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1. Introduction

In this short chapter we collect together examples of fixed point free nonexpansive
mappings in a variety of Banach spaces. These examples help delineate the class of
spaces enjoying the fpp, the w-fpp, or the w*-fpp. We begin by recalling the relevant
definitions.

Let X be a Banach space. A mappingT : C C X — X is nonexpansive if ||Tz —Ty|| <
|z —y||, for all z, y € C. The fixed point set of T is Fix(T') := {x € C : Tx = z}.

We say that the space X has the fixed point property (fpp) if for every nonempty closed
bounded convex subset C of X and every nonexpansive mapping 7" : C — C we have

Fix(T) # 0.

Similarly, X is said to have the weak fixed point property (w-fpp) if for every nonempty
weakly compact convex subset C of X and every nonexpansive mapping 7" : C — C we

have Fix(T) # 0.

If X is the dual space of a given Banach space E; X = E*, we say that X has the
weak* fixed point property (w*-fpp) if for every nonempty weak® compact (that is,
o(X, E)-compact) convex subset C' of X and every nonexpansive mapping T : C — C
we have Fix(T') # 0. Which subsets of X are weak* compact depends on the choice
of pre-dual. Thus, when discussing the w*-fpp it is important that we have a specific
pre-dual E in mind.

Clearly, we have fpp = w-fpp, with the two properties coinciding if X is reflexive,
and when X = E* we have fpp — w*-fpp = w-fpp. Finding characterizations
of those spaces enjoying the fpp, the w-fpp, or the w*-fpp are perhaps the three most
fundamental questions of metric fixed point theory. All three questions remain open.

Much of the effort expended on metric fixed point theory has gone into identifying
widely applicable and easily verifiable sufficient conditions for either the fpp, the w-
fpp, or the w*-fpp. The results of these efforts occupy a considerable portion of this
handbook. This chapter approaches the questions from the opposite direction by iden-
tifying spaces which fail one or more of these properties.
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Unfortunately, known examples of fixed point free nonexpansive mappings are rather
sparse. With the exception of Alspach’s example (or modifications of it, see section
4), the mappings concerned are adaptations of affine maps (indeed, modified shifts), or
minor variants thereof. This dearth of examples is a major impediment to a fuller un-
derstanding of metric fixed point theory and the discovery of informative new examples
would be an important step forward.

In the following section we will document examples that demonstrate failure of the
fpp. Subsequent sections will deal with more specialized examples that demonstrate
failures of the w*-fpp in duals of certain Banach spaces and finally Alspach’s famous
demonstration that the w-fpp fails in L;[0, 1].

2. Examples on closed bounded convex sets

Example 2.1 ¢ fails the fpp.
Let C = BC+0 = {(zp) €cp:0< 2z, <1, all n} and define two afline maps by
Ti{zn) :=(1, 21, a2, ...)
and
Tozn) = (1 —z1, @1, 22, -..).

Then for ¢ = 1, 2 and any x,y € ¢y we easily see that | T,z — Tyy|| = ||z — y||- So, both
Ty and T, are nonexpansive, indeed metric isometries, and map C into C. On the other
hand, the only possible fixed point for 73 is (1,1,1,...) while the only possible fixed

point for T3 is (%, %, %, ...) neither of which is in ¢g.

It is possible to generalize the above examples in the way illustrated by the next ex-
ample.

Example 2.2 ¢ fails the fpp with a contraction; that is a mapping T for which ||Tz —
Ty| < ||& —y| whenever z #y.

As an alternative to the presentation in example 2.1, we will describe the current
example using the standard Schauder basis; ey, ez, e3,- -+ of ¢p, where e, := (6n,;) with
Spn=1and 6,; =0 for i # n.

Let (An) be a decreasing sequence of real numbers converging 1. Define,

C = {Ztn/\nen : (t) € cg with 0 < ¢, < 1}

n=1

and an affine map T on C by,

o0 o0
T (Ztn/\nen) =Me1+ Y tndnrienga.
n=1

n=1

Straight forward calculations show that 7" is a mapping of C into C that is always
nonexpansive and a contraction, provided the sequence () is strictly decreasing, whose
only possible fixed point is (A1, A2, A3, --) € co.

