
GEOMETRIC CONDIZIONS SUFFICIENT FOR THE 
WEAK AND WEAK FIXED POINT PROPERTY 

BRAILEY SIMS 
Department of Mathematics, University of Newca~tle  

NSW 2308 Australia 

ABSTRACT 

We look for geometric structures which underlie both the 'classical' geometric and 

more modern 'order theoretic' conditions for a Banach space (dual space) to have the 

weak (weak*) fixed point property; that is, for every nonexpansive self-mapping of a 

nonempty weak (weak*) compact convex subset to have a fixed point. 

1. Introduction 

Throughout X will denote a Banach space, and X* its dual space. A mapping T 
is nonexpansive if (JTz - Ty 1 1  _< llz - y 11, for all z,  y in its domain. We say that 
X (X*) has the weak-fixed point property, w-fpp, (weak*-fixed point property, 
w*-fpp) if every nonexpansive self mapping of a nonempty weak (weak') compact 
convex subset of X (X*) has a fixed point. 

The more classical sufficient conditions for the w (and w*) -fpp were of a 'geomet- 
ric nature' while more recent results could be best described as 'order theoretic' 
in which the natural order resulting from a lattice or a basis structure have been 
exploited. After briefly surveying these two aspects of the theory we look for un- 
derlying commonalities and generalizations. 

The opening gambit for almost all known existence results for fixed points of non- 
expansive maps has been the following. 

In order to work toward a contradiction we suppose that C is a nonempty weak 
(weak') compact convex set and that T : C 4 C is a fixed point free nonexpan- 
sive mapping. By the weak (weak*) compactness and Zorn's lemma we may, and 
henceforth will, suppose that C is minimal in the sense that no proper weak (weak*) 
compact convex subset of C is invariant under T. Further, since C contains more 
than one point we may, by a dilation and redefinition of T if necessary, suppose 



that 
diamC := sup{llz - y l (  : z, y E C )  = 1. 

A basic result, due to Brodskii - Mil'man3, Garkarvig and Kirklg is that such 
a 'minimal invariant' set C is diametrd in the sense that the radius function is 
constant on C; that is, 

= diam C, for all z E C. 

Thus a space will enjoy the w-fpp (we-fpp) if it is known not to contain any non- 
trivial weak (weak*) compact convex diametral subsets. A space with this property 
is said to have weak (weak.) nonnd structure. While an excessively strong con- 
dition for the existence of fixed points, normal structure has become an important 
Banach space property and 'geometric' conditions implying it have been the subject 
of considerable study. 

2. Geometric conditions 

One of the earliest results was the observation that nontrivial diametral sets cannot 
live in uniformly convex spaces; that is, spaces in which the modulus of convexity 

is strictly positive on (0, 21. Thus such spaces have the fpp. More generally6 spaces 
which are €0-inquadrate; that is 6(eo) 2 0, for some e E (0, l )  have uniform normal 
structure and hence the fpp. It follows from Turett30 that the duals of such spaces 
(which are necessarily reflexive) also have uniform normal structure. Recall, a 
Banach space has uniform normal structure if 

sup{rad C : C is closed, bounded convex with d i m  C = 1) < 1, 

where rad C := inf{p(z) : z E C). 

Garkavig has characterized spaces for which the radius function of every closed 
bounded convex set achieves its minimum at most once in the set as those spaces 
which are uniformly convex in every direction; that is, for each z E X, whenever 
IIznll, llzn + Anzll < 1 and 112, + (An/2)zII + 1 we have A, + 0. So, such spaces 
have normal structure and hence the w-fpp. 



The presence of a nontrivial diametral set can be refined as follows. 

If C is a weak compact convex diametral subset with diam C = 1, starting with any 
choice for xl E C we may inductively construct a sequence by choosing x ,+~  E C 
so that Ilx,+l - xkll > 1 - :. It follows that (x,) satisfies 

Since this property is retained by subsequences we can suppose that (x,) is weak 
convergent and, by a translation if necessary, that 

Defining K := W{X, : n E N) we see that X contains a closed convex diametral 
set for which (by Mazur's theorem) the sequence (x,) C K is diarneterizing in the 
sense that 

lim 115 - xnll = diam K = 1, 
n 

in particular, since 0 E K (again by Mazur's theorem), we have 

lim l[xnll = 1. 
n 

This shows that a space has weak normal structure, and hence the w-fpp, whenever 
it is eo-weak uniformly Radon-Riesz (uRR) for some €0 E (0, 1); that is, there 
exists 6 > 0 so that whenever W is a weak compact convex subset of the unit ball 
with y (W) 2 €0 we have min{)(x(( : x E W) 5 1 - 6, where y (W) is the index of 
noncompactness defmed by 

y (W) := sup{sep (x,) : (x,) C W) and sep (zn) := inf Ilxn - xm 11. 
n#m 

Equivalently X is eo-weak uRR if there exists 6 > 0 so that whenever x, --% x,, 
((x,(( 4 1, and sep(x,) 2 €0 we have IIx,II 5 1 - 6. 

