
SURVEY: SIXTY YEARS OF DOUGLAS–RACHFORD

SCOTT B. LINDSTROM and BRAILEY SIMS

(September 19, 2018)

Dedication This work is dedicated to the memory of Jonathan M. Borwein our
greatly missed friend, mentor, and colleague. His influence on both the topic at
hand, as well as his impact on the present authors personally, cannot be overstated.

Abstract

The Douglas–Rachford method is a splitting method frequently employed for finding zeroes of sums
of maximally monotone operators. When the operators in question are normal cones operators, the
iterated process may be used to solve feasibility problems of the form: Find x ∈

⋂N
k=1 Sk. The

success of the method in the context of closed, convex, nonempty sets S1, . . . ,SN is well-known and
understood from a theoretical standpoint. However, its performance in the nonconvex context is less
understood yet surprisingly impressive. This was particularly compelling to Jonathan M. Borwein
who, intrigued by Elser, Rankenburg, and Thibault’s success in applying the method for solving
Sudoku Puzzles began an investigation of his own. We survey the current body of literature on the
subject, and we summarize its history. We especially commemorate Professor Borwein’s celebrated
contributions to the area.

1. Introduction

In 1996 Heinz Bauschke and Jonathan Borwein broadly classified the com-
monly applied projection algorithms for solving convex feasibility problems as
falling into four categories. These were: best approximation theory, discrete mod-
els for image reconstruction, continuous models for image reconstruction, and sub-
gradient algorithms [19]. One such celebrated iterative process has been known by
many names in many contexts and is possibly best known as the Douglas–Rachford
method (DR).

DR was originally introduced for the more general problem of finding a zero
of the sum of maximally monotone operators, which itself is a generalization of
the problem of minimizing a sum of convex functions. Many volumes could be
written on monotone operator theory, convex optimization, and splitting algorithms

c© XXXX Australian Mathematical Society 0263-6115/XX $A2.00+0.00

1



specifically, the definitive work being that of Bauschke and Combettes [21]; the
story of DR is inextricably entwined with each of these.

More recently, the method has become famous for its surprising success in
solving nonconvex feasibility problems, notwithstanding the lack of theoretical
justification. The recent investigation of these methods in the nonconvex setting
has been both motivated by and advanced through experimental application of the
algorithms to nonconvex problems in a variety of different settings. In many cases
impressive performance has been observed despite having previously been thought
of as ill-adapted to projection algorithms.

The task of choosing what to include in a condensed survey of DR is thus
necessarily difficult. We therefore choose to adopt an approach which balances
reasonable brevity with the goal that a reader unfamiliar with DR should be able to
at least glean the following: the basic history of the method, an understanding of
the various motivating contexts in which it has been “discovered,” an appreciation
for the diversity of problems to which it is applied, and a sense of which research
topics are currently being explored.

1.1. Outline This paper is divided into four sections:

Section 1 In 1.2, we provide preliminaries on Douglas–Rachford and
feasibility. In 1.3, we briefly motivate its history and explain
how feasibility problems are a special case of finding a zero
for a sum of maximal monotone operators, and in 1.4 we ex-
plore its use for finding zeros of maximal monotone operator
sums, including its connection with ADMM in 1.4.1. In 1.5,
we analyse the ways in which it has been extended from 2 set
feasibility problems to N set feasibility problems.

Section 2 We consider the role of DR in solving convex feasibility prob-
lems. In 2.1 we catalogue some of the convergence results,
and in 2.2 we mention some of its better known applications.

Section 3 We consider the context of nonconvex feasibility. We first con-
sider discrete problems in 3.1 and go on to discuss hypersur-
face problems in 3.2. In 3.3, we explore some of the possibly
nonconvex convergence results which employ notions of reg-
ularity and transversality. In 3.3.3 we describe some of the
recent work applying DR for nonconvex minimization prob-
lems.

Section 4 Finally we mention two open problems and summarize the
current state of research in the field.

Appendix 5 This appendix provides a more detailed summary of Gabay’s
exposition on the connection between DR and ADMM.
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1.2. Preliminaries The method of alternating projections (AP) and the Douglas–
Rachford method (DR) are frequently used to find a feasible point (point in the
intersection) of two closed constraint sets A and B in a Hilbert space H. The feasi-
bility problem is

Find x ∈ A∩B. (1)

The projection onto a subset C of H is defined for all x ∈ H by

PC(x) :=
{

z ∈C : ‖x− z‖= inf
z′∈C
‖x− z′‖

}
.

Note that PC is, generically, a set-valued map where values may be empty or
contain more than one point. In the cases of interest to us PC has nonempty values
(indeed throughout PC is nonempty and so C is said to be proximal), and in order
to simplify both notation and implementation, we will work with a selector for PC,
that is a map PC : H→C : x 7→ PC(x) ∈ PC(x), so P2

C = PC.
When C is nonempty, closed, and convex the projection operator PC is uniquely

determined by the variational inequality

(x−PC(x),c−PC(x))≤ 0, for all c ∈C,

and is a firmly nonexpansivemapping; that is for all x,y ∈ H

‖PCx−PCy‖2 +‖(I−PC)x− (I−PC)y‖ ≤ ‖x− y‖2.

See, for example, [21, Chapter 4]. When C is a closed subspace it is also a self-
adjoint linear operator [21, Corollary 3.22].

The reflection mapping through the set C is defined by

RC := 2PC− I,

where I is the identity map.

Definition 1.1 (Method of Alternating Projections). For two closed sets A and B
and an initial point x0 ∈ H, the method of alternating projections (AP) generates a
sequence (xn)

∞
n=1 as follows:

xn+1 := PBPAxn. (2)

Definition 1.2 (Douglas–Rachford Method). For two closed sets A and B and an
initial point x0 ∈ H, the Douglas–Rachford method (DR) generates a sequence
(xn)

∞
n=1 as follows:

xn+1 ∈ TA,B(xn) where TA,B :=
1
2
(I +RBRA) . (3)
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DR is often referred to as reflect-reflect-average. Both DR and AP are special
cases of averaged relaxed projection methods. We denote a relaxed projection by

Rγ

C(x) := (2− γ)(PC− Id)+ Id, (4)

for a fixed reflection parameter γ ∈ [0,2). Observe that when γ = 0, the operator
Rγ=0

C = 2PC − Id is the standard reflection employed by DR, and for γ = 1 we
obtain the projection, Rγ

C = R1
C = PC. For γ ∈ (1,2) the operator Rγ

C can be called
an under-relaxed projection following [67]. Here we are using the terminology in
(4). However, the reader is cautioned that in some articles, Rγ

C is written as Pγ

C ,
while in others the role of γ is reversed so that γ = 2 corresponds to a reflection
and γ = 0 is the identity: γ(PC− Id)+ Id.

In addition to using relaxed projections as in (4), the averaging step of the
Douglas–Rachford iteration can also be relaxed by choosing an arbitrary point
on the interval between the second reflection and the initial iterate. This can be
parametrised by some λ ∈ (0,1]. Accordingly we define a λ -averaged relaxed
sequence {xn} by,

xn :=
(

T λ
Aγ ,Bµ

)n
x0 :=

(
λ (Rµ

B ◦Rγ

A)+(1−λ )Id
)n x0. (5)

When λ = γ = µ = 1, this is the sequence generated by alternating projections (2),
and for λ = 1/2 and γ = µ = 0, this is the standard Douglas–Rachford sequence
(3). For γ = µ = 0 and λ = 1, this is the Peaceman-Rachford sequence [116] (see
also Lions & Mercier [109, Algorithm 1]).

We note that the framework introduced here does not cover all possible projec-
tion methods. For example, one may want to vary the parameters γ , µ and λ on
every step, or consider other variations of Douglas–Rachford operators (see [10]
for example). Single steps of the AP and DR methods are illustrated in Figure 1,
which originally appeared in [69].
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(a) One step of alternating projections

A

B

HA

x

PAx

RAx

RBRAx

PBRAx

HB

TA,Bx

(b) One step of Douglas–Rachford method

Figure 1: The operator TA,B.

Definition 1.3. The fixed point set for a mapping T : H → H is FixT = {x ∈
H | T x = x} (in the case when T is set-valued FixT = {x ∈ H | x ∈ T x}.
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1.3. History Projection methods date at least as far back as 1933 when J. von
Neumann considered the method of alternating projections when A and B are affine
subsets of H establishing its norm convergence to PA∩B(x0) [129]. In 1965 Breg-
man showed that in the more general setting where A and B are closed convex sets
AP converges weakly to a point in A∩B [54](see also [19]). In 2002 Hundal [102]
provided an example in infinite dimensions of a hyperplane and closed cone for
which AP fails to converge in norm. However the cone constructed by Hundal is
somewhat unnatural. In [49] Borwein, Sims, and Tam explored the possibility of
norm convergence for sets occurring more naturally in applications.

The Douglas–Rachford method was introduced half a century ago in connec-
tion with nonlinear heat flow problems [70]. The definitive statement of the weak
convergence result was given by Lions and Mercier in the more general setting of
maximal monotone operators [109]. We will first state the problem and result, and
then explain the connection. The problem is

Find x such that 0 ∈ (A+B)x. (6)

Let the resolvent for a set-valued mapping F be defined by Jλ
F := (Id+λF)−1 with

λ > 0. The classical result is as follows.