We would like to have examples of fixed point free non-affine nonexpansive maps on
nonempty closed bounded convex subsets of ¢g. Here is a simple example of such a
map due to C. Lennard [private communication, 1995].
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Example 2.3 ¢y fails the fpp with a non-affine contraction.

Let C be defined as in example 2.1 and let (p,) be any real sequence that strictly
decreases to 1. Define T" by

3 pl ) pk b
Then T is readily seen to be a non-affine contraction mapping C into C. Furthermore,

if p := []2 pn is finite, then a simple calculation shows that T" is fixed point free.

To put the next example into context it is important to recall that cp enjoys the w-fpp.

Example 2.4 ¢ fails the fpp for a contraction and on a set which is compact in a
topology only slightly coarser than the weak topology.

The ideas underlying this somewhat interesting example should be clear to anyone
familiar with properties of the summing basis for ¢y. However, some of the details are
both tedious and technical and will only be sketched. The interested reader is referred
to [6] for a fuller account.

Let a = (a(n)) be a strictly decreasing sequence of ‘weights’ in loo satisfying a < a(n) <
3, for some 0 < o < 3 < co. Define elements of ¢g by: ap := 0 and

an = (a(l),...,a(n),0,0,...) forn=1,23,....

and let K be the closed convex hull of {a,}32y. Thus, K consists of all vectors of the
form

S Mt = (a(l)(l — o), a(2)(1 = (o + M)),a(3) (1= (Ao + M + M), .. )

n=0
where A, >0, for all n, and 3 o> (A, = 1.
If T, denotes the affine map defined on K by,

Ta(a(l)(l—/\o),a(2)(1A(A0+)\1)),...) = <a(1),a(2)(1—)\0),a(3)(1—(/\0+/\1)),...),

then we have the following.

Lemma 2.5 (i) T, maps K into K,
(i1} T is a contraction,

(iii) Ty ¢s fized point free in K.
Proof. To establish (i) it suffices to note that for A, > 0 and > 7 A = 1, we have
T(3 Mian) = <a,(1),a(2)(1 — ), a(3)(1 = (Ao + M))s - )
n=0

00
= Z An_1an € K.

n=1
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To verify (ii) note that for z = (a(l)(l—Ao),a(Q)(lv(Ao+A1)), . ) andy = (a(l)(l —
o), a(2)(1 — (uo + p1)), - ) we have

lz = yll = sup{a(1)|uo — Aol,a(2)[p0 — X+ p1 = Ml },

while

| Tu — Tayll = sup{a(@)lpo — Mol a(3) o = do + 1 — Adls... }.
Since a = (a(n)) is a strictly decreasing sequence, we now readily see that T, is a
contraction. Note: if the weights (a(n)) were only required to be decreasing then Tp,
would be nonexpansive, but not necessarily contractive.
Finally, suppose that z = (a(l)(l = X),a(2)(1—(Xo+ A1), .. ) were a fixed point of
T,; that is,

o =Ty = (a(l),a(Q)(l —20),a(3)(1 - (Mo + /\1)),...>.

Then, we would have A\g = 0, A\; = 0,... contradicting the requirement that o (A, =
1, and so we have (iii).

We now introduce a topology &, into ¢g which is only slightly coarser than the weak
topology , but with respect to which K is compact.

To define this topology, we regard a = (a(n)) as an element of ¢} and define

E, :=ker(a) = {(y(n)) € ly : Zy(n)a(n) =0}.
Thus, E, is a norm closed, but not weak* closed (as a ¢ ¢p), co-dimension one subspace
of £1 = ¢. So, E, is a weak*-dense, and hence, norming subspace for ¢g. Indeed simple
calculations show that for x € ¢g,

Yl < sup{f(@): f € Fa, £l < 1} < |-

a+p

We define &, := o{cg, Eq). That is, £ is the smallest locally convex linear topology on
cp for which all the elements of E,; are continuous as linear functionals on cg.

