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Abstract

We provide convergence results for a proto-typical non-convex iteration of
Douglas-Rachford type.

1 Introduction

In recent times variations of alternating projection algorithms have been applied
in Hilbert space to various important applied problems—from optical abberation
correction to three satisfiability, protein folding and construction of giant Sodoku
puzzles [8]. While the theory of such methods is well understood in the convex case
[3] and [11, 4, 5, 6], there is little corresponding theory when some of the sets involved
are non-convex—and that is the case of the examples mentioned above [8, 9].

Our intention is to analyze the simplest non-convex prototype in Euclidean space:
that of finding a point on the intersection of a sphere and a line or hyperplane. The
sphere provides an accessible model of many reconstruction problems in which the
magnitude of a signal is measured.
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1.1 Preliminaries

For any closed subset A of a Hilbert space (X, 〈·, ·〉) we say that a mapping PA :
DA ⊆ X −→ A is a closest point projection of DA onto A if A ⊆ DA, P 2

A = PA and

‖x− PA(x)‖ = dist(x,A) := inf{‖x− a‖ : a ∈ A},

for all x ∈ DA.

For a given closest point projection, PA, onto A we take the reflection of x in A
(relative to PA) to be,

RA := 2PA − I.

In this note we will focus on the cases when the subset A is a sphere, which without
loss of generality we take to be the unit sphere of the Hilbert space; S := {x : ‖x‖ =
1}, or a line L := {x : x = λa + hb} where, without loss of generality, we take
‖a‖ = ‖b‖ = 1, a ⊥ b and h > 0.

The closest point projection of x 6= 0 onto the unit sphere S is,

PS(x) := x/‖x‖

and so,
RS(x) = 2x/‖x‖ − x,

while the closest point projection of x ∈ X onto L is the orthogonal projection,

PL(x) := 〈x, a〉 a + hb

and so,
RL(x) = 2〈x, a〉 a + 2hb − x.

Given two closed sets A and B together with closest point projections PA and PB,
starting from an arbitrary initial point x0 ∈ DA the Douglas-Rachford iteration
scheme (reflect-reflect-average), introduced in [7]) for numerical solution of partial
differential equations, is a method for finding a point in the intersection of the two
sets. That is, it aims to find a feasible point for the possibly non-convex constraint
x ∈ A ∩B). Explicitly it is,

xn+1 := TA,B(xn),

where TA,B is the operator TA,B := 1
2
(RBRA + I). This method has many other

names, see [5].
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With our particular S and L we have for x 6= 0 that,

TS,L(x) =

(
1 − 1

‖x‖
)

x +

(
2

‖x‖ − 1

)
〈x, a〉 a + hb.

Thus, if X is N -dimensional and (x(1), x(2), x(3), · · · , x(N)) denotes the coordi-
nates of x relative to an orthonormal basis B whose first two elements are respectively
a and b we have,

TS,L(x) =

(
x(1)

ρ
,

(
1− 1

ρ

)
x(2) + h,

(
1− 1

ρ

)
x(3), · · · ,

(
1− 1

ρ

)
x(N)

)
,

where ρ = ‖x‖ =
√

x(1)2 + · · ·+ x(N)2.

In this case the Douglas-Rachford scheme becomes,

xn+1(1) = xn(1)/ρn, (1.1)

xn+1(2) = h + [1− 1/ρn ] xn(2), and (1.2)

xn+1(k) = (1− 1/ρn ) xn(k), for k = 3, · · · , N, (1.3)

where ρn := ‖xn‖ =
√

xn(1)2 + · · ·+ xn(N)2.

From this it is clear that if the initial point x0 lies in the hyperplane 〈x, a〉 = 0; that
is x0(1) = 0, then all of the iterates remain in the hyperplane, which we will refer to
as a singular manifold for the problem. We will analyze this case in greater detail in
a subsequent section. Similarly, if the initial point lies in either of the two open half-
spaces 〈x, a〉 > 0 or 〈x, a〉 < 0; that is, x0(1) > 0 or x0(1) < 0 respectively, then all
subsequent iterates will remain in the same open half space. Further, by symmetry, it
suffices to only consider initial points lying in the positive open half-space x0(1) > 0.

Figure 1 shows two steps of the underlying geometric construction: the smaller
(green) points are the intermediate reflections in the sphere. Most figures were con-
structed in Cinderella (www.cinderella.de). A web applet version of the underlying
Cinderella construction is available at
http://www.carma.newcastle.edu.au/∼jb616/reflection.html. Indeed, many
of the insights for the proofs below came from examining the constructions. The
number of iterations N , the height of the line (α in the interface), and the the initial
point are all dynamic—changing one changes the entire visible trajectory.