THEOREM 1.4 (Lions & Mercier [109]). Assume that A,B are maximal mono-
tone operators with A+B also maximal monotone, then for

TA,B : X → X : x 7→ Jλ
B (2Jλ

A− I)x+(I− Jλ
A)x (7)

the sequence given by xn+1 = TA,Bxn converges weakly to some v ∈ H as n→ ∞

such that Jλ
Av is a zero of A+B.

The normal cone to a set C at x∈C is NC(x) = {y∈H : (y,c−x)≤ 0 for all c∈
C}. The normal cone operator associated to C is

NC : H→ H : x 7→
{

NC(x), when x ∈C
/0, when x /∈C.

(8)

See, for example, [21, Definition 6.37]. One may think of the feasibility problem
(1) as a special case of the optimization problem

Find x ∈ argmin{ιA + ιB} (9)

where the indicator function ιC for a set C is defined by

ιC : H→ R∞ by ιC : x 7→

{
0 if x ∈C
∞ otherwise

. (10)

Whenever A and B are closed and convex, ιA and ιB are closed and convex, and
their subdifferential operators ∂ ιA = NA and ∂ ιB = NB are maximal monotone. In
this case, under satisfactory constraint qualifications on A,B to guarantee the sum
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rule for subdifferentials ∂ (ιA + ιB) = ∂ ιA + ∂ ιB (see [21, Corollary 16.38]), the
problem (9) reduces to

Find x such that 0 ∈ (∂ ιA +∂ ιB)(x) = (NA +NB)(x) (11)

which we recognize as (6). Seen through this lens, two set convex feasibility is
a special case of an extremely common problem in convex optimization: that of
minimizing a sum of two convex functions f +g where A= ∂ f and B= ∂g. This
illuminates its close relationship to many other proximal iteration methods, includ-
ing the various augmented Lagrangian techniques with which it is often studied in
tandem (see subsection 1.4.1).

Where A=NA and B=NB are the normal cone operators for closed convex sets
A and B, then the resolvents Jλ

A,J
λ
B are the projection operators PA,PB respectively,

TA,B = 1
2 RBRA +

1
2 Id is what we recognize as the operator of the usual Douglas–

Rachford method1 , and Jλ
Av = PAv ∈ A∩B is a solution for the feasibility problem

(1). For details, see, for example, [21, Example 23.4].
Rockafellar [119] and Brezis [55] (as cited in [15]) showed that the condition

domA∩ intdomB 6= /0 is sufficient to ensure that A and B maximal monotone im-
plies that A+B is also maximal monotone. In 1979, Hedy Attouch showed that
the weaker condition 0 ∈ int(domA−domB) is sufficient [15].

However, Attouch’s condition may not be satisfied if A=NA and B=NB where
A and B meet at a single point, since domNA = A and domNB = B. In the following
theorem, Bauschke, Combettes, and Luke [22] showed that in the case of the fea-
sibility problem (1) the requirement A+B be maximal monotone may be relaxed.

THEOREM 1.5 ([22, Fact 5.9]). Suppose A,B⊆ H are closed and convex with
non-empty intersection. Given x0 ∈ H the sequence of iterates defined by xn+1 :=
TA,Bxn converges weakly to an x ∈ FixTA,B with PAx ∈ A∩B.

It should be noted that Zarantonello gave an example showing that when C
is not closed and affine PC need not be weakly continuous [131] (see also [21,
ex. 4.12]). Despite the potential discontinuity of the resolvent Jλ

A , Svaiter later
demonstrated that Jλ

A xn converges weakly to some v ∈ zer(A+B) [125].
Theorem 1.5 relies on the firm nonexpansivity of TA,B. This is an immediate

consequence of the fact that it is a 1/2-average of RBRA with the identity and that
PA, PB are themselves firmly nonexpansive so that RA, RB and hence RBRA are
nonexpansive. The proof of theorem 1.4 similarly relies on the firm nonexpansivity
of Jλ

A and Jλ
B ; its requirement that A+B be maximal monotone was later relaxed

by Svaiter [125].

1An operator T : D→ H with D 6= /0 satisfies T = JA where A := T−1− Id. Moreover, T is firmly
nonexpansive if and only if A is monotone, and T is firmly nonexpansive with full domain if and
only if A is maximally monotone. See [21, Proposition 23.7] for details.
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1.4. Through the Lens of Monotone Operator Sums While our principle inter-
est lies in the less general setting of projection operators, much of the investigation
of the Douglas–Rachford algorithm has centered on analysis of the problem (6).
We provide a brief summary.

In 1989 ([73]), Jonathan Eckstein and Dimitri Bertsekas motivated the advan-
tage of TB,A among resolvent methods as a splitting method: a method which em-
ploys separate computation of resolvents for A and B in lieu of attempting to com-
pute the resolvent of A+B directly. They showed that, in the case where zer(A+
B) = /0, the sequence (3) is unbounded, a useful diagnostic observation. They
also demonstrated that with exact evaluation of resolvents the Douglas–Rachford
method is a special case of the proximal point algorithm [73, Theorem 6] in the
sense of iterating a resolvent operator [120]:

xn+1 := JδnA where δn > 0, ∑
n∈N

δn =+∞, (12)

and A : H→ 2H is maximally monotone with zerA 6= /0. (13)

For more information on this characterization, see [21, Theorem 23.41]. In his PhD
dissertation [72], Eckstein went on to show that the Douglas–Rachford operator
may, however, fail to be a proximal mapping [21, Theorem 27.1] in the sense of
satisfying

xn+1 := proxδn f xn where δn > 0, ∑
n∈N

δn =+∞, and f ∈ Γ0(H) (14)

and proxδn f x := argmin
y∈X

(
δn f (y)+

1
2
‖x− y‖2

)
.

Since proxδn f = J∂ (δn f ) (see, for example, [21]), clearly (14) implies (12). This is
also why, in the literature, Douglas–Rachford splitting is frequently described in
terms of prox operators as

Step 0. Set initial point x0 and parameter η > 0 (15)

Step 1. Set


yn+1 ∈ argmin

y

{
f (y)+ 1

2η
‖y− xn‖2

}
= proxη f (xn)

zn+1 ∈ argmin
z

{
g(z)+ 1

2η
‖2yn+1− xn− z‖2

}
= proxηg(2yn+1− xn)

xn+1 = xn +(zn+1− yn+1)

,

which simplifies to (3) when f := ιA and g := ιB are indicator functions for convex
sets. See, for example, [107, 115].

In 2018, Heinz Bauschke, Jason Schaad, and Xianfu Wang [40] investigated
Douglas–Rachford operators which fail to satisfy (14), demonstrating that for lin-
ear relations which are maximally monotone TA,B generically does not satisfy (14).

In 2004, Combettes provided an excellent illumination of the connections be-
tween the Douglas–Rachford method, the Peaceman-Rachford method, the backward-
backward method, and the forward-backward method [60]. He also established the

7



following result on a perturbed, relaxed extension of DR, which we quote with
minor notation changes.

THEOREM 1.6 (Combettes, 2004). Let γ ∈]0,+∞[, let (νn)n∈N be a sequence
in ]0,2[, and let (an)n∈N and (bn)n∈N be sequences in H. Suppose that 0 ∈ ran(A+
B), ∑n∈N νn(2−νn) = +∞, and ∑n∈N(‖an‖+‖bn‖)<+∞. Take x0 ∈H and set

(∀n ∈ N) xn+1 = xn +νn
(
JγA
(
2(JγBxn +bn)− xn

)
+an−

(
JγBxn +bn

))
.

Then (xn)n ∈ N converges weakly to some point x ∈ H and JγBx ∈ (A+B)−1(0).

At the same time Eckstein and Svaiter conducted a similar investigation through
the lens of Fejér monotonicity, allowing the proximal parameter to vary from op-
erator to operator and iteration to iteration [74].

In 2011, Bingsheng He and Xiaoming Yuan provided a simple proof of the
worst case O(1/k) convergence rate in the case where the maximally monotone
operators A and B are continuous on Rn [99].

In 2011 [20], Bauschke, Radu Boţ, Warren Hare, and Walaa Moursi analyzed
the Attouch-Théra duality of the problem (6), providing a new characterization
of FixTB,A. In their 2013 article [31] Bauschke, Hare, and Moursi introduced a
“normal problem” associated with (6) which introduces a perturbation based on an
infimal displacement vector (see equation (24)). In 2014, they went on to rigor-
ously investigate the range of TA,B [32].

In 2017 Bauschke, Moursi, and Lukens [34] provided a detailed unpacking of
the connections between the original context of Douglas and Rachford [70] and the
classical statement of the weak convergence provided by Lions and Mercier [109].
In addition, they provided numerous extensions of the original theory in the case
where A and B are maximally monotone and affine, including results in the infinite
dimensional setting.

In the same year, Pontus Giselsson and Stephen Boyd established bounds for
the rates of global linear convergence under assumptions of strong convexity of g
(where B= ∂g) and smoothness, with a relaxed averaging parameter [92].

The DR operator has also been employed as a step in the construction of a more
complicated iterated method. For example, in 2015, Luis Briceño-Arias considered
the problem of finding a zero for a sum of a normal cone to a closed vector subspace
of H, a maximally monotone operator, and a cocoercive operator. They provided
weak convergence results for a method which employs a DR step applied to the
normal cone operator and the maximal monotone operator [57].