The topology £, may be seen as only ‘slightly’ coarser than the weak topology, o(cg, £1),
on ¢g, being induced by a norming codimension one subspace of ¢;. None-the-less it
displays some unusual, though not too pathological, properties. Here are some exam-
ples. A sequence (z,,) in ¢p is &, convergent to « € ¢q if and only if for every f € Eq, we
have f(z,) — f(z). Closures are sequentially determined in the &, topology. However,
the norm is not &,-lower semi-continuous and Mazur’s theorem is not valid for the £,
topology. The sequence a,, does not have any weakly convergent subsequences, but
Ay, L, ag = 0. This will be used to show that K is £,-compact. However, first we need
the following lemma.

Lemma 2.6 K is £,-closed.

Proof. Forn=1,2,... let

on =Y Ak = (a1 = A7), @) (1 (O + 40,
k=0
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where )\,(c") >0and ) 7, )\gl) =1, be such that z, =% z = (ma(l), pnoa(2},. .

Choosing f := (1/a(1),—-1/a(2).0,0,...) € E, we have
flon =) = (1= A = 1) ~ (1= A = A — pg) — 0

That is
/\E”) — 1 — Ho-

Similarly, choosing f := (0,1/a(2},—-1/a(3),0,0,...) we obtain,
)\;n) ~— /1,2 - p,g,

and in general,
/\,(J” = [k — k-
Thus, for k=1,2,...
Ak = ptk — pkery = Im A7 >0
n

and
x = (a(1), (i — A)a(2), (g1 — M = A)a(3),...) € co.

So we must have -
p1 = Z Ap 2 0,
E=1
and then, provided p1 <1,
o
=Y Mdp € K.
k=1

But, given € > 0 there exists N so that

00 N
p= Z/\k < 2Ak+€/2’
k=1 k=1

and there exists n for which
=AM <e/2N, fork=1,2,.. ,N.
Thus,

N oo
p <Y A ve<ive asdy Al =1,
k=1 k=0
and so p1 < 1, as required.

).
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Since a5, % aq, we have that {an}ory is Eq-compact. The E-compactness of K then
follows from Lemma 2.6, the definition of &,, and the following general rcsult from

Banach space theory (see, for example, [6] for a proof).

Lemma 2.7 Let X be a separable Banach space and let M be a closed norming subspace

of X*. If D C X is o(X, M)-compact then co(D) is o(X, M)-precompact.

This example suggests the following open question: Does a nonempty closed bounded
convex subset of ¢y have the fpp if and only if it is weakly compact? See [6] for more

evidence in support of this.



40
3. Examples on weak* compact convex sets

Example 3.1 [ == ¢} with the equivalent dual norm ||f||' := ||f*|| vV |If~|| fails the
w*-fpp.

This example is due to T. C. Lim [4] and provides us with a nonexpansive map T on
a domain C' that is a w*-compact minimal invariant set for T’ of diameter 2.

We first show that || - ||’ is indeed an equivalent dual norm for I3. To this end, for = € ¢y
define

llll” = 21l + [l=~ |
Then || - ||' is an equivalent norm on ¢o satisfying ||z]| < ||lz[' < 2||z|| and so it suffices

to show that for f € l; we have
[f1I" = sup{f(z) : = € co, f|z|" < 1}.
Now for = € ¢q with ||z]]’ < 1 let

y¢={ ZT; if f,_'zi>0

0 otherwise.

Then |ly|' < ||z]|/ < 1 and
fla):=) fuxs
i=1
<Y i
=1

< W I+ )
+ —_
= (=i 1

ligl’ Iyl
< (I IE= I el
< I

To see the reverse inequality note that || f*]| (or || f7]|) can be approximated arbitrarily
well by f(z) where the z; are a suitable choice of 0 or 1 (0 or —1) and so ||z]|’ < 1.

Nowlet C={f €ly: f; >0,|f|' <1} and define T by

Tf = (I_Zf'u fl; f2? )

=1

C is closed and bounded with respect to || - || and since the unit ball centred at 0 in
the same norm is w*-compact we have C is a weak*-compact convex subset of [;. It is
readily verified that T is a fixed point free affine mapping of C into C. Furthermore
C is a minimal invariant set for 7. To see this note that for any f = (fm) € C the
successive iterates are:

o0

Tf: (1_me1f17f2a"')

1

Tzf: (Oyl_zfm7fl5f27"')
1
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T3 =(0,0,1= Y fm, f1. f2r--.)
1

So, T"f —™" 0. Thus 0 belongs to any nonempty T-invariant w*-compact convex
subset K of C. Hence the n’th basis vector, e, = T7™(0), is in K. It follows that
C=¢td{e,} CK CC,s0K=C.

