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-xeZ peints of nonexpansive mappings and Chebyshev

centers in Banach spaces with noxrms of type (KK)

D. van Dulst and Brailley Sims

1. The norm of a Banach space is said to be a Kadec-Klee (K¥X) norm provided that on
the unit sphere sequences converge in norm whenever they converge weakly. In [4] Huff
reformulates the (KK) property and introduces two successively stronger notions,
namely wniformly Kadec-Klee (UKK) and nearly uniformly convex (NUC). We recall his
definitions.

For every € > 0 there exists a 6 = 6(eg) > 0 such that

S
Ix1 <1 (n=1, 2, ...)
n
w
(UKK) : X, — x = fxh <1-~3¢

sep{x_) 2 €
P\n

(sep(x_) is defined as inf{lx - x| : m # n}. )
n n m

For every € > 0 there exists a 6 = 8(g) > 0 such that

< =
Ixnl <1 (n 1, 2, ...)

§0) # ¢

1
(NUC) : } = co(x_ ) n B
n 1-

J

2
sep(xn) €

(co(xn) denotes the convex hull of {xn :n € N}, and Br(x) the closed ball with
center x and radius r.)
It is shown in [4] that X ;s (NUC) if and only if X is (UKK) and reflexive.

“w» Clearly (NUC) is implied by uniform convexity (UC), so that we have
(UC) =» (NUC) =» (UKK) = (KK).

It turns out that all of these notions are different: for each pair of properties
there exists a space having the weaker of the two but failing to be isomorphic to
any space with the stronger one (cf [4].) In this paper we shall be concerned with
the property (UKK) and with & weakening of it which we now define.

Definition. (The norm of)a Banach space is called weakly wniformly Kadec—Klee (WUKE)

if there exist an £ <1 ané a & > 0 such that



X —tXx - Ix] $1-86
2
sep(xn) €

For dual Banach spaces we shall also consider the corresponding dual properties
denocted by (XX*), (UKK*) and (WUKK*), respectively.
(kX*) (for general dual spaces)and (UKX¥) and (WUKK*) (for duals with w*-sequential-
ly compact unit ball) are cbtained by replacing w-convergence with w*convergence
" in the above definitions. In section 3 we shall extend the definitions of (UKK*)
and (WUKK*) to general dual spaces.

We now recall some notions ffom fixed point theory. A mapping T: C + X defined
on a subset C of a Banach space X is said to be non—gzpansive if
It - Tyl s Ix -yl for all x, y € C. We say that a [duall Banach space X has
the [duall fized point property (FPP} [(FPP*}1 if for every w-compact [w*compact]
convex subset C © X and for every nonexpansive T: C » C, T has a fixed pcint&C.
It is known (cf [1]) that Ll[o,l] does not have (FPP). On the other hand a classical
result of Kirk ([5]) states that if weakly compact convex sets in X have ncrmal
structure, then X has (FPP). (A convex set K « X 1is said to have normal structure
if for each bounded convex subset C of K which is not a singleton, there exists
at least one point x ¢ C with sup{lx -y} : y € C} < diam C. Such a peint x
is called nondiametral.) A corresponding dual result is true for dual Banach spaces
(cf£. [6]). we now recall the concept of Chebyshev center. Let B and C be subsets
of a Banach space and let B be bounded. For each x ¢ C define

r(x) := sup{bx - yvi : y € B}
and put

Ty = inf{r(x) : x € C}.

A

Then the (possibly empty) set {x € C: r{(x) = ro} is called the Chebyshev center of

B with respect to C and r, the radiue of B w.r.t. C. It is well known that
if ¢ 1is w-compact and convex then Chebyshev centers w.r.t. C are non-empty,
w-compact and convex; because the function r 1is continuous and convex and therefore
w-Z.s.c. If C is w~compact and convex and has normal structure, then the (non-empty)
Chedbysnev center A of C w.r.t. itself is strictly contained in C. Furthermore.

A 1is invariant under T for any nonexpansive T: C ~ € if C is minimal w.r.t.

being w-compact, convex and T-invariant. These facts(which contradict each other)
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i-vp the proof of Kirk's thecrem. It also follows from the second fact and the
S:T_Euje:—m'chonoff theorer that if Chebyshev centers w.r.t. w-compact convex sets
are compact, then X has (FPP). Similarly, if Chebyshev centers w.r.t. w¥-
cocpact convex sets in a dual Banach space can be shown to be compact and non-empty,
then X has (FPP¥).