Recently, Minh Dao and Hung Phan [64] have introduced what they call an
adaptive Douglas–Rachford splitting algorithm in the context where one operator
is strongly monotone and the other weakly monotone.

Svaiter has also analysed the semi-inexact and fully inexact cases where, re-
spectively, one or both proximal subproblems are solved only approximately, within
a relative error tolerance [126].
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The definitive modern treatment of the above history—including the most de-
tailed version of the exposition from [34] on the connections between the contexts
of Douglas and Rachford [70] and Lions and Mercier [109]—was given by Walaa
Moursi in her PhD dissertation [112].

1.4.1. Connection with method of multipliers (ADMM) We provide here an ab-
breviated discussion of the connection between Douglas–Rachford method and the
so-called method of multipliers or ADMM (alternating direction method of multi-
pliers). For a more detailed exposition, see Appendix 5.

In 1983 [89], Daniel Gabay showed that, under appropriate constraint qualifi-
cations, the Lagrangian method of Uzawa applied to finding

p := inf
v∈V
{F(Bv)+G(v)}, (16)

where B is a linear operator with adjoint B∗ and F,G are convex, is equivalent to
DR in the Lions and Mercier sense of iterating resolvents (7) applied to the problem
of finding

d := inf
µ∈H
{G∗(−B∗µ)+F∗(µ)} (17)

where the former is the primal value and the latter is the dual value associated
through Fenchel Duality. See, for example, [45, Theorem 3.3.5]. We have pre-
sented here a more specific case of his result, namely where Bt = B∗; the more
general version is in Appendix 5.

Gabay gave to this method what is now the commonly accepted name method
of multipliers. It is also frequently referred to as alternating direction method of
multipliers (ADMM). Gabay went on to also consider an analysis of the Peaceman-
Rachford algorithm [116] (see also Lions & Mercier [109, Algorithm 1]). Because
of this connection, DR, PR and ADMM are frequently studied together. Indeed,
another name by which ADMM is known is the Douglas–Rachford ADM.

REMARK (On a point of apparently common confusion). In the literature, we
have found it indicated that the close relationship between the ADMM and the
iterative schemes in Douglas and Rachford’s article [70] and in Lions and Mercier’s
article [109] was explained by Chan and Glowinski in 1978 [59]. However, both
Glowinski and Marroco’s 1975 paper [94] and Glowinski and Chan’s 1978 paper
[59] predate Lions and Mercier’s 1979 paper [109], and neither of them contains
any reference to Douglas’ and Rachford’s article [70].

Lions and Mercier made a note that DR (which they called simply Algorithm
II) is equivalent to one of the penalty-duality methods studied in 1975 by Gabay
and Mercier [90] and by Glowinski and Marocco [94]. However, in both of these
articles, the method under consideration is simply identified as Uzawa’s algorithm.
The source of the confusion remains unclear, but it appears that the first person to
explicitly explain the connection was Daniel Gabay in 1983 [89]. In fact, clearly
explaining the connection appears to have been one of his main intentions in writ-
ing his 1983 book chapter.
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S3 S2

x = RS3RS2RS1x RS1x

RS2RS1x

Figure 2: The algorithm xn := (1
2 RCRBRA +

1
2 Id)nx0 may cycle.

Reasonable brevity precludes an in-depth discussion of Lagrangian duality be-
yond establishing the connection of ADMM with Douglas–Rachford. Instead, we
refer the interested reader to a recent survey of Moursi and Yuriy Zinchenko [113],
who drew Gabay’s work to the attention of the present authors. We refer the reader
also to the sources mentioned in Remark 1.4.1 and to the following selected re-
sources, which are by no means comprehensive: [43, 97, 76, 98, 93, 84, 79].

1.5. Extensions to N sets The method of alternating projections, and the asso-
ciated convergence results, readily extend to the feasibility problem for N sets

Find x ∈ ∩N
k=1Sk,

to yield the method of cyclic projections that involves iterating TS1S2···SN =PSN PSN−1 · · ·PS1 .
However, even for three sets the matching extension of DR,

xn+1 =
1
2
(I + RS3RS2RS1)(xn)

may cycle and so fail to solve the feasibility problem. See Figure 2, taken from
[127].

The most commonly used extension of DR from 2 sets to N sets is Pierra’s
product space method [118]. More recently Borwein and Tam have introduced a
cyclic variant [51].

1.5.1. Pierra’s Product Space Reformulation: “Divide and Concur” Method
To apply DR for finding x ∈∩N

k=1Sk 6= /0, we may work in the Hilbert product space
H = HN as follows.

Let S := S1×·· ·×SN

and D := {(x1, . . . ,xN) ∈H : x1 = x2 = · · ·= xN} (18)
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and apply the DR method to the two sets S and D. The product space projections
for x = (x1, . . . ,xN) ∈H are

PS(x1, . . . ,xN) = (PS1(x1), . . . ,PSN (xN)),

and PD(x1, . . . ,xN) =

(
1
N

N

∑
k=1

xk, . . . ,
1
N

N

∑
k=1

xk

)
.

The method was first nicknamed divide and concur by Simon Gravel and Veit Elser
[96]—the latter of whom credits the former for the name [77]—and the diagonal
set D in this context is referred to as the agreement set. It is clear that any point
x ∈ S∩D has the property that x1 = x2 = · · ·= xN ∈ ∩N

k=1Sk. It is also clear that D
is a closed subspace of H (so, PD is weakly continuous) and that, when S1, . . . ,SN

are convex, so too is S.
The form of PD and its consequent linearity allows us to readily unpack the

product space formulation to yield the iteration,

(xk(n+1))N
k=1 = (xk(n)−a(n) + 2A(n)−PSk (xk(n)))

N
k=1 ,

where a(n) = 1
N ∑

N
k=1 xk(n) and A(n) = 1

N ∑
N
k=1 PSk (xk(n)), under which in the con-

vex case the sequence of successive iterates weakly converges (by theorem 1.5) to
a limit (x1(∞),x2(∞), · · · ,xN(∞)) for which PSk (xk(∞)) is, for any k = 1,2, · · · ,N,
a solution to the N-set feasibility problem.

A product space schema can also be applied with AP instead of DR, to yield
the method of averaged projections,

xn+1 =
1
N

N

∑
i=1

Pi(xi).

1.5.2. Cyclic Variant: Borwein-Tam Method The cyclic version of DR, also
called the Borwein-Tam method, is defined by

T[S1S2...SN ] := TSN ,S1TSN−1SN . . .TS2,S3TS1,S2 , (19)

where each TSi,S j is as defined in (3). The key convergence result is as follows.

THEOREM 1.7 (Borwein & Tam, 2014). Let S1, . . . ,SN ⊂ H be closed and
convex with nonempty intersection. Let x0 ∈ H and set

xn+1 := T[S1S2...SN ]xn. (20)

Then xn converges weakly to x which satisfies PS1x = PS2x = · · ·= PSN x ∈ ∩N
k=1Sk.

For a proof, see [51, Theorem 3.1] or [127, Theorem 2.4.5], the latter of
which—Matthew Tam’s dissertation—is the definitive treatise on the cyclic variant.
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1.5.3. Cyclically Anchored Variant (CADRA) Bauschke, Noll, and Phan pro-
vided linear convergence results for the Borwein-Tam method in the finite dimen-
sional case in the presence of transversality [39]. At the same time, they introduced
the Cyclically Anchored Douglas–Rachford Algorithm (CADRA) defined closed,
convex sets A (the anchor set) and (Bi)i∈{1,...,m} where

A∩
⋂

i∈{1,...,m}
Bi 6= /0

and (∀i ∈ {1, . . . ,m})Ti = PBiRA + Id−PA, Zi = FixTi, Z =
⋂

i∈{1,...,m}
Zi.

where (∀n ∈ N) xn+1 := T xn where T := Tm . . .T2T1. (21)

When m = 1, CADRA becomes regular DR, which is not the case for the Borwein-
Tam method. The convergence result is as follows.

THEOREM 1.8. CADRA (Bauschke, Noll, Phan, 2015 [39, Theorem 8.5]) The
sequence (xn)n∈N from (21) converges weakly to x∈ Z with PAx∈ A∩

⋂
i∈{1,...,m}Bi.

Convergence is linear if one of the following hold:

1. X is finite-dimensional and riA∩
⋂

i∈{1,...,m} riBi 6= /0

2. A and each Bi is a subspace with A + Bi closed and that (Zi)i∈{1,...,m} is
boundedly linearly regular.

1.5.4. Cyclic r-sets DR: Aragón Artacho-Censor-Gibali Method Motivated by
the intuition of the Borwein-Tam method and the example in Figure 2, Francisco
Aragón Artacho, Yair Censor, and Aviv Gibali have recently introduced another
method which simplifies to classical Douglas–Rachford method in the 2-set case
[12, Theorem 3.7].

For the feasibility problem of N sets S0, . . . ,SN−1, we denote by SN,r(d) the
finite sequence of sets:

SN,r(d) := S((r−1)d−(r−1))mod N ,S((r−1)d−(r−2))mod N , . . . ,S((r−1)d)mod N .