We conclude by showing that T is a metric isometry (hence certainly a nonexpansive
mapping) on C.

Given f,ge Clet P:={i: fi—g; >0} and N := {i: fi —~ g; < 0}. In the case that
Zp(fz - i) > ZN(gi — f:) we have
i€ i€

|Tf - Tq||’—H(Z(!h f) fi=g1, fa— g2, - )H
=[(C w2020, fi-a fman )

N iep
negative
= Max{Z(fi — 9i)s Z(Qz - fz)}
icpP €N
=/ — gl
The equality follows similarly in the case when | f — g||' = Z (g: — fi)-

S

Example 3.2 1) = ¢* with its natural norm fails the w*-ffp for an affine contraction.

It will be convenient to take the dual action of 1 on ¢ to be
(Fu)lzn) = fiz1 + f2 liTILnfn, + faza + ...,

where (f,) € I1 and (z,) € c. In particular then, regarding z = (-1,1,1,...) Ecas a
weak™ continuous linear functional over l1. we see that,

{fell fi= iﬂ} =kerz
=2

is a w*—closed hyperplane and consequently the set

:{f,fizo,]ﬁ:Zfley}

1=2

being the intersection of ker z and weak* closed halfspaces is itself convex and weak*
closed. Obviously, C C ZBZ, so C is weak® compact.

Now, let & € (0,1] and let (ex) C [0,1) be a sequence such that Y 72 e < oo and so
[Tre; (1 — &) > 0. Define a mapping by

r(f)= (5(1—f1)+2(1—fk)fk+1,5(1—f1)7(1—61)f27(1—fz)fsy---> 7

k=1
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then T is clearly an affine mapping. We claim that T is a fixed point free nonexpansive
mapping of C into C and further, T is a contraction if all the e are strictly positive.

To prove the T-invariance of K we need to show that (Tf), > 0, (Tf)1 =320 (T )«
and (T f)1 < 1. The first two are obvious, for the third observe that,

T =60—f)+> (1= fer1 81— f)+ /L <b+(1-6fi <6+(1-6)=1.
k=1
‘We next show that T is always nonexpansive:

ITf — Tyl

= 18(g1 — f1) + ) (1= ex)(frrr = gre)| + [6(gn — fOI+ D (1 — &)l fesr — giral

k=1 k=1
o0 o0
=16 —1)(g1 — f)+ Y erlferr = gre1)| + 18091 — A+ D (1 — )| frs1 — grral
k=t =
<(A=8)lg1— Al+ D elferr —genl +8l(g1 — A+ D (1 — )l fer1 — g1l
. k=1 k=1
= Ifx—axl
k=1
=f-gl-
Now suppose that e > 0, for all k, and that |Tf — Tg| = ||f — g||, then the above
contains only equalities. Hence
-
(1= 8)(91 = f1) = D exlgrsr — fes1)|
=
= [(1=8)(g1 = f)l + 1D exlgrsr — fisr)| (1)
k=1
and
0
1Y ek(firr = gea)l = D exlfiers — gesl- (2)

k=1
To satisfy (1) we must either have

(1-8(g—fHh)=0

and
[o 0]

> er(grr1 — frp1) <O

k=1
or the reverse. Both cases follow a similar proof so we will prove the first case only.
From (2) we see that the elements of the sum > 77, ex(fr+1 — gry1) are either all
negative or all positive, so we must have

fx =gk, fork>2.

But also, g; > f1, and hence

[ee] [e o)
A=Y fe2) g=a12 h.
k=2 k=2
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Thus fi = g for &k > 1; that is, f = g and so T is a contraction.

Lastly we show that 7" is indeed fixed point free. Suppose therc were an f € C with
Tf = f. Then, for n > 3 we would have,
(n=0—en-2fo1= (1 —en2)(1 —€n3)...(1 = €1) fo.