Success of the Douglas-Rachford scheme relies on convergence of the (Picard) iterates,
xn = T n

A,B(x0), to a fixed point of the generally nonlinear operator TA,B in A∩B, as
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Figure 1: Two steps showing the construction.

n → ∞. When both A and B are closed convex sets convergence of the scheme (in
the weak topology) from any initial point in X to some point in A∩B was established
by Lions and Mercier [11].

However,as noted, many practical situations yield feasibility problems in which one
or more of the constraint sets is non-convex. That the Douglas-Rachford scheme
works well in many of these situations has been observed and exploited for some
years, despite the absence of any really satisfactory theoretical underpinning.

Remark 1 (divide-and-concur). If one wishes to find a point in the intersection of
M sets Ak in X we can instead consider

A :=
N∏

k=1

Ak

and the linear set

B := {x = (x1, x2, . . . , xM) : x1 = x2 = · · · = xM}.
Then we observe that

RA(x) =
∏

RAk
(xk)

so that the reflections may be ‘divided’ up and

PB(x) =

(
x1 + x2 + · · ·+ xM

M
, . . . ,

x1 + x2 + · · ·+ xM

M

)

so that the projection and reflection on B are averaging (‘concurrences’). Hence the
name [9]. ♦
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Example 1 (linear equations). For the hyperplane Ha := {x : 〈a, x〉 = b} the pro-
jection is

x 7→ x + {〈a, x〉 − b} a

‖a‖2
.

The consequent averaged-reflection version of the Douglas-Rachford recursion for a
point in the intersection of N distinct hyperplanes is:

x 7→ x +
2

N

N∑

k=1

{〈ak, x〉 − bk} ak

‖ak‖2
. (1.4)

The corresponding-averaged projection algorithm is:

x 7→ x +
1

N

N∑

k=1

{〈ak, x〉 − bk} ak

‖ak‖2
(1.5)

In more generality, projection and reflection lead to greater differences. ♦

For any two closed sets A and B and feasible point p ∈ A ∩ B we say that the
Douglas-Rachford scheme is locally convergent at p if there is a neighbourhood, Np

of p such that starting from any point x0 in Np the iterates T n
A,B(x0) converge to p.

The set comprising all initial points x0 for which the iterates converge to p is the
basin of attraction for p.

Remark 2 (The case of a half-line or segment). Note, even in two dimensions, alter-
nating projections, alternating reflections, project-project and average, and reflect-
reflect and average will all often converge to (locally nearest) infeasible points even
when A is simply the ray R := {[x, 0] : x > −1/2} and B is the circle as before.
They can also behave quite ‘chaotically’. (See Figure 2 for a periodic illustration in
Maple and Figure 3) for more complex behaviour. So the affine nature of the convex
set seems quite important. ♦

2 Local convergence when 0 ≤ h < 1

In this note, as a first step toward an understanding of the Douglas-Rachford scheme
in the absence of convexity, we analyze its behaviour in the indicative situation when

5



Figure 2: Iterated reflection with a line segment.

one of the sets is the non-convex sphere S and the other is the affine line L. We
begin by establishing local convergence of the scheme when 0 ≤ h < 1.

In this section we show, at least when X is finite dimensional, that for 0 ≤ h < 1
local convergence at each of the feasible points is a consequence of the following
theorem from the stability theory of difference equations. We appeal to:

Theorem 1 (Perron, [10]). If f : N×Rm −→ Rm satisfies,

lim
x→0

‖f(n, x)‖
‖x‖ = 0,

uniformly in n and M is a constant n×n matrix all of whose eigenvalues lie inside the
unit disk, then the zero solution [provided it is an isolated solution] of the difference
equation,

xn+1 = Mxn + f(n, xn),

is exponentially asymptotically stable; that is, there exists δ > 0, K > 0 and ζ ∈
(0, 1) such that if ‖x0‖ < δ then ‖xn‖ ≤ K‖x0‖ζn.
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Figure 3: More complex behaviour for a ray and circle.

Proof. We begin by noting that for our particular S and L the operator TS,L is
differentiable at any non-zero point y with derivative the linear operator,

T ′
y(x) =

〈(
2

‖y‖ − 1

)
x− 2

〈x, y〉
‖y‖3

y, a

〉
a +

(
1− 1

‖y‖
)

x +
〈x, y〉
‖y‖3

y.