The method is then given by

xn+1 := VNVN−1 . . .V1(xn).

where Vd :=
1
2

(
Id+VCm,r(d)

)
and VC0,C1,...,Cr−1 := RCr−1RCr−2RC0 .

Provided the condition int
(
∩N−1

i=0 Si
)
6= /0, the sequence (xn)

∞
n=1 converges weakly to

a solution of the feasibility problem. They also provided a more general result, [12,
Theorem 3.4], whose sufficiency criteria are, generically, more difficult to verify.
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1.5.5. Sums of N Operators: Spingarn’s Method One popular method for
finding a point in the zero set of a sum of N monotone operators T1, . . . ,TN is the
reduction to a 2 operator problem given by

A :=T1⊗T2⊗·· ·⊗TN (22)

B :=NB (23)

where NB is the normal cone operator (8) for B and B is the agreement set defined in
(18). As A and B are maximal monotone, the weak convergence result is given by
Svaiter’s relaxation [125] of Theorem 1.4. The application of DR to this problem
is analogous to the product space method discussed in 1.5.1. In 2007 Eckstein and
Svaiter [75] described this as Spingarn’s method, referencing Spingarn’s 1983 arti-
cle [123]. They also established a general projective framework for such problems
which does not require reducing the problem to the case N = 2.

2. Convex Setting

Throughout the rest of the exposition, we will take the Douglas–Rachford op-
erator and sequence to be as in (5). Where no mention is made of the param-
eters λ ,µ,γ , it is understood that they are as in Definition 1.2. While Theo-
rems 1.5 and 1.4 guarantee weak convergence for DR in the convex setting, only
in finite dimensions is this sufficient to guarantee strong convergence. An impor-
tant result of Hundal shows that AP may not converge in norm for the convex case
when H is infinite dimensional [102] (see also [17, 111]). Although no analogue
of Hundal’s example seems known, to date, for DR in the infinite dimensional case
norm convergence has been verified under additional assumptions on the nature of
A and B.

2.1. Convergence Borwein, Li, and Tam [46] attribute the first convergence rate
results for DR to Hesse, Luke, and Patrick Neumann who in 2014 showed local
linear convergence in the possibly nonconvex context of sparse affine feasibility
problems [101]. Bauschke, Bello Cruz, Nghia, Phan, and Wang extended this work
by showing that the rate of linear convergence of DR for subspaces is the cosine of
the Friedrichs angle [18].

Motivated by the recent local linear convergence results in the possibly non-
convex setting [100, 101, 117, 107], Borwein, Li, and Tam asked whether a global
convergence rate for DR in finite dimensions might be found for a reasonable class
of convex sets even when the regularity condition riA∩ riB 6= /0 is potentially not
satisfied. They provided some partial answers in the context of Hölder regularity
with special attention given to convex semi-algebraic sets [46].

In 2014, Bauschke, Bello Cruz, Nghia, Phan, and Wang used the convergence
rates of matrices to find optimal convergence rates of DR for subspaces with more
general averaging parameters as in (5). In the same year, Pontus Giselsson and
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Stephen Boyd demonstrated methods for preconditioning a particular class of prob-
lems with linear convergence rate in order to optimize a bound on the rate [91].

Borwein, Sims, and Tam established sufficient conditions to guarantee norm
convergence in the setting where one set is the positive Hilbert cone and the other
set a closed affine subspace which has finite codimension [49].

In 2015, Bauschke, Dao, Noll, and Phan studied the setting of R2 where one set
is the epigraph of a convex function and the other is the real axis, obtaining various
convergence rate results [30]. In their follow-up article in 2016, they demonstrated
finite convergence when Slater’s condition holds in both the case where one set is
an affine subspace and the other a polyhedron and in the case where one set is a hy-
perplane and the other an epigraph [29]. They included an analysis of the relevance
of their results in the product space setting of Spingarn [123] and numerical ex-
periments comparing the performance of DR and other methods for solving linear
equations with a positivity constraint. In the same year, Bauschke, Dao, and Moursi
provided a characterization of the behaviour of the sequence (T nx−T ny)n∈N [27].

In 2015, Damek Davis and Wotao Yin showed that DR might converge arbi-
trarily slowly in the infinite dimensional setting [66].

2.1.1. Order of operators In 2016, Bauschke and Moursi investigated the order
of operators: TA,B vs. TB,A. In so doing, they demonstrated that RA : FixTA,B →
FixTB,A and RB : FixTB,A→ FixTA,B are bijections [36].

2.1.2. Best approximations and the possibly infeasible case The behaviour of
DR in the inconsistent setting is most often studied using the minimal displacement
vector

v := Pran(Id−TA,B)
0. (24)

The set of best approximation solutions relative to A is A∩ (v+ B); when it is
nonempty, the following have also been shown.

In 2004 Bauschke, Combettes, and Luke considered the algorithm under the
name averaged alternating reflections (AAR). They demonstrated that in the pos-
sibly inconsistent case, the shadow sequence PAxn remains bounded with its weak
sequential cluster points being in A∩ (v+B) [24].

In 2015, Bauschke and Moursi [35] analysed the more specific setting of two
affine subspaces, showing that PAxn will converge to a best approximation solution.
In 2016, Bauschke, Minh Dao, and Moursi [28] furthered this work by considering
the affine-convex setting, showing that when one of A and B is a closed affine
subspace PAxn will converge to a best approximation solution. They then applied
their results to solving the least squares problem of minimizing ∑

M
k=1 dCk(x)

2 with
Spingarn’s splitting method [123].

In 2016, Bauschke and Moursi provided a more general sufficient condition for
the weak convergence [37], and in 2017 they characterized the magnitudes of mini-
mal displacement vectors for more general compositions and convex combinations
of operators.
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2.1.3. Nearest feasible points (Aragón Artacho-Campoy Method) In 2017,
Aragón Artacho and Campoy introduced what they called the Averaged Alternating
Modified Reflections (AAMR) method for finding the nearest feasible point for a
given starting point [10]. The operator and method are defined with parameters
α,β ∈]0,1[ by

TA,B,α,β := (1−α)Id+α(2βPB− Id)(2βPA− Id)

xn := TA−q,B−q,α,β xn,n = 0,1, . . . (25)

which we recognize as DR in the case α = 1/2,β = 1,q = 0. The convergence
result is as follows.

THEOREM 2.1. Aragón Artacho & Campoy 2017, [10, Theorem 4.1] Given
A,B closed and convex, α,β ∈]0,1[, and q ∈ H, choose any x0 ∈ H. Let (xn)n∈N
be as in (25). Then if A∩B 6= /0 and q−PA∩B(q) ∈ (NA +NB)(PA∩B(q)) then the
following hold:

1. (xn)n∈N is weakly convergent to a point x∈ FixTA−q,B−q,α,β such that PA(q+
x) = PA∩B(q);

2. (xn+1− xn)n∈N is strongly convergent to 0;

3. (PA(q+ xn))n∈N is strongly convergent to PA∩B(q).

Otherwise ‖xn‖ → ∞. Moreover, if A,B are closed affine subspaces, A∩B 6= /0,
and q− PA∩B(q) ∈ (A− A)⊥ + (B− B)⊥ then (xn)n∈N is strongly convergent to
PFixTA−q,B−q,α,β

(x0).

The algorithm may be thought of as another approach to the convex optimiza-
tion problem of minimizing the convex function y 7→ ‖q−y‖2 subject to constraints
on the solution.

It is quite natural to consider the theory of the algorithm in the case where
projection operators PA = JNA ,PB = JNB are replaced with more general resolvents
for maximally monotone operators [9], an extension Aragón Artacho and Cam-
poy gave in 2018. This work has already been extended by Alwadani, Bauschke,
Moursi, and Wang, who analysed the asymptotic behaviour and gave the algorithm
the more specific name of Aragón Artacho-Campoy Algorithm (AACA) [2].

2.1.4. Cutter methods Another computational approach is to replace true pro-
jections with approximate projections or cutter projections onto separating hy-
perplanes as in Figure 3a. Prototypical of this category are subgradient projec-
tion methods which may be used to find x ∈ ∩m

i=1lev≤0 fi for m convex functions
f1, . . . , fm; see Figure 3b. Such methods are not generally nonexpansive (as shown
in 3b) but may be easier to compute. When true reflection parameters are al-
lowed, the method is no longer immune from “bad” fixed points, as illustrated
in Figure 3c. However, with a suitable restriction on reflection parameters and
under other modest assumptions, convergence may be guaranteed through Fejér
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Figure 3: Cutter methods

monotonicity methods. See, for example, the works of Cegielski and Fukushima
[58, 87]. More recently, Díaz Millán, Lindstrom, and Roshchina have provided a
standalone analysis of DR with cutter projections [69].

2.2. Notable Applications While the Douglas–Rachford operator is firmly non-
expansive in the convex setting, the volume of literature about it is expansive in-
deed. While reasonable brevity precludes us from furnishing an exhaustive cata-
logue, we provide a sampling of the relevant literature.

As early as 1961, working in the original context of Douglas and Rachford,
P.L.T. Brian introduced a modified version of DR for high order accuracy solutions
of heat flow problems [56].

In 1995, Fukushima applied DR to the traffic equilibrium problem, comparing
its performance (and the complexity and applicability of the induced algorithms)
to ADMM [88].