Spaces satisfying uRR conditions were introduced by Huff13 and studied in the 
context of the fpp by van Dulst and Sims5, and independently by Goebel and 
Sekowskil l .  

The appeals to Mazur's theorem prevent our using the above arguments in the 
weak* case. None-the-less it is shown in van Dulst and Sims5 that if X* is eo- 
weak* uRR for some €0 E (0, 1) then X* has weak* normal structure and hence 
the w*-fpp. Alternatively, at least in the case when C is separable and weak* 



h %. 

sequentially compact, we can use the followll~g aevlce due to Lennardz0. Modify 
the construction of (I,) by choosing xn+l from C so that 

where (y,) is a dense sequence in C. Then extracting a weak* convergent subse- 
quence and translating if necessary so that x, _Ifilt 0 we see that (s,) is diameterizing 
for K := W* {x, : n E IN) with the properties required above. 

Simple examples show that the properties considered in this section; inquadrate, 
UCED, and uRR, are in general mutually independent. 

We now consider another, slightly less geometrical(?) and perhaps the most intrigu- 
ing , 'classical' condition sufficient for the w-fpp. 

3. Opial conditions 

Given a bounded sequence (I,) we define 

+ ( z n ) ( ~ )  := limsup 11s - xnll. 
n 

A Banach space X (dual space X*)  is said to have the weak (weak.) Opial condition 
W W* if whenever x, -+ x, (I, -+ I,) we have 

By playing with subsequences it is readily seen that in the weak case this is equiv- 
alent to the original definition, introduced by Opialz3 in 1967, that liminf, Ilx, - 

W 
xn)l < liminf, (Ix - x,II whenever x, -+ x, and x # I,. When the above inequal- 
ities are not required to be strict we shall refer to non-strict Opial conditions. 

For (I,) a diameterizing sequence for K as constructed in section 2 we see that 
$(zn)(x) = diamK = 1, for all x E K including 0 = w(w*)-limnxn. So spaces 
with the weak Opial condition have weak normal structure12 and hence the w-fpp. 
Similarly dual spaces with the weak* Opial condition can contain no nontrivial sep- 
arable weak* sequentially compact convex diameteral sets, in particular separable 
duals with the weak* Opial condition have weak* normal structure and hence the 
w*-fpp. Using a simple argument due to van Dulst4 it is possible to say more. 



We begin with the well known observation that a nonexpansive self mapping, T, 
of a bounded convex set admits an approximate fixed point sequence; that is, a 
sequence (a,) in its domain, D, with Ila, - Tan!! + 0. Clearly any subsequence of 
an approximate fixed point sequence is itself an approximate fixed point sequence. 
[To construct such a sequence it suffices to use a density argument combined with 
the Banach contraction mapping principle to obtain a fixed point of the strict con- 
traction Vnz := (1 - i ) T z  + i z O ,  extended to the closure of D, where xo is any 
chosen point of D.] 

Now suppose T is a nonexpansive self mapping of a weak (weak*) c?nyact convex 
w w 

set and (a,) is an approximate fixed point sequence for T with an -+ a,, then 

= lim sup IITa, - Tan 11 
n 

contradicting the weak (weak*) Opial condition unless Taw = a,. Thus, spaces 
with the weak (weak*) Opial condition have the w-fpp (w*-fpp, provided weak* 
compactness is sequential) and any weak (weak*) limit of an approximate fixed 
point sequence for a nonexpansive map T is a fixed point of T. 

While establishing weak normal structure for the James' space J in its 'isometric 
norm' Tingley2' was led to consider the following weakened form of Opial condition. 

We say that a Banach space X satisfies the weakened Opial condition (WO) if 
w whenever xn 4 z, we have 

By the same argument as that used above for the weak Opial condition we see that 
spaces with WO have weak normal structure and hence the w-fppZ9. 

LEMMA: The following are equivalent. 