Thus, if fo =0, then f, = 0 for n > 3 and also §(1 — f;) = 0, whence f; = 1 and we
have the contradiction:

fr=@Mh=60-)+> (1—e)fes1=0%#fi.

k=1
Consequently we must have fp # 0 and, since f, — 0 as n — oo, we have

Ay, =0

This means [[p- (1 — ) = 0 which contradicts 3 oo | € < oo.

When T is a contraction there can be only one minimal invariant set for T', but we do
not know if C' is itself that minimal invariant set. However, when ¢, = 0, for k = 1,2, ...,
this is not the case [2]. There is a smaller weak* closed convex T-invariant set; namely,

C'={feC:f=1}

and a slightly more subtle variant of the argument used in example 3.1 shows that in
this case C” is in fact the unique minimal invariant set for the nonexpansive map 7.
Indeed, simple calculations show that in these cases the orbit of any point of C under
T converges weak* to fo := (1,1,0,0,---). So, fp is in any set which is T-invariant
and it suffices to note that the closed convex hull of the orbit of fy is ¢’. Computer
experiments show that when the ¢ are not all zero C’ need not be T-invariant.

Example 3.3 A non-affine example in l; = ¢*.

In the same spirit as example 2.3 C. Lennard [private communication, 1995] has given
a non-affine variant of example 3.2 in the case when § =1 and ¢ = 0, for all k.

Let C be defined as in example 3.2, and let (p,) be any sequence of real numbers that
strictly decreases to 1. Define T" by

oo P Pr
f'Jl P1 f

Tf:: 171—‘2 s 7f2 ’. ) k+17
P; N Pk

j=1

Then one may verify that 7" is a non-affine contraction of C into C. Furthermore, if
p =[], pn is finite, then T is readily seen to be fixed point free.

4, Examples on weak compact convex sets

Although the question had been raised more than twenty years earlier it was not until
1981 that Dale Alspach gave an example, drawn from ergodic theory, showing that not
all Banach spaces enjoy the w-FPP.

Example 4.1 Alspach’s example [1]
Here we take C to be the set

-1
C:={feLi0,1]:0< f<1, /0 fdz =13}
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As the intersection of an order interval with a hyperplane in an order continuous Banach
lattice, C is weak compact.
The mapping T is essentially the baker transform of ergodic theory. Formally, for f € C
<t< i
TFH) = (2f(2t)) Al for(i_t_27
(2f(2t-1)=1)v0 for 3 <t <1
It is clear from the above description that 7" is an isometry on C.
We now show that T is fixed point free and hence L;[0,1], and any space containing
an isometric copy of it, fails to have the w-fpp.

Intuitively the idea is simple. First observe that the successive iterates of any point
in C under T assume values closer to 0 or 1. Hence any fixed point for T must be a
function which assumes only the values 0 or 1. By the ‘ergodic’ nature of T' it then
follows that such a function must be either constantly 0 or constantly 1, and neither of
these functions lie in C.

The details follow.

For any f € C we have T'f(t) = 1 if and only if either

0<t<i and L<f)<1

1
2

or
3<t<1l and f(2t—1)=1

Furthermore if % <t <1andTf(¢t) =1, then Tf(t— %) =1.

Now, suppose f is a fixed point for T then

A:={t: ft) =1}
= {t:Tf() =1}
={t:0<t<land i< f2)<1}U{t:3<t<land f2t—1)=1}
={3t: 3 <fO) SVU{z+gt: ft) =1}
=3{t: 1< fH) <1}ULAU(5 +1A)

Since the three sets in the above union are mutually disjoint and each of the last two
sets has measure one half that of A it follows that:

Bii={t:§<f(t)<1)

is a null set. But, then
By ={t:3 <Tf(t) <1}
S{Eis i) <$}

and so By == {t : + < f(t) < 1} is also a null set. Continuing in this way we have

Bn::{t:2i<f(t)<—2%}

n —

is a null set for n =1, 2, ..., hence

{t:0<f(t)<1}=[jBn
n=1
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is null and L
f=xa (where meas(A)= / xa=3)
Jo
From the definition of 7" we have
T(xa) = (X%A + X(%+%A))

so, up to sets of measure zero,

Continuing to iterate under T yields
A=JAU(G+3AHVG 1A UE+14)
A=3AUG+EAUVG+HEAU. ..

el hoc genus omne.