In 2007, Combettes and Jean-Christophe Pesquet applied a DR splitting to non-
smooth convex variational signal recovery, demonstrating their approach on image
denoising problems [61].

In 2009, Simon Setzer showed that the Alternating Split Bregman Algorithm
from [95] could be interpreted as a special case of DR in order to interpret its con-
vergence properties, applying the former to an image denoising problem [122]. In
the same year, Gabriele Steidl and Tanja Teuber applied DR for removing mul-
tiplicative noise, analysing its linear convergence in their context and providing
computational examples by denoising images and signals [124].

In 2011 Combettes and Jean-Christophe Pesquet contrasted and compared var-
ious proximal point algorithms for signal processing [62].

In 2012 Laurent Demanet and Xiangxiong Zhang applied DR to l1 minimiza-
tion problems with linear constraints, analysing its convergence and bounding the
convergence rate in the context of compressed sensing [68].

In 2012, Radu Ioan Boţ, and Christopher Hendrich proposed two algorithms
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based on Douglas–Rachford splitting, which they used to solve a generalized Heron
problem and to deblur images [53]. In 2014, they analysed with Ernö Robert Cset-
nek an inertial DR algorithm and used it to solve clustering problems [52].

In 2015, Bauschke, Valentin Koch, and Phan applied DR for a road design
optimization problem in the context of minimizing a sum of proper convex lsc
functions, demonstrating its effectiveness on real world data [33].

In 2017, Fei Wang, Greg Reid, and Henry Wolkowicz applied DR with facial
reduction for a set of matrices of a given rank and a linear constraint set in order to
find maximum rank moment matrices [130].

3. Non-convex Setting

Investigation in the nonconvex setting has been two-pronged, with the theoret-
ical inquiry chasing the experimental discovery. The investigation has also taken
place in, broadly, two contexts: that of curves and/or hypersurfaces and that of
discrete sets.

While Jonathan Borwein’s exploration spanned both of the aforementioned
contexts, his interest in DR appears to have been initially sparked by its surprising
performance in the latter [77], specifically the application of the method by Elser,
Rankenburg, and Thibault to solving a wide variety of combinatorial optimization
problems, including Sudoku puzzles [82]. Where the product space reformulation
is applied to feasibility problems with discrete constraint sets, DR often succeeds
while AP does not. Early wisdom suggested that one reason for its superior perfor-
mance is that DR, unlike AP, is immune from false fixed points regardless of the
presence or absence of convexity, as shown in the following proposition (see, for
example, [127, Proposition 1.5.1] or [82]).

PROPOSITION 3.1 (Fixed points of DR). Let A,B⊂ H be proximal. Then x ∈
FixTA,B implies PA(x) ∈ A∩B.

PROOF. Let x∈FixTA,B. Then x= x+PB(2PA(x)−x)−PA(x) and so PB(2PA(x)−
x)−PA(x) = 0, so PA(x) ∈ B.

A typical example where A := {a1,a2} is a doubleton and B a subspace (anal-
ogous to the agreement set) is illustrated in Figure 4 where DR is seen to solve the
problem while AP becomes trapped by a fixed point.

If the germinal work on DR in the nonconvex setting is that of Elser, Ranken-
burg, and Thibault [82] (caution: the role of A and B are reversed from those here),
then the seminal work is that of J.R. Fienup who applied the method to solve the
phase retrieval problem [83]. In [82], Elser et al. referred to DR as Fienup’s iter-
ated map and the difference map, while Fienup himself called it the hybrid input-
output algorithm (HIO) [83]. Elser explains that, originally, neither Fienup nor
Elser et al. were aware of the work of Lions and Mercier [109], and so the seminal
work on DR in the nonconvex setting is, surprisingly, an independent discovery
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Figure 4: DR and AP for a doubleton and a line in R2

of the method [77]. Fienup constructed the method by combining aspects of two
other methods he considered—the basic input-output algorithm and the output-
output algorithm—with the intention of obviating stagnation. Here again, one may
think of the behaviour illustrated in Figure 4.

(a) Convergence to a feasible
point

(b) Convergence to a fixed
point

(c) Proof of convergence with
Benoist’s Lyapunov function

Figure 5: Behaviour of DR where A is a circle and B is a line; (c) is discussed in
3.2.

Figure 5 shows behaviour of DR in the case where A is a circle and B is a line,
a situation prototypical of the phase retrieval problem. For most arrangements,
DR converges to a feasible point as in Figure 5a. However, when the line and
circle meet tangentially as in Figure 5b, DR converges to a fixed point which is not
feasible, and the sequence PAxn converges to the true solution.

Elser notes that it is unclear whether or not Fienup understood that a fixed point
of the algorithm is not necessarily feasible, as his approach was largely empirical.
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Elser sought to clarify this point in his follow up article in which he augmented
the study of DR for phase retrieval by replacing support constraints with object
histogram and atomicity constraints for crystallographic phase retrieval [78, Sec-
tion 5]. In 2001 when [78] was submitted, Elser was not yet aware of Lions’ and
Mercier’s characterization of DR as the Douglas–Rachford method; it may be rec-
ognized in [78] as a special instance of the difference map (which we define in
(26)), a generalization of Fienup’s input-output map.

In 2002, Bauschke, Combettes, and Luke finally demonstrated that Fienup’s
basic input-output algorithm is an instance of Dykstra’s algorithm and that HIO
(Hybrid Input–Output) with the support constraint alone corresponds to DR [22]
(see also their 2003 follow up [23]). In another follow up [24], they showed that
with support and nonnegativity constraints, HIO corresponds to the HPR (hybrid
projection reflection) algorithm, a point Luke sought to clarify in his succinct 2017
summary of the investigation of DR in the context of phase retrieval [110].

More recently, in 2017, Elser, Lan, and Bendory have published a set of bench-
mark problems for phase retrieval [81]. They considered DR with true reflections
and a relaxed averaging parameter—µ = γ = 0,λ ∈]0,1] as in (5)—under the name
relaxed-reflect-reflect (RRR). In particular, they provided experimental evidence
for the exponential growth of DR’s mean iteration count as a function of the auto-
correlation sparsity parameter, which seems well-suited for revealing behavioural
trends. They also provided an important clarification of the different algorithms
which have been labelled “Fienup” algorithms in the literature, some of which are
not DR.

3.1. Discrete Sets The landmark experimental work on discrete sets is that of
Elser, Rankenburg, and Thibault [82]. They considered the performance of what
they called the difference map for various values of the parameter β :

T : x 7→ x+β (PA ◦ fB(x)−PB ◦ fA(x)) , (26)

where fA : x 7→ PA(x)− (PA(x)− x)/β ,

and fB : x 7→ PB(x)+(PB(x)− x)/β .

When β =−1, we recover the DR operator TA,B, and when β = 1, we obtain TB,A.

3.1.1. Stochastic Problems Much of the surprising success of DR has been
in the setting where some of the sets of interest have had the form {0,1}p. Elser
et al. adopted the approach of using stochastic feasibility problems to study the
performance of DR [82]. They began with the problem of solving the linear Dio-
phantine equation Cx = b, where C, a stochastic p× q matrix, and b ∈ Np are
“known.” Requiring the solution x ∈ {0,1}q that is used to generate the problem
to also be stochastic ensures uniqueness of the solution for the feasibility problem:
find x ∈ A∩B where

A := {0,1}q, and B := {x ∈ Rq such that Cx = b}.
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They continued by solving Latin squares of n symbols. Where xi jk = 1 indicates
that the cell in the ith row of the jth column of the square is k, the problem is
stochastic and the constraint that xî ĵk̂ = 1 if and only if (∀i 6= î) xi ĵk̂ = 0,(∀ j 6=
ĵ)xî jk̂ = 0 determines the set of allowable solutions. The most familiar form of
a Latin square is the Sudoku puzzle where n = 9 and we require the additional
constraint that the complete square consist of a grid of 9 smaller Latin squares. For
more on the history of the application of projection algorithms to solving Sudoku
puzzles, see Schaad’s master’s thesis [121] in which he also applies the method to
the 8 queens problem .

This work of Elser et al. piqued the interest of Jonathan Borwein who in 2013,
together with Aragón Artacho and Matthew Tam, continued the investigation of
Sudoku puzzles [6, 4], exploring the effect of formulation (integer feasibility vs.
stochastic) on performance. They also extended the approach by solving nonogram
problems.

3.1.2. Matrix completion and decomposition Another application for which
DR has shown promising results is finding the remaining entries of a partially spec-
ified matrix in order to obtain a matrix of a given type. Borwein, Aragón Artacho,
and Tam considered the behaviour of DR for such matrix completion problems
[5]. They provided a discussion of the convex setting, including positive semidef-
inite matrices, correlation matrices, and doubly stochastic matrices. They went on
to provide experimental results for a number of nonconvex problems, including
for rank minimization, protein reconstruction, and finding Hadamard and skew-
Hadamard matrices. In 2017, Artacho, Campoy, Kotsireas, and Tam applied DR
to construct various classes of circulant combinatorial designs [11], reformulating
them as three set feasibility problems. Designs they studied included Hadamard
matrices with two circulant cores, as well as circulant weighing matrices and D-
optimal matrices.