By symmetry it suffices to consider local convergence at the unique point p of S ∩L
lying in the positive open half-space 〈x, a〉 > 0; that is p =

√
1− h2a + hb, Then, p

is an isolated fixed point of TS,L and, using ‖p‖ = 1 and 〈p, a〉 =
√

1− h2, we obtain,

T ′
p(x) =

〈
x, h2a− h

√
1− h2b

〉
a +

〈
x, h

√
1− h2a + h2b

〉
b.

Which, relative to the basis B corresponds to the n× n Hessian matrix,




h2 −h
√

1− h2 0 · · · 0

h
√

1− h2 h2 0 · · · 0
0 0 0 · · · 0
· · · ·
· · · ·
· · · ·
0 0 0 · · · 0




.
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Figure 4: Case with α = 0.95.

From this we immediately deduce that the only points in the spectrum of T ′
p are the

eigenvalues 0, and h2 ± ih
√

1− h2.

Introducing the change of variable ξ := x− p and defining f by,

f(ξ) := TS,L(p + ξ) − TS,L(p) − T ′
p(ξ),

we see that the Douglas-Rachford scheme becomes,

ξn+1 = TS,L(p + ξn)− p = TS,L(p + ξn)− TS,L(p) = T ′
p(ξ) + f(ξ).

Further, by the very definition of the derivative we have,

lim
ξ→0

‖f(ξ)‖
‖ξ‖ = lim

ξ→0

∥∥TS,L(p + ξ)− TS,L(p) − T ′
p(ξ)

∥∥
‖ξ‖ = 0.

Thus, all the conditions of Perron’s theorem are satisfied, provided T ′
p has its spec-

trum contained in the open unit disk. But, this follows immediately since the both
non-zero eigenvalues have modulus equal to h < 1, establishing that locally the
Douglas-Rachford scheme converges exponentially to ξ = 0; that is, to x = p.

Remark 3 (Explaining the spiral). It is also worthy of note that the non-zero eigen-
values both have arguments whose cosines have absolute value h, so ‘spiraling’ illus-
trated in Figure 4 should be less rapid the larger the value of h, an observation born
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Figure 5: Case with h = 0.

out by experiment. It should also be noted that when h = 1; that is, the line L is
tangential to the sphere S, Perron’s theorem fails to apply. The spiral never begins,
and indeed the conclusion is false as we will shortly show. ♦.

3 Convergence when h = 0

We show that starting from any initial point with x0(1) > 0 the Douglas-Rachford
scheme converges to the feasible point a = (1, 0, 0, · · · , 0), as illustrated in Figure
5. In this case the scheme (1.1), (1.2), (1.3) reduces to,

xn+1(1) = xn(1)/ρn, and

xn+1(k) = (1− 1/ρn ) xn(k), for k = 2, · · · , N,

with ρn = ‖xn‖ =
√

xn(1)2 + · · ·+ xn(N)2 ≥ xn(1) > 0.

Proposition 1. If ρn > 1 then ρ2
n+1 < ρ2

n.
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Proof. We may estimate as follows.

ρ2
n+1 =

xn(1)2

ρ2
n

+

(
1− 1

ρn

)2 N∑

k=2

xn(k)2

=
xn(1)2 + xn(2)2 + · · ·+ xn(N)2

ρ2
n

+

(
1− 2

ρn

) N∑

k=2

xn(k)2

= 1 +

(
1− 2

ρn

) N∑

k=2

xn(k)2

≤ 1 +

(
1− 2

ρn

+
1

ρ2
n

) N∑

k=2

xn(k)2

= 1 +

(
1− 1

ρn

)2 N∑

k=2

xn(k)2

≤ 1 +

(
1− 1

ρn

)2

ρ2
n

= 1 + (ρn − 1)2

= ρ2
n + 2(1− ρn)

< ρ2
n, as ρn > 1.

Corollary 1. If ρn > 1 for all n then ρn −→ 1.

Proof. By the above proposition, the ρn are decreasing and so converge to some limit
ρ ≥ 1. But then, taking limits in ρ2

n+1 ≤ ρ2
n +2(1− ρn) leads to ρ ≤ 1 , so ρ = 1.

Proposition 2. If ρn ≤ 1 then so too is ρn+1 ≤ 1.