In this paper we investigate (UKK), (WUKK) and (UKK*), (WUKK*) in connection
witn (FPP), respectively (FPP¥). It turns out (section 2) that (WUKK) implies
tnat w-compact convex sets have normal structure. Bence (WUKK) implies (FPP), by
x1rk's thecrem. In case (UXX) holds, more can be said. Namely, Chebyshev centers
w.r.t. w-ccmpact convex sets are compact {and convex). In section 3 we extend the
Gefinition of (WUKK*) and (U)G(*) to general dual spaces.
1t is then shown that the corresponding dual results are true: (WUKK*) implies
(FPP*), while (UKK*) implies that Chebyshev centers \:v.r.t. w*-compact convex sets are
non-empty and compact. Our results here include the case of !.1 (for which a
slightly stronger result was proved by Lim in [6]) andmany others. Section 4 contains
examples. They demonstrate the usefulness of the property (WUKK): almost always it
is much easier to check than normal structure. Among other things we show that in
Thecrem 3 the reguirement € < 1 in (WUKK*) cannot"i;e‘relaxed.
An easy example shows that (WUKK) does not imply compactness of Chebyshev centers.

It is also proved that neither (XX} = (WUKK) nor (WUKK) = (KK) are true.

2. THEOREM 1. A Banach space X satisfying (WIKK) has (FPP).
rocf. It suffices to show that every w-compact convex subset C of X consisting
of more than one point contains a non-diametral point. Suppose not. Then, by a

metnod of Brodskii-Milman [2], there exists a sequence (xn) c € satisfying

(1) lim d(x , co{xX_ +...,x }) = diam C
n+1 1 n -
N
Any subsequence of (xn) again satisfies (1), so we may, by weak compactness, assuxe

that x - 4 By applying first a translation and then a multiplication, we may
further simplify the situation ané assume that X —~— 0 and diam C = 1. Since
we weak and the norm closure of co(xn) coincide, (1) implies in particular that
2l Ix 1 =1. Nowlet €< 1 and &> 0 be as in the definition of (WUKK). Choose

n € N such that Ix § > 1 - & and such that d(x ,, co{x_ ,...,x }) > € whenever
L Ng - n+1 1 n

o2 n.. i - . - <

o Consider now the sequence (xno xn) n=rg+1 Cl‘e'arly lxno xnl 1
{n=n+1, n +2, ...), sep(x - x)2¢ and x_ - x_ ——+ Xx_ . Tnis contra-
) 0 0 ng n Dy n ng
Cicts  (WUKK) since lx!1 I > 1 -6,

1

TEZOREM 2. 1If a Banach space X has (UKK), then Chelyshev centere w.r.t. w-

Somact convex sets are eampact (and ron-empty and convex).



Prccf. Let C © X be w-compact and ccnvex and let B © X be bounded. Let A be
the Chebyshev center of B w.r.t. C and I, its radius. We have observed earlier
that A 1is w-compact, convex and non-empty.

If A 1is not compact, then A contains a sequence (xn) with sep(xn) 2 ¢, for
scme € > 0. By passing to a subsequence we may assume that xn—E—+x. Choose

§ = d(ft) > 0 as in the definition of (UKK)} and fix y € B. By definition we have

-1 _ -1 ~1
lro (xn-y)l <1 (n=1,2,...), sep(r0 (xn-y)) = r, e and

rgl(xn‘-y) = rgl(x-y). Thus (UKX) implies fx-yl < (1- 6)r0. Since y € B

was arbitrary this contradicts the definition of r, as the radius of B w.r.t. C.

COROLLARY. If X has (Nuc), then X has normal structure.

Proof. (NUC) implies reflexivity ([4]), so every closed bounded convex set C is
w-compact, If C 1is compact, then it is well-known to ?ave a non-diametral point.
1£f not, then the Chebyshev center A of C w.r.t. itself is compact by Theorem 2.
Thus A ; C, hence r0(= the radius) < diam C. Any point of A is therefore non-

diametral.

Fermzrk. It was pointed out in [4] that there exist (NUC) spaces which fail to be

superreflexive: every £2-sum of finite-dimensiocnal spaces has (NUC).

2. We now turn to conjugate Banach spaces and begin by noting that in duals of sepa-
ratle spaces (or more generally, in spaces for which the dual unit ball is w*-sequen-
zsally compact) (WUKK*) and (UKK*) may be reformulated as follows.