Thus, the interscction of A with any dyadic interval (and hence any interval) has
measure one half that of the interval, an impossibility for a set which is not of full
measure.

Notice that, unlike the previous example, the domain C of the baker transform 7T is
not a minimal invariant set. This follows since

diam(C) =1,
as
L2 diam(C) = [Ixp 1 = x2 yylh = 1,
while for any f € C we have —% <f- % < % hence

1 1 1, 1
if- §X[o,1]||1 = ./0 |lf - Ql < 3

Thus, C is not diametral and therefore not a minimal invariant set.

Indeed there seems to be no known explicit example of a non-trivial minimal invariant
set for a nonexpansive map on a weak compact convex set.

Example 4.2 Sine’s modification of the Alspach example

Robert Sine [9] gave the following modification to example 4.1 which allows us to take
as the domain C of our fixed point free nonexpansive mapping the whole order interval
of 0 < f< 1.

For feC:={g:0<g <1} let Sf := X0 — [, then S defines a mapping of C' onto
C with |Sf — Sgl| = ||f — g| for all f,ge C.

An argument similar to that for Alspach’s example shows that the composition ST,
where T is the baker transform of 4.1, is an isometry on C with x4 where A = [0, 1]
or 0 the only possible fixed points. However, the action of ST is to map each of these
functions onto the other, hence ST is fized point frec on the order interval 0 < f < 1.

Example 4.3 Schechtman’s construction. Gideon Schechtman [8] gave a construction
which leads to a greater variety of examples and is in some regards somewhat simpler
than that of Alspach.
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Suppose (€2, ¥, 1) is a measure space for which there exists a measure preserving trans-
formation 7 : @ — € x [0,1]; that is, for any measurable S C Q x [0,1] we have
p(771S) = meas(S) [3]. Then if C is the weak compact convex set

Com{feLilw) 07<1 md [ f=1)
JQ
we can define a mapping 7': C — C by
T X w0t < jw)

Clearly T is an isometry on C and f € C is a fixed point for 7" if and only if f = x4
where A € ¥ is such that u(A) = 1 and 7(4) = 7 Y(A % [0,1]) = A a.e.

Thus if 7 is further chosen so that 7 is ergodic ; that is 7(A) = A a.e. if and only if
A=Qor A= ¢, then T is an example of a fired point free nonexpansive mapping on
C.

Perhaps the simplest example of an (£, %, 1) and 7 suitable for the above construction
is the following.

Let 2 = [0, 1]% with product Lebesgue measure and define T by
T“l((wl, wa, ... ), t) = (¢, wi, wa, ...) .

Clearly 7 is measure preserving, further if A # ¢ and 7(A) = A, then for any

(w1, wg, ...) € A we see that (¢, w1, wz, ...) € A for any ¢t € [0,1]. Tterating under 7
gives

(t1, ta, -- .y tny, wi, W2, ...) € A for any n € N and ¢y, t2, ..., ¢, € [0,1], and so we
have A = ().

An alternative example with 2 = [0, 1] is obtained by taking

_ s
1(22n’22n) ::;+2_2+2_§+24+

n=1

where ¢,, &, € {0,1} for n = 1,2,... A good way to view this example is via the
correspondernce

[0,1] «— {0,1}%: Z—;% — (€1, €2, ...).

n=1

A set specified by prescribing precisely m of the €,’s has measure 1/2™. From this it is
clear that the product of two such sets has measure 1/2™17™2 where m; + ms is also
the number of digits prescribed for points in the 7-1 image of the product. Tt follows
that 7 is measure preserving. The ergodicity is established by iterating under 7 and an
argument similar to that used for the conclusion of Alspach’s example.