Proof. From the first three lines in the proof of the above proposition we have

ρ2
n+1 = 1 +

(
1− 2

ρn

) N∑

k=2

xn(k)2

≤ 1−
N∑

k=2

xn(k)2, provided ρn ≤ 1

≤ 1.
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Theorem 2. If h = 0 and the initial point has x0(1) > 0 then the Douglas-Rachford
scheme converges to the feasible point (1, 0, 0, · · · , 0).

Proof. In case ρn > 1 for all n then, by the above corollary, ρn → 1, so by the
recurrence xn(k) → 0 for k = 2, · · · , N and xn → (1, 0, 0, · · · , 0).

On-the-other-hand, if this is not the case then there is a smallest n0 with ρn0 ≤ 1
and then either ρn′ = 1 for some n′ ≥ n0, in which case we have xn′+1(k) = 0 for
k = 2, · · · , N , so xn′+1 = (1, 0, · · · , 0) and we have arrived at the feasible point
after a finite number of steps, or alternatively from the last proposition ρn < 1
for all n ≥ n0. Consequently, the sequence (xn(1))∞n=n0

is strictly increasing (hence
convergent to some x(1) ≤ 1) and so for n ≥ n0 we have ρn ≥ xn(1) ≥ xn0 > 0. But
then, for each integer k ≥ 2 and n ≥ n0 we see from the recurrence that,

∣∣∣∣
xn+1(k)

xn+1(1)

∣∣∣∣ = (1− ρn)

∣∣∣∣
xn(k)

xn(1)

∣∣∣∣

≤ (1− xn0(1))

∣∣∣∣
xn(k)

xn(1)

∣∣∣∣ .

Hence,
xn(k)

xn(1)
converges to 0 and we conclude that xn −→ (1, 0, · · · , 0).

Remark 4 (Hilbert space analogues). It is not essential that X be finite dimensional
for any of the arguments in this section, though the convergence established in the
last theorem will only be weak convergence of the iterates to the feasible point. ♦

4 The tangential case when h = 1

When h = 1 the only feasible point is b = (0, 1, 0, · · · , 0), however we show that
starting from an initial point with x0(1) > 0 the Douglas-Rachford scheme converges
to a point yb = (0, y, 0, · · · , 0) with y > 1, whose projection onto either S or L is
the feasible point. The following result will be needed.

Proposition 3. If ρn > 2 then ρn+1 ≤ ρn.
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Figure 6: Case with h = 1.

Proof. The proof is similar to that of Proposition 1. We may estimate as follows.

ρ2
n+1 =

xn(1)2

ρ2
n

+

((
1− 1

ρn

)
xn(2) + 1

)2

+

(
1− 1

ρn

)2 N∑

k=3

xn(k)2

=
xn(1)2 + xn(2)2 + · · ·+ xn(N)2

ρ2
n

+

(
1− 2

ρn

) N∑

k=2

xn(k)2 + 2

(
1− 1

ρn

)
xn(2) + 1

= 2 +

(
1− 2

ρn

) N∑

k=2

xn(k)2 + 2

(
1− 1

ρn

)
xn(2)

≤ 2 +

(
1− 2

ρn

)
ρ2

n + 2

(
1− 1

ρn

)
ρn, as ρn > 2

= ρ2
n.

To show the asserted behaviour, we begin by noting that from the recurrence,

xn+1(2) = xn(2) + 1− xn(2)

ρn

≥ xn(2), (4.1)

since
xn(2)

ρn

≤ 1. Thus, the xn(2) are increasing and so either they converge to a

finite limit, y say, or they diverge to +∞.
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In the first case, taking limits in the above equation (4.1) yields y = limn xn(2) =
limn ρn and so xn −→ (0, y, 0, · · · , 0). Too see that y > 1 we argue as follows. We
have xn(1) → 0. But (1.1) shows xn+1(1) = xn(1)/ρn so there must be some ρn > 1.
On using (4.1) again, his implies that xn+1(2) − 1 = xn(2)(1 − 1/ρn) > 1 which in
turn implies that y > xn+1(2) > 1.

To show that the second divergent case is impossible we appeal to Proposition 3.
to deduce that if the xn(2) diverge to +∞, we must have for all sufficiently large n
that 2 < xn(2) ≤ ρn and so eventually the ρn are decreasing and hence convergent
to a finite limit which is necessarily greater than or equal to limn xn(2) which cannot
therefore be infinite; a contradiction.