(1) X has WO, 

(2) For x, 0 and. Ilznll 1 we have 

(3) There exists zo E ={z,} with $(=,)(50) > 1 



(4) There exists m with $(Z,)(~m) > 1. 
[Essentially, the extreme points of E{x,) are zm7s or 0.1 

( 5 ) j S u P r n  $(z,,) (xm) > 1. 
[(I) - (4) remain true when we take any subsequence of (2,). Note: we 
always have a non-strict inequality in (4) from the nature of (x,).] 

Perhaps somewhat surprisingly WO not only underpins the weak Opial condition, 
but also co-uRR. 

PROPOSITION: If X is €0-weak uRR for some €0 E (0, I), then X has WO. 
This shows that WO is genuinely weaker than the Opial condition. Indeed .Cp[O, 11 
for 1 < p < oo, p # 2 has WO, but does not satisfy the weak Opial condition. 

Proof. Let 6 (> 0) be that from the definition of €0-uRR, and suppose that X fails 
WO; that is, there exists x, SO with Ilx,ll + 1 and limsup, llzm - x,ll = 1, for 
all m. 

We may choose mo so that Ilxmoll > 1 - 6, and a subsequence (x,,) with llzmo - 
z,, 1 1  + 1 and llznL - 2,; 1 1  > €0, for all k # kt. 

Setting yk := xmo - x,, we have; 

w 
Yk-Xmo, 

IIxmo I I  > 1 - 6, 

sep ( ~ k )  > €0, 
and 

l l ~ k l l  - 1. 

Contradicting eo-weak uRR. 
I 

Analogous results are true for the weak* version of WO in X*, provided weak* 
compactness is sequential, and C is separable. 

Before leaving this section we state one other result concerning types, $(,,,)(x), 
which has been basic to many of the more rescent results; viz, 

KARLOVITZ'  LEMMA'^^ lo: If (a,) is an approximate fixed point sequence for the 
nonexpansive map T of the 'minimal' domain C into itself, then 

$(.,)(x) = d i m  C, for all x E C. 



indeed, by considering subsequences, 

lim llx - an 11 = diam C, for all x E C. 
n 

Proofs of this result have directly, or indirectly, relied on the weak lower semi- 
continuity of and so only apply in the weak* case when such functions are 
weak* lower semi-continuous. While this is not generally valid it is none-the-less 
true in some useful classes of spaces17~26. 

4. Order theoretic results 

There are many such results dating from the work of Sine27, and SoardiZ8, but 
more fundamentally MaureyzZ. See for example Elton e t  a17, Borwein and Sims2, 
LinZ1, SimsZ5, Khamsi and Turpin18, and the book by Aksoy and Khamsil. We will 
illustrate by presenting just one such resultz5. 

It is convenient to work in the space 

with elements denoted by Z = [x,] and the quotient norm given canonically by 
II[xnIII = limsupn IIxnII. 

Alternatively, in all that follows, we could take 2 to be the Banach space ultra- 
power of X with respect to some nontrivial ultrafilter U over IN. That is24, 

x := (X), := l,(X)/{(xn) : xn E X, lim llxnll = 01, 
u 

where the quotient norm is given by JJ[xn]uJJ = limu JJx,JJ. 

The mapping J : X - : x - [x, x, x, . . . I  is a natural isometric embedding 
of X into X. 

Let - 
c := {[xn] : xn E C), 

and define 
f : c - 6 : [z,] - [Tx,]. 

Then 6 is a closed convex subset of x containing J C ,  and f is a well defined 
nonexpansive self mapping of C. 



Observe that if (a,) is an approximate fixed point sequence for T in C then 6 := [a,] 
is a fixed point of f and by Karlovitz' lemma 

- 
((6 - Jxl1 = diam C = diamC = 1, 

for all x E C. In particular IIii)I = 1. 

Further, if K is any nonempty convex subset of 6 which is invariant under 2, then 
K contains approximate fixed point sequences for 3? and Karlovitz' lemma combined 
with a diagonalization argument shows that sup{llfj - Jxll : f j  E K) = 1, for all 
x E C. In particular K contains elements of norm arbitrarily near to 1. 

So far our construction has been completely general. We now restrict our atten- 
tion to the case when X is a Banach lattice which is weakly orthogonal2; that is, 
whenever x, 4 0 we have 

1 1  lxnl A 1x1 1 1  + 0, for all x E X. 

The notion of weak orthogonality was introduced in order to generalize Maurey's 
proofz2 of the w-fpp for co to a larger class of Banach lattices by Borwein and Sims2 
where it was shown that a wide class of 'sequential' lattices are weakly orthogonal; 
including co(I'), in both its original and Day's lur norm, eP(I'), 1 5 p < m, but 
not the spaces Lp[O, I ]  for p # 2. It was also shown that any weakly orthogonal 
Banach lattice with a Riesz angle a ( X )  := sup{)) 1x1 V Iyl 11 : IIxII, llyll < 1) < 2 has 
the w-fpp. By adapting an argument of Linzl, it follows25 that the assumption on 
Riesz angle is unnecessary. 