If (*}) denotes the property:

A a subset of the closed unit ball ccntaining

seguence (xn) with sep(xn) > € = wh-clan BI—G(O) la g;

m

nen the dual space has (WUKK*) if (*) holds for some ¢ ¢ (0,1) and 6 > 0O and
nas (UXK*) if feor every ¢ € (0,1) (=) holds for some ¢ = &(e) > 0. We take

<mese as the definitions for (WUKX*) and (UKK*) in general dual spaces.

ITiedl. Let X be a duzl space in which (%) holds for a given € ¢ (0,1) aond

f €, a w*-closed corvexr subget of X, and Xy XgreeoaX € X are cuch

C contairns a sequence (yn) with se;(yn) > €

[
i



. First note that by assumption the lemma is true when n = 1.

w . 2ssume the lemma were false. Then there is a largest n(z1) for which the con-

. .cion remains valid. Denote this largest value of n by no. Then there exists a

W*-cicsed convex C € X containing a sequence with separation constant greater than

-5 ith CcB i=1,2,..., ni
and xi’xz""'xno' x“o"l € X wi 1(xi) ( 1 n,*1)  for which
(P +1
; N = f.
cn | g0 Bygxy)) = @ ,

Let E=Cn Bl-é(xl) N...Nn Bl-é(xn ). Then by the definition of nge E ¥ ¢, and

E is a w*-closed convex subset of X. Further E n Bl—é(xn +1) = @, s0 there
0

exi1sts & w¥*-continuous linear functional £ and k with

gup fLE) < k < inf f(Bl—é(xn0+1))' Let Lo

c, = {x € C: f(x) 2 x} and c, = {x e C: £(x) < k).

Trern
C,cCcB, (x
2 1( n +1)
»LllE
C, nB x =
2 1-6( n +1) 2,
0
82 £y assumption, C2 cannot contain any segquence with separation constant greater
wnarn. €, and so, since C = C1 v Cz, we conclude that C1 does contain such a
sequence. Thus, C1 is a w*-closed set containing a seguence with separation con-

swant greater than € and

Cl cCc Bl(xi) i =1,2,...,n4),

ty
‘
i

c, n [Ef B } =C, n [C n [?$ B 6(x )J



TIZOREM 3. If X is a dual space with (WUKK*), them X has (FFP*).

oo L

Let C be a non-empty w*~compact convex subset and T:C + C non-expansive.

s

v a standard application of Zorn's lemma we may replace C by a minimal (in the
sense of inclusion) non-empty w*-compact convex subset Cl < C such that

T'Z,) ecC

1 i Since the function

z * r(z) := supilz-yl: y ¢ Cl)

is a supremum of w*-L.s.c. functions and therefore itself w*-f.s.c., it follcws
~at the Chebyshev center A of C1 w.r.t. itself is a non-empty w*-compact ccavex
subset of Cl, Further, by a stgndard arqument A is invariant under T and sc by
cirnimality A = Cl' Now suppose that C1 contains more than one point, then ever

ooint of C is diametral and by an argument of Brodskii and Milman we may extrzct

1

a sequence ¢of points (xn) < C with lxn-xml > € where € ¢ (0,1} 1is that iz the

1
izfinition of (WUKX*) and by a multiplication we have assumed without loss of gen-

=rality that I(CI) = minir(z): 2 ¢ Cl] = 1.

Tzr each x ¢ C, we have that C, < Bl(x) and so by (WUKK*) for some § > C,

E =C, nB {x)
x 1 1-6 %

13 a noh-empty w*-compact convex subset of Cl' Further, by the lemma the faz:lv

E\: X € Cl) has the finite intersection property and so by the w*-compactness zZ C

s-ere exists an X, € €, with.x_ ¢ N {Ex: X € Cl}. For this x, we therefer:

1

-zve that

lxo-xl < (1-6) for all x ¢ C

0

: x. is a non-diametral point of Cl' This contradiction establishes that C,

-.s% <onsist of a single pcint, which is necessarily a fixed point cf T.

TEIOREM 4. IF X 2 z dual space with (UXK*), then Chebyshev centers L.r.:.
LE-2Impalt SOMTEX sets are mIin-emT iy compact and aonvex
Ir27. Let C < X be w*-coopact and convex and let B ¢ X be bounded. Assume the

B of 3 w.r.z. to C is nst compact. Then A contains z z=-
z.ence  (x ] with sepix ) » £ for scme ¢ > 0 and so, since A€ C, we hawvz rhat
. n - =

T is a w'-closed convex subset containing a seguence with positive separatic: zcn-

smint €. Using (UKK®) with tris € rd assuming the Chebyshev radius of =

[\

-.r.%. C is ! we have fzr eacr x ¢ B trhat A © B {x} ar
1

-~ & =~ b 23
S I0r s57D€ oe g

o0}
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=ANB X
E, 1—6( )
2 ron-empty w¥-compact convex subset of C.