Even more recently, David Franklin used DR to find compactly supported, non-
separable wavelets with orthonormal shifts, subject to the additional constraint of
regularity [86, 85]. Reformulating the search as a three set feasibility problem in
{C2×2}M for M = {4,6,8, . . .}, they compared the performance of cyclic DR, prod-
uct space DR, cyclic projections, and the proximal alternating linear minimisation
(or PALM) algorithm. Impressively, product space DR solved every problem it was
presented with.

In 2017, Elser applied DR—under the name RRR (short for relaxed reflect-
reflect)—for matrix decomposition problems, making several novel observations
about DR’s tendency to wander, searching in an apparently chaotic manner, until it
happens upon the basin for a fixed point [79]. These observations have motivated
the open question we pose in 4.1.2.

3.1.3. The study of proteins In 2014, Borwein and Tam went on to consider
protein conformation determination, reformulating such problems as matrix com-
pletion problems [50]. An excellent resource for understanding the early class
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problems studied by Borwein, Tam, and Aragón Artacho—as well as the cyclic
DR algorithm described in subsection 1.5—is Tam’s PhD dissertation [127].

Elser et al. applied DR to study protein folding problems, discovering much
faster performance than that of the landscape sampling methods commonly used
[82].

3.1.4. Where A is a subspace and B a restriction of allowable solutions Elser
et al. applied DR to the study of 3-SAT problems, comparing its performance to
that of another solver, Walksat [82] (see also [96]). They found that DR solved all
instances without requiring random restarts. They also applied the method to the
spin glass ground state problem, an integer quadratic optimization program with
nonpositive objective function.

3.1.5. Graph Coloring Elser et al. applied DR to find colorings of the edges
of complete graphs with the constraint that no triangle may have all its edges of
the same color [82]. They compared its performance to CPLEX, and included an
illustration showing the change of edge colors over time. DR solved all instances,
and outperformed CPLEX in harder instances.

In 2016, Francisco Aragón Artacho and Rubén Campoy applied DR to solving
graph coloring problems in the usual context of coloring nodes [8]. They con-
structed the feasibility problem by attaching one of two kinds of gadgets to the
graphs, and they compared performance with the two different gadget types both
with and without the inclusion of maximal clique information. They also explored
the performance for several other problems reformulated as graph coloring prob-
lems; these included: 3-SAT, Sudoku puzzles, the eight queens problem and gen-
eralizations thereof, and Hamiltonian path problems.

More recently, Aragón Artacho, Campoy, and Elser [14] have considered a
reformulation of the graph coloring problem based on semidefinite programming,
demonstrating its superiority through numerical experimentation.

3.1.6. Other implementations Elser et al. went on to consider the case of bit
retrieval, where A is a Fourier magnitude/autocorrelation constraint and B is the
binary constraint set {±1/2}n [82]. They found its performance to be superior to
that of CPLEX.

Bansal used DR to solve Tetravex problems [16].
More recently, in 2018, Elser expounded further upon the performance of DR

under varying degrees of complexity by studying its behaviour on bit retrieval prob-
lems [80]. Of his findings of its performance he observes:

These statistics are consistent with an algorithm that blindly and re-
peatedly reaches into an urn of M solution candidates, terminating
when it has retrieved one of the 4× 43 solutions. Two questions im-
mediately come to mind. The easier of these is: How can an algorithm
that is deterministic over most of its run-time behave randomly? The
much harder question is: How did the M = 243 solution candidates get
reduced, apparently, to only about 1.7×105× (4×43)≈ 224?
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The behaviour of DR under varying complexity remains a fascinating open
topic, and we provide it as one of our two open problems in 4.1.2.

3.1.7. Theoretical Analysis One of the first global convergence results in the
nonconvex setting was given by Aragón Artacho, Borwein, and Tam in the set-
ting where one set is a half space and the second set finite [7]. Bauschke, Dao,
and Lindstrom have since fully categorized the global behaviour for the case of a
hyperplane and a doubleton (set of two points) [26]. Both problems are prototyp-
ical of discrete combinatorial feasibility problems, the latter especially insofar as
the hyperplane is analogous to the agreement set in the product space version of
the method discussed in section 1.5.1, the most commonly employed method for
problems of more than 2 sets.

3.2. Hypersurfaces In 2011, Borwein and Sims made the first attempt at decon-
structing the behaviour of DR in the nonconvex setting of hypersurfaces [48]. In
particular, they considered in detail the case of a circle A and a line B, a problem
prototypical of phase retrieval. Here the dynamical geometry software Cinderella
[1] first played an important role in the analysis: the authors paired Cinderella’s
graphical interface with accurate computational output from Maple in order to vi-
sualize the behaviour of the dynamical system. Borwein and Sims went on to show
local convergence in the feasible case where the line is not tangent to the 2-sphere
by using a theorem of Perron. They concluded by suggesting analysis for a gener-
alization of the 2-sphere: p-spheres.

In 2013 Aragón Artacho and Borwein revisited the case of a 2-sphere and line
intersecting non-tangentially [3]. When x0 lies in the subspace perpendicular to B,
the sequence (xn)

∞
n=0 is contained in the subspace and exhibits chaotic behaviour.

For x0 not in the aforementioned subspace—which we call the singular set—they
provided a conditional proof of global convergence of iterates to the nearer of the
two feasible points. The proof relied upon constructing and analysing the move-
ment of iterates through different regions. Borwein humorously remarked of the
result that, “This was definitely not a proof from the book. It was a proof from the
anti-book.” Joël Benoist later provided an elegant proof of global convergence by
constructing the Lyapunov function seen in Figure 5c [42].

In one of his later posthumous publications on the subject [44], Borwein, to-
gether with Ohad Giladi, demonstrated that the DR operator for a sphere and a
convex set may be approximated by another operator satisfying a weak ergodic
theorem.

In 2016, Borwein, Lindstrom, Sims, Skerrit, and Schneider undertook Bor-
wein’s suggested follow up work in R2, analysing not only the case of p-spheres
more generally but also of ellipses [47]. They discovered incredible sensitivity of
the global behaviour to small perturbations of the sets, with some arrangements
eliciting a complex and beautiful geometry characterized by periodic points with
corresponding basins of attraction. A point x satisfying T nx = x is said to be peri-
odic with period the smallest n for which this holds; Figure 6 from [47] shows 13
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Figure 6: Basins of attraction for periodic points with an ellipse and line

different DR sequences for an ellipse and line from which subsequences converge
to periodic points. Borwein et al. combined data from Cinderella with paralleliza-

Figure 7: Basins of attraction for an ellipse and line with colors based on Aborigi-
nal Australian artwork. This image appears on the poster for MoCaO.

tion techniques in order to visualize the global behaviour. An artistic rendering of
the basins with colors chosen based on Aboriginal Australian artwork may be seen
in Figure 7; this image appears on the poster for Mathematics of Computation and
Optimization (MoCaO), an Australian Mathematical Society special interest group
founded by Borwein and Jérôme Droniou.

Borwein et al. went on to show local convergence to feasible points in the
case where the ellipse and line intersect non-tangentially, and they extended a best
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approximation result of Moursi and Bauschke [37] in the setting of boundaries of
convex sets.

In order to check the potential influence of sensitivity to compounding nu-
merical error on their discoveries, Borwein et al. used Schwarzian reflection to
compute approximate projections as an alternative to the numerical solution of a
Lagrangian problem (see, for example, [114]). This work inspired a 2017 follow
up by Lindstrom, Sims, and Skerritt [108], analysing the performance of DR for
finding intersections of smooth curves in R2 more generally and showing that local
convergence extends to the more general case of smooth plane curves intersect-
ing non-tangentially with reasonable limits on their curvature (in definition 3.3 we
will introduce the notion of superregularity). Dao and Tam [65] have since adapted
Benoist’s Lyapunov approach to beautifully illuminate the behaviour for more gen-
eral curves, including showing global behaviour for many curve pairs.

(a) Approximate solutions for
an ODE

(b) DR error plot (c) AP error plot

Figure 8: Comparison of DR and AP convergence behaviour

Lamichhane, Lindstrom, and Sims used AP and DR to find numerical solutions
for boundary value ODEs on closed intervals in R by reformulating the problem
of N node approximation as a feasibility problem of satisfying N equations which
define possibly discontinuous hypersurfaces [108]. The approach is mostly exper-
imental, and they compared the observed convergence to that explicitly visible in
the 2 set ellipse/line setting. They also compared the behaviour of DR and AP on
each test problem, finding AP to generally perform faster.

The above studies on hypersurfaces have uncovered a general trend which dis-
tinguishes AP from DR. Namely: AP is more prone to becoming trapped by extra-
neous fixed points but demonstrates monotonicity in convergence with an asymp-
totic direction of approach, while DR tends to escape from false solutions and its
basins of convergence persistently feature spiralling trajectories which induce ob-
served oscillations in plots of change and error. Some of this behaviour may be
seen in Figure 8 from [105] which shows the behaviour, as measured for the agree-
ment set shadow sequence PBxn, when seeking the solution to a N set feasibility
problem corresponding to the numerical solution of a boundary value problem.
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In Figure 8b and Figure 8c, relative error (change from iterate to iterate), error
from numerical solution (obtained by applying Newton’s method to the discretized
problem), and error from the true solution (analytically obtained) are monotonic
for AP but oscillate for DR. This monotonicity may be further observed in Fig-
ure 8a where approximate solutions to a boundary value problem—corresponding
to various step intervals for DR and AP—may be seen along with the true so-
lution; AP approaches the true solution from one side, while DR exhibits more
exotic behaviour. The authors of [105] hypothesize that the observed left-right-left
wandering of PBxn visible in Figure 5a which results from the spiralling of xn is
prototypical of the numerically observed oscillation in more complicated settings
like Franklin’s work on wavelets.