Remark 4.4 Schechtman’s construction is both simpler and more versatile than that
of Alspach and is of course also amenable to Sine’s modification. None-the-less, the
Alspach example has some advantages. The relatively simple action of the baker trans-
form permits detailed calculations. For example, it is possible to determine the orbit
fo, Tfo, T%fo, T2 fo, ..., of certain starting functions fo under T. If fy = %X[o,l] we
obtain the iterates depicted below.
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1

| |
——

fo T fo T2 fo T3 fy

(e &L

Here we see that the sequence T"fy = %(rn + 1) is an orbit under T, where 7, is
the n’th Rademacher function. This may be combined with a result of Maurey ([7],
also see the chapter entitled Ultra-methods in metric fixed point theory); that reflexive
subspaces of L;[0, 1] have the fixed point property, to show that the closed convex hull
of an orbit of a nonexpansive mapping on a weakly compact convex set need not be
invariant. Indeed, define D to be T{T™(fy) : n € N}. Since the closed linear span of
the Rademacher functions is isomorphic to Lz[0, 1] [5], D can not be invariant. Indeed,
were it invariant, Maurey’s result on the reflexive subspaces of L0, 1], would imply
that T" possessed a fixed point in D and, a fortiori, in C.

5. Notes and Remarks

Example 2.1 is due to Kakutani, the modification presented in example 2.2 is due to
Lennard. The presence of the A, allow one to compensate for slight perturbations of
the e,. Thus, the conclusion remains valid if the vectors e, are replaced by vectors z,,
which are ‘asymptotic’ to the basis vectors. This allows the example to be transported
into spaces containing an ‘asymptotically isometric copy’ of ¢y, thereby demonstrating
that such spaces fail to have the fpp. Similarly, example 3.2 may be exploited to show
that spaces containing an ‘asymptotically isometric copy’ of ¢, also fail the fpp. Details
of these exciting new ideas may be found in the chapter entitled Renormings of £1 and
cp and fixed point properties.

Example 3.2 is also due to Lennard, the observation that it is in fact a contraction was
made by Smyth who also extended it to the following broader result [10]: Let Q be
an infinite compact Hausdorff topological space. Then C(§2)* fails the w*-fpp with an
affine contraction.

In our example 2 is the one point compactification of N, where ‘oo’ is the extra point.
So we can write n € Q in the form n = (1,00,2,3, ...). Now, if for z = (21, 23, 23,...) € ¢
we write
z= (21, lim 2y, 29, 23, ...)
n—o0

z is a continuous function on 2. This is because

lim z(n) = lim 2, = z(c0).
n—oo n—oo

So c=C(Q). If we let l; act on ¢ by
z(z) = x121 + 2 lim +x322+ ..., Ve €l,z€c
00
then §) = ¢* = C(£2)* and T is the affine contraction for which the.w*-fpp fails.

The fpp, w-fpp, or w*-fpp relate to all mappings in a particular class having fixed
points. This class of mappings depends on both which mappings are picked out as
nonexpansive by the norm and which domains are admissible. Since ¢; = ¢f enjoys the
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w*-fpp in its natural norm, examples 3.1 and 3.2 taken together show that both of these
factors are critical. Moving to an equivalent norm varies which mappings are picked
out as nonexpansive, but not the admissible domains. On the other hand, for a dual
space, changing the pre-dual does not affect the dual norm, nor alter which mapping are
nonexpansive, but does change the class of admissible domains. These considerations
also show that any characterization of the w*-fpp will necessarily involve a condition
on the pre-dual.

Chris Lennard [private communication, 1996] has given a wavelet construction of a
fixed point free isometry, similar to that of Alspach, and also on the order interval
[0<f<1]in L1]0,1].

PROBLEMS.

The results of section 4 indicate an intimate connection between fixed point free isome-
tries and ergodic transformations of the underlying measure space. In the true tradition
of ergodic theory, we ask:

Is the set of fized point free isometries on the order interval [0 < f < 1] residual in
an appropriate sense, at least among isometries which map into the set of 0,1-valued
functions?

Clearly any space containing an isometric copy of L1(u) also fails the w-fpp. Can one
give an intrinsic description of examples demonstrating this failure for the spaces lo

and C[0,1]?
Examples 3.1, 3.2 and those of section 4 also suggest the following question.

If a space X fails the (w, w* )-fpp does it necessarily fail with an isometry?
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