Consequently, we have proved,

Theorem 3. When L is tangential to S at b (that is, when h = 1), starting from
any initial point with x0(1) 6= 0, the Douglas-Rachford scheme converges to a point
yb with y > 1.

This is consistent with the behaviour in the convex case [11, 5].

5 Behaviour in the infeasible case when h > 1

Satisfyingly, when there are no feasible solutions the Douglas-Rachford scheme di-
verges. More precisely,

Theorem 4. If there are no feasible solutions (that is, when h > 1) then for any
non-zero initial point xn(2) and hence ρn diverge at at least linear rate to +∞.

Proof. From the recursion we have,

xn+1(2)− xn(2) = h− xn(2)

ρn

> h− 1, as xn(2) < ρn

> 0,

from which the result follows.

It is also worth noting that, as a consequence of the above theorem and the re-
currence, xn(1) → 0 and so asymptotically the iterates approach the hyperplane
〈x, a〉 = 0.
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6 Behaviour on the singular manifold, 〈x, a〉 = 0

Here we consider the iterates of a non-zero initial point with x0(1) = 0 and so
xn(1) = 0 for all n.

We again distinguish the cases; h = 0, 0 < h < 1, h = 1. The case h > 1 having
already been dealt with in the previous section.

When h = 0 it is readily seen that any non-zero in the singular manifold TS,L(x) =(
1− 1

‖x‖

)
x. If ‖x‖ = 1 then the scheme breaks down after the first iterate. At

points with ‖x‖ < 1 we see that TS,L has period two (that is, T 2
S,L(x) = x), while

for ‖x‖ > 1 we have T 2
S,L(x) =

(
1− 2

‖x‖

)
x, so the scheme breaks down after two

iterations if ‖x‖ = 2.

We observe that the iterates of any non-zero point on the line {x : x = λb, λ ∈ R}
remain on this line and that when h = 1 (that is, L is tangential to S at b) non-zero
points on this line remain fixed under TS,L.

In the other cases the scheme can exhibit periodic behaviour when rational commen-
surability is present while in other situations the behaviour may be quite chaotic.
To make this precise we need to consider interval-valued mappings to deal with the
jump at the origin. Luckily, the work in [2, 1] shows that various interval mapping
analogues of Sharkovskii’s theorem are operative.

7 Some final remarks

A wealth of experimental evidence, using both Maple and the dynamic geometry
package Cinderella, leads to the conclusion that the basin of attraction for p =√

1− h2a + hb is the open half space {x : 〈x, a〉 > 0} – the largest region possible.
See also http://www.carma.newcastle.edu.au/∼jb616/expansion.html.
Moreover, we found that for stable computation in Cinderella it was necessary to have
access to precision beyond Cinderella’s built-in double precision. This was achieved
by taking input directly from Maple. We illustrate in Figure 7 which show various
spurious red points on the left and accurate data on the right. The figures show
the effect of roughly ten steps of the Douglas-Ratchford iteration for 400 different
starting points—where the points are coloured by their original distance from the
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Figure 7: Multiple iterations in Cinderella.

vertical axis with red closest.

However, we are as yet unable to furnish a proof of this, leaving open the following
conjecture:

Conjecture 1. In the simple example of a sphere and a line with two intersection
points, the basin of attraction is the two open half-spaces forming the complement of
the singular manifold.

Remark 5 (The case of a sphere and a hyperplane). If we replace the line L by a
hyperplane, say H := {x : 〈x, a〉 = h}, where ‖a‖ = 1 and 0 ≤ h < 1, then, except
in the 2-dimensional case where the situation is identical to the one analyzed above,
the feasible points are no longer isolated, so local convergence in the sense described
above is impossible.

However, a similar analysis shows firstly that for any non-feasible initial point x0 6= 0
the sequence of iterates, xn = T n

S,H(x0) is confined to the 2-dimensional subspace
M(x0, a) spanned by x0 and a. So, if the Douglas-Rachford scheme converges it
will converge to a point in S ∩ H ∩ M(x0, a). And then secondly, we have ‘local
convergence’in the following sense. For any feasible point p ∈ S ∩ H there is a
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neighbourhood, Np of p in M(p, a) such that starting from any point x0 in Np the
iterates converge to p.

Additionally, we may derive similar conclusions to those obtained above in the cases
when h = 0, h = 1 and h > 1. Further, in this case the singular manifold is the line
{x : x = λa, λ ∈ R}. ♦

In conclusion, our analysis sheds some light on the behaviour of non-convex Douglas-
Ratchford schemes but much remains to be studied.
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