3.3. Results on regularity, transversality, and rates of convergence Much
of the convergence analysis in the nonconvex setting has focused on regularity
assumptions. Throughout this section, A and B continue to be closed subsets of a
finite-dimensional Euclidean space X .

Definition 3.2 (Regularity and transversality). The closed sets {Ci}i∈I, I = {1, . . . ,m}
are said to be

1. κ-subtransversal or κ-linearly regular with regularity modulus κ ∈]0,∞[ on
U ⊂ X if

(∀x ∈U) dC(x)≤ κ max
i∈I

dCi(x), where C :=
⋂
i∈I

Ci;

2. subtransversal around x ∈ X or linearly regular at x ∈ X if there exist δ and
κ greater than 0 such that {Ci}i∈I is κ-linearly regular on B(x,δ );

3. boundedly linearly regular if for every bounded set U ⊂ X there exists κU >
0 such that {Ci}i∈I is κ-linearly regular on U .

4. U-regular at x ∈ X if U is an affine subspace of X with x ∈U and

∑
i∈I

ui = 0 and ui ∈ NCi(x)∩ (U− x) =⇒ (∀i ∈ I) ui = 0.

5. transversal or strongly regular at x ∈ X if {Ci}i∈I is U-regular with U = X .

6. affine-hull regular at x in the two set case m = 2 when L = aff(C1 ∪C2) if
NL

A(x)∩ (−NL
B(x)) = {0}.

See, for example, [63, 103, 117, 100].

More recently, the notion of intrinsic transversality has been introduced which
fills a theoretical gap between the regularity conditions of transversality and sub-
transversality [71] (see also [104]).
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It may be readily seen that an ellipse and line which intersect non-tangentially
are transversal at the point of intersection. Indeed the regularity framework locally
describes many hypersurface feasibility problems. The notion of superregularity
for a single set C may be thought of as a smoothness condition.

Definition 3.3 (superregularity). A closed subset A ⊂ X is (ε,δ )-regular at x if
ε ≥ 0,δ > 0, and

y,z ∈ A∩Bδ (x)

u ∈ Nprox
A (x) = cone(P−1

A x− x)

}
=⇒ 〈u,z− y〉 ≤ ε‖u‖ · ‖z− y‖.

C is said to be superregular at x if for every ε > 0 there exists δ > 0 such that C is
(ε,δ )-regular at x. See, for example, [117].

It may be seen that in the case X =R2 and A = graph f = {(x1,x2)| f (x1) = x2}
where f : R→ R, superregularity of A at (x, f (x)) implies smoothness of f at x.

Figure 9: DR convergence for a 1/2-sphere and a line

Figure 5b shows how DR may behave when regularity conditions are not satis-
fied at the feasible point, while the rightmost sequence in Figure 9 illustrates what
may happen when two sets meet subtransversally but superregularity fails for one
of them (the p-sphere). The other two sequences illustrate how the Friedrichs angle
of the sets at the feasible point determines the linear rate of convergence.

As early as 2013, Lewis, Luke, and Malick analysed the local convergence for
alternating and averaged nonconvex projection methods in the presence of regu-
larity conditions [106]. In the same year, Hesse and Luke undertook a theoretical
study of DR in the presence of local regularity conditions in finite dimensions
[100]. They showed that when the sets involved are affine, strong regularity is
necessary for linear convergence, in contradistinction with AP for which such con-
ditions are sufficient but not necessary. They also established a number of linear
convergence results for DR, the first of which is as follows.

26



THEOREM 3.4. Linear convergence of DR (Luke & Hess, 2013 [100, Theorem
3.16]) Let the pair of closed sets {A,B} be linearly regular at x ∈ A∩B on Bδ (x)
with regularity modulus κ > 0 for some δ > 0. Suppose further that B is a subspace
and that A is (ε,δ )-regular at x with respect to A∩B. Assume that for some c∈]0,1[
the following holds:

z ∈ A∩Bδ (x), u ∈ NA(z)∩B1(0)

y ∈ B∩Bδ (x), v ∈ NB(y)∩B1(0)

}
=⇒ 〈u,v〉 ≥ −c.

If xn ∈ Bδ/2(x) and xn+1 ∈ TA,Bxn then

d(xn+1,A∩B)≤
√

1+2ε(1+ ε)− 1− c
κ2 d(xn,A∩B).

Another of their results, [100, Theorem 3.18] has since been strengthened by
Phan [117, Theorem 4.3] to the following.

THEOREM 3.5. Linear convergence of DR (Phan, 2016 [117, Theorem 4.3])
Let the closed sets A,B be superregular at x ∈ A∩B and {A,B} be strongly regular
at x. Then if x0 is sufficiently close to x, the sequence xn+1 := TA,Bxn converges to a
point x ∈ A∩B with R-linear rate.

Phan provided additional information about the rate R in [117, Remark 4.5],
and gave the following second main result on affine-hull regularity.

THEOREM 3.6. Linear convergence of DR (Phan, 2016 [117, Theorem 4.7])Let
A,B be closed and L := aff(A∪ B). Further suppose A,B are superregular at
x ∈ A∩B and {A,B} is affine-hull regular at x. Then, if the the shadow sequence
PLx0 is sufficiently close to x, the DR sequence xn+1 := TA,Bxn converges to a point
x ∈ FixTA,B with R-linear rate. Moreover,

PAx≡ PBx = x− (x0−PLx0) ∈ A∩B, (27)

and so PAx≡ PBx solves the feasibility problem.

Phan also provided a more detailed description of the region of convergence,
and extended the analysis into the convex setting.

In 2016 [63], Dao and Phan went on to consider the more general framework
of cyclic relaxed projection methods for the feasibility problem of m sets {Ci}i∈I ,
I = {1, . . . ,m} where the sequence is defined in terms of l operators

Tnl+ j := Tj and xn := Tnxn−1 with J := {1, . . . , l}. (28)

Where we have modified the notation to be consistent with (4), Dao and Phan
considered the following cyclic generalized DR algorithm defined by (28) and the
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following. For every j ∈ J, let µ j,γ j ∈ [0,2[, and λ j ∈]0,1[, and s j, t j ∈ I such that
s j 6= t j and

I ={s j| j ∈ J}∪{t j| j ∈ J},
Tj :=(1−λ j)Id+λ jR

µ j
Ct j

Rγ j
Cs j

,

where Rµ j
C j

is defined as in (4). The convergence results are as follows.

THEOREM 3.7. Linear convergence of cyclic generalized DR (Dao & Phan,
2016 [63, Theorem 5.21]) Let I := {1, . . . ,m} and x ∈ ∩i∈ICi. Suppose {Ci}i∈I

is superregular at x and linearly regular around x and that {Cs j ,Ct j} is strongly
regular at x for every j ∈ J. Then when started at a point x0 sufficiently close to x,
the cyclic generalized DR sequence generated by (Tj) j∈J converges R-linearly to a
point x ∈ ∩i∈ICi.

THEOREM 3.8. Affine reduction for generalized DR sequences (Dao & Phan,
2016 [63, Theorem 5.25]) Let A,B be closed, x ∈ A∩B, and L := aff(A∪B). Sup-
pose {A,B} is superregular and affine-hull regular at x. Let (xn)n∈N be defined by
xn+1 :=

(
(1−λ )Id+Rµ

BPγ

A

)
xn where µ,γ ∈ [0,2[ and λ ∈]0,1[. Then the following

hold:

1. If γ = µ = 0, then, whenever PLx0 is sufficiently close to x, (xn)n∈N converges
R-linearly to a point x ∈ FixT with PAx = PBx ∈ A∩B.

2. If either λ > 0 or µ > 0, then, whenever PLx0 is sufficiently close to x, (xn)n∈N
converges R-linearly to a point x ∈ A∩B.

3.3.1. Other convergence results Numerous other investigations of conver-
gence for DR have also been undertaken. In 2014 Bauschke and Noll proved local
convergence to a fixed point in the case where A and B are finite unions of convex
sets [38]. In 2016, Bauschke and Dao provided various sufficient conditions for
finite convergence of the DR sequence [25].

3.3.2. Further variants If one considers the spiralling behaviour characteristic
of local convergence of DR, it is very natural to seek faster convergence by taking
a step towards the center of the spiral. This intuition has given birth to the notion
of circumcentering the method [41].

3.3.3. Nonconvex minimization In 2014 Patrinos, Stella and Bemporad in-
troduced the so-called Douglas–Rachford envelope whose stationary points corre-
spond to solutions for the problem of minimizing a sum of two convex functions
f +g subject to linear constraints [115].