THEOREM: Weakly orthogonal Banach lattices have the w-fpp. 

Proof. Let (a,) be an approximate fixed point sequence for T in the 'minimal' do- 
main C. F'rom the discussion above we may, by passing to subsequences if necessary, 
assume that 

llanll + 1, 
a, 4 0, 

)lan+l -an)(-+ 1, 
and 

I I  Ian1 A Ian+, l I I  -+ 0. 

Thus, defining iil := [a,] and iiz := [a,+l], we have: 

i) 1121; - JxlJ = 1 for all x E C, and i = 1,2. In particular (IiiiJI = 1, since 
0 E C. 



ii) lliil - Z2l1 = 1. 

iii) For i = 1,2 and z E C l6,lA lJz1 =0 ,  and 17111A 1712(=0. 

Let 

w := ( 6  E 6 : for i = 1,2 116 - 6,Il = 112 and dist ( 6 ,  J C )  5 1/21. 

Then w is a closed convex subset of 6 which is invariant under and nonempty, 
since 

61 + 52 1 11 - 011 = -1161 + 5211 2 

Hence, from above, w contains elements of norm arbitrarily near to 1. 

To derive a contradiction, and establish the w-fpp, we pass to the countably order 
complete Banach lattice X** where we may construct the principle band projections 

m m 

Pii := V [(nPi()  A B'] - V [(nl&l) A 6-1, 
n= 1 n=l  

for i = 1,2. 

Then P i i ,  I - Pii and Pi, +-Pi, are norm one projections with P6,Ci = 6, and 
Pii J = 0. Thus for each 6 E W, if z E C is such that 116 - Jxll 5 112, we have 

As in Linzl the discrepancy between 314 and 1 can be exploited to show that 
any Banach space whose Banach-Mazur distance from a weakly orthogonal Banach 
lattice is less than (m - 3)/2 has the w-fpp. 

The weak* analogue of the above theorem is also true, at least in duals where weak* - 
compactness is sequential, since it is shownZ6 that a weak* Karlovitz' lemma holds 
in weak* orthogonal dual lattices. 

I 4- (s3 -- 3.; ;- 
id 



5. Underlying commonalities 

In x we define a subspace by 

That X is a weakly orthogonal Banach lattice can now be interpreted as N being 
lattice orthogonal to the natural embedding J X  in x.  
On the other hand, the weak lower semi-continuity of the norm implies that when- 
ever xn -% 0 we have for all x € X that 

That is, J X  is orthogonal to N in the sense of Birkhoff14. 

By the construction in section 2, the failure of weak normal structure for X ensures 
the existence of norm one elements in X and N for which the above inequality 
is in fact an equality. Thus spaces in which this is impossible have weak normal 
structure. This includes spaces which are eo-inquadrate, for some €0 E (0, I), and 
weakly orthogonal Banach lattices in which for each norm one element x 

The weak Opial condition is precisely the requirement that 

11fi11 < llfi - JxII, whenever ii E N and 0 # x E X. 

So, spaces with the weak Opial condition are those for which in a strict sense N 
and J X  are symmetrically Birkhoff orthogonal. Such a connection with 'symmetric 
orthogonality' seems first to have been explored by Karlovitz16. 

Similarly, WO corresponds to strict symmetric Birkhoff orthogonality between [x,] 
and at least one (in fact infinitely many) of the directions Jx,. 

Thus we see that 'orthogonality conditions' between elements of N and J X  lie at 
the heart of many fpp results. 

A natural question is whether spaces satisfying the non-strict weak Opial condition; 
that is, spaces for which N and J X  are symmetrically Birkhoff orthogonal, have the 



w-fpp. In an attempt to partially answer this IZ5 asked whether the w-fpp holds 
for spaces with n/ and J X  orthogonal in the stronger sense of James": 

)Iii + Jzll = Ilii - JXI( for all ii E n/ and z E X. 

Such spaces were said to have WORTH (weak orthogonality). Recently Garcia 
Falset8 has shown that spaces with WORTH which are €0-inquadrate for some 
€0 < 2 have the w-fpp. This is somewhat reminiscent of the result for weakly 
orthogonal lattices with a Riesz angle a (X)  < 2, where the condition on Riesz 
angle was subsequently seen to be unnecessary. 
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