Trne argument now proceeds as that of the last part of Theorem 3.

Fzamples.

The most obvious example for Theorems 3 and 4 is £1. It is easily checked that
11 has the property (WUKK*) with any ¢&,¢ satisfying 0 < € < 2, 6 < %c.
More generally, any ll-sum of finite-dimensional Banach spaces has (FPP*).
Every Orlicz sequence space EH, with the Orlicz function M satisfying the
Az-condition, also satisfies the conditions of Theorem 3. 1In particular, there-
fore, any nonexpansive wap T from the unit ball of such a space into itself
has a fixed point.
It is easily seen that a slight change in the norm of a uniformly convex space
(Gepending on the modulus of convexity) preserves (WUKK). Therefore, by
Theorem 1, any such space has (FPP).

In many examples (FPP) or (FPP*) can bé“ﬁost easily verified by check-
ing thet the w - [w*] oOpial condition holds. Recall that 2 fduall space is
said to satisfy the w[w*] oOpial condition if x €X (n= 1,2,...),

Xn Xo [Xn Xo] implilles

liminflx -x 1 < liminflx-x I for all x ¥ x,,
0 'n n 0

ané that a [dual) space satisfying the w[w*] Opial condition has (FPP)
L(FPP*)] (cf. [3]). The following example shows that sometimes we can get re-
sclts even in cases where the Opial condition is not satisfied.

. . 1
Define an eguivalent norm on & by

W xlil = max(lxll,(1+o)lxlm),
@
wnere le1 = 2 Ix |, lem = sup|x |, and @ > 0. It is easily checked that
n=1 P neN
for sufficiently small a > 0 the property (WUKK*) holds for .|l
1
Se (&7, .1y nas (FPP* by Theorem 3. The w*-Opial condition fails in
this case, however, since e ~ 0, IHenHI = 1+a, but also
H\er-uelﬂl =1+a (n=23,...).

Ir [6] Lim considers the space 21 with the (dual) norm

Mxill = max(lx+|1, 1),
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where )c+ and x are the positive and negative part of x, respectively.
He shows that (11, il .1ll) does not have {FPP*). 1Indeed, |ll.|ll does not have
(WUKK*). For every € Llarger than 1, however, there exists a § > 0 such
that Hlxnul <1 (n=1,2,...), x .t x and sep(x ) 2 & imply
llxll € 1-68. This shows that in Theorem 3 the requirement € < 1 in (WUKK*)
cannot be further relaxed. Note that |li.lll alsc fails to be (KX*).
Although (KX) and (WUKK) are both weakenings of (UKK), neither one of these
properties implies the other, as the following examples show.
©
(1) [ Z ® an has (KX), but not (WUKK). The proof that (KK) holds is
n=1 2 .

easy, and known (cf. [4).) To show that (WUKK) fails, let € <1 and & >0

2-1/n

be arbitrary. Choose n 2 ¢ N so large that 0 > 1+~8 and consider the

seguence (xn) with

x =0e0e...e08 (2'1/n°,0,...,0,2-1/n0,0,...) @09 ...
nJ—l n
Then Ix ¥ =1 (n=1,2,...), Ix -xF =1 {(n#m,
n n ‘m
x ~+x=0e..0060 (273"0,0,...) 80 e ... and Ixl =270 5 15,
2
(ii) £° with norm lilxlll = max(lxlz, (14a)Ixl ) has (WUKK) for suitably
small a > 0, but not (XKK). The first statement is obvious (see (¢)). To see
2
that (£, W .tll) fails (KKX), observe that
+ae T+ e, + ae Il = e Bl =1 =2,3,...)
e1 en el, e1 uen = e1 = +Q (n=2,3,..-

but e1 + aen is not norm convergent to el.

We do not know whether Theorems 1 and 3 hold with ({KK) [(KK;)] in place
of (Wuxx) [(Wukx*)].
Finally let us note that the space (22, il .1}y above, althcugh it has (WUKK)
for smwall a, does not sgtisfy the conclusion of Theorem 2.
_Indeed, let B := {e_, -el) and let C be the unit ball. Then the Chebyshev

1

center of B w.r.t. C contains the sequence (aen):_2 and therefcre fails to

be compact.
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