In 2015, motivated by properties of the Douglas–Rachford envelope, Li and
Pong introduced the Douglas–Rachford merit function [107]:

Dη(y,z,x) := f (y)+g(z)− 1
2η
‖y− z‖2 +

1
η
〈x− y,z− y〉.
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Li and Pong analysed the limiting characteristics of Dη(yn,zn,xn) where yn,zn,xn

are either as in (15) or are obtained from a modified variant where x0 ∈ X and
yn+1 = 1

1+η
(xn +ηPA(xn))

zn+1 ∈ argmin
z∈B

{‖2yn+1− xn− zn‖}

xn+1 = xn +(zn+1− yn+1)

, (29)

which arises from applying (15) to the problem of minimizing 1
2 d2

A(x) subject to
x ∈ B, where A is convex but B may not be. They showed the following.

THEOREM 3.9. Global subsequential convergence (Li & Pong, 2015 [107,
Theorem 1]) Let g be proper and closed, f have Lipschitz continuous gradient
whose Lipschitz continuity modulus is bounded by L. Choose ν ∈ R so that f +
ν

2‖ · ‖
2 is convex. Suppose that η is chosen so that (1+ηL)2 + 5ην

2 −
3
2 < 0. Let

yn,zn,xn be as in 15. Then {Dη (yn,zn,xn)}n≥1 is nonincreasing. Moreover, if a
cluster point of (yn,zn,xn) exists, then

lim
n→∞
‖xn+1− xn‖= lim

n→∞
‖zn+1− yn‖= 0, (30)

and, for any cluster point (y,z,x), we have z = y and 0 ∈ ∇ f (z)+∂g(z).

THEOREM 3.10. Global convergence of the whole sequence (Li & Pong, 2015
[107, Theorem 2])Let f ,g, l,L,xn,yn,zn,η be as in theorem 3.9. Additionally sup-
pose f ,g are algebraic and that {(yn,zn,xn)} has a cluster point (y,z,x). Then the
sequence {(yn,zn,xn)} is convergent.

THEOREM 3.11. Convergence of DR splitting method for nonconvex feasibil-
ity problems involving two sets (Li & Pong, 2015 [107, Theorem 5]) Let A be a
nonempty, closed, convex set, and B a nonempty closed set with either A or B com-
pact. Suppose in addition that 0<η <

√
3/2−1. Then the sequence {(yn,zn,xn)},

where yn,zn,xn are as in (29), is bounded. Moreover, any cluster point (y,z,x) of
the sequence satisfies z = y and z is a stationary point of (29). Additionally, (30)
holds.

Li and Pong also provided detailed results on the convergence rates. Andreas
Themelis and Panos Patrinos have since published a follow up article [128] in
which they relax some of the restrictions on the step size η , as well as providing a
discussion of the connections with ADMM.

4. Summary

The goal of this survey has been to illuminate the history, motivations and
robustness of DR in each of the broad settings wherein it has been considered.
Much more could be said, and certainly much more will be. Many future directions
of research have been suggested, and many are being pursued.
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4.1. Future avenues of inquiry These directions include the continued analysis
of the Aragón Artacho-Campoy method in the convex setting, wavelet discovery
in the nonconvex setting, nonconvex minimization through the framework of Li
and Pong, and the analysis of convergence rates under general parameters in all of
these. We choose to state here two problems in the nonconvex setting—both sug-
gested by Veit Elser—which have received little attention despite their particularly
intriguing nature.
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Figure 10: The flowfield (4.1.1) with a circle/line (left) and ellipse/line (right).
Images courtesy of Veit Elser.

4.1.1. Continuous time variant For the case of a circle and line, Borwein
and Sims [48] considered the “continuous time” version of the algorithm whose
flow field is at left in Figure 10 and corresponds to the solution of the differential
equation

dx
dt

= T (x) when λ → 0+.

Veit Elser has suggested analysing the continuous time variant in the more general
setting of ellipses and plane curves. Elser provided flow field images for a curve
and integer lattice in [79], and he has generously furnished the images in Figure 10.

4.1.2. Complexity Theory Elser hypothesizes that, for Latin square prob-
lems, higher dimensionality is associated with greater robustness for the algorithm.
The idea is that as the complexity of the problem grows, the singular regions—of
chaotic or periodic behaviour—account for a smaller share of the total space. For
most starting points, then, the iterates tends to explore the space without becoming
stuck, as in Figure 4a, until eventually they fall into the basin of attraction for a fea-
sibility point. Evidence abounds, as in [81, 79, 80]. Can the behaviour of DR and
similar methods under complexity be rigorously catalogued through experimental
analysis?
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4.2. Conclusion The role of DR in the convex setting is both well-known and
celebrated. More novel and striking is its success in the nonconvex setting. Jonathan
Borwein described DR as an “out-of-the-box solver,” whose robustness for a given
nonconvex problem cannot be simply explained by its having been originally de-
signed with that specific problem in mind. While the exact formulation for an
embedding of a problem in Rn—for example, the stochastic representation of a
sudoku puzzle or the number of gadgets used in [8]—may affect performance, DR
fundamentally requires very little: if one can compute the projections, one can use
the solver. Perhaps this is why its performance consistently surprises those who
study or use it. One thing is certain: the complexity of the behaviour is astounding,
and much of the space remains to be explored.

Acknowledgements We are particularly grateful to Heinz Bauschke and Veit
Elser, whose expertise on DR has been instrumental in our reconstruction of its
history.
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Figure 11: Function diagram for Gabay’s exposition.

5. Appendix: ADMM and Douglas–Rachford

Throughout this section, the function diagram in Figure 11 is a useful reference.
In particular, it should be noted that Gabay defined the conjugates F∗ : H→R and
G∗ : V → R on the primal spaces.

In 1983 [89], Daniel Gabay considered the application of (7) with B := ∂F∗ =
(∂F)−1 for F : H→]0,∞] a proper convex lsc function, A := At

B : H→ 2H by

At
B(µ) = {q ∈ H|∃v ∈V such that q =−Bv, −Bt

µ ∈ A(v)},

for a maximally monotone operator A, and B : V → H is a continuous linear oper-
ator with adjoint B∗ : H∗→V ∗

where

{
〈ΛV u,v〉V ∗×V = 〈u,v〉V ∀ u,v ∈V with ΛV u ∈V ∗

〈ΛH p,q〉H∗×H = 〈p,q〉H ∀ p,q ∈ H with ΛH p ∈ H∗
;

and Bt : H→V by Bt := Λ
−1
V ◦B∗ ◦ΛH .

The motivating variational inequality problem is to find u ∈V such that

∃w ∈ A(u) where (∀v ∈V ) 〈w,v−u〉V +F(Bv)−F(Bu)≥ 0. (31)

When A = ∂G for G : V →]−∞,∞] a convex, proper, lsc function, the variational
inequality (31) is just

p := inf
v∈V
{F(Bv)+G(v)}. (32)

When A is coercive or BtB is an isomorphism of V , then

Jλ

At
B
(y) = y+λB(A+λBtB)−1(−Bty).
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Gabay showed that (7) then becomes:

Step 0 choose ω0 to be an approximate solution of the problem:

Find ω such that 0 ∈ (At
B +∂F∗)(ω)

Step 1 choose x0, p0 such that p0 ∈ ∂F∗(ω0), t0 = ω0 +λ p0

(This ensures ω0 = Jr
∂F∗(x0))

Step 2


un+1 := (A+λBtB)−1(λBt pn−Btωn)

pn+1 := (∂F +λ Id)−1(ωn +λBun+1)

ωn+1 := ωn +λ (Bun+1− pn+1)

xn+1 := ωn +λBun+1

(33)

In this case, (ωn)n∈N is the sequence of multipliers, and ωn := Jλ

∂F∗(xn) is the
shadow sequence iterate corresponding to the nth iterate of the Douglas–Rachford
sequence (xn)n∈N. In terms of Figure 1b, if we take λ = 1, B = Id, F∗ = NA,
and At

B = NB, then, in (33), xn = xn, ωn = PAxn, pn = (xn − PAxn), and un =
(PBRAxn−RAxn).

Gabay rewrites (33) as in terms of the sequences un, pn,ωn:

Step 0 Find un+1 ∈V satisfying the variational inequality: ∃wn+1 ∈ A(un+1)

such that (∀v ∈V )〈wn+1,v〉V + 〈ωn−λ pn +λBun+1,Bv〉H = 0

Step 1 Find pn+1 which solves the minimization problem:

F(pn+1)−F(q)−〈ωn, pn+1−q〉H +
λ

2
‖Bun+1− pn+1‖2

H −
λ

2
‖Bun+1−q‖2

H ≤ 0

Step 2 Update multiplier by ωn+1← ωn +λ (Bun+1− pn+1).

Gabay highlights that this is a variant of Uzawa’s algorithm [13] for the augmented
Lagrangian

Lr(v,q,u) = F(q)+G(v)+ 〈µ,Bv−q〉H +
λ

2
‖Bv−q‖2

H

for solving the optimization problem (32). When A = ∂G, under qualification
conditions, At

B = ∂ (G∗ ◦ (−Bt)) and so

d := inf
µ∈H
{G∗(−Bt

µ)+F∗(µ)} (34)

is the dual value associated with the primal value (32). See, for example, [45,
Theorem 3.3.5]. Thus the Lagrangian method of Uzawa applied to finding p (32)
is equivalent to DR applied to finding d (34).
CARMA
University of Newcastle

CARMA
University of Newcastle
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