

sup{ fla+y ) +glx-y)-(Ff-g)(y) : = € M G(X)} for all y € X

A

2+ &8 - (f~g)(y) for all y € X such that |ly|) <8
S-; >e€ , we can choose y such that |yl <& and (f-g)(y) > eé ,

an LfHgll <2 - (El—EJG .

".r theorem shows the power of the assumption of our uniform

TSZOREM 5.1. (%) For a normed linear space X , suppose that for
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some Q<g<2 aud § >0, D(Mg 6(X)] 18 norm dense in S(X*) . Then

X has an equivalent norm which is uniformly strongly differentiable on
s(x) .

(i1) For a normed linear space X , suppose that for any given
0 < €< 2 there exists a 8(g) >0 such that D(Mg 6(X)] is norm dense
b

in S(X*) . Then the norm of X is uniformly strongly differentiable on
S(x) .

Proof. (i) From Lemma 5.1, X is "inguadrate" which implies that
there exists an equivalent norm on X which is uniformly strongly

differentiable on S{X}) [3, p. 169].

(i7) From Lemma 5.1, X* is uniformly rotund and so the norm of X

is uniformly strongly differentiable on S(X)
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