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1. Introduction

The aim of this chapter is to present criteria for the most important geometric properties
related to the metric fixed point theory in some classes of Banach function lattices,
mainly in Orlicz spaces and Cesaro sequence spaces. We also give some informations
about respective results for Musielak-Orlicz spaces, Orlicz-Lorentz spaces and Calderdn-
Lozanovsky spaces.
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1.1. Orlicz Spaces
Some general facts. We denote by R, Ry and N the sets of real numbers,

nonnegative real numbers and natural numbers respectively.

A mapping &: R — Ry is said to be an Orlicz function if:

(i) @ is even, continuous, convex and vanishing only at zero,
(i) Timy_o( 22 = 0 and limy, e (22) = co.

An Orlicz function & is said to satisfy the Aj-condition at zero (® € Ay for short) if
there are constants K > 2 and a > 0 such that ®(a) > 0 and ®(2u) < K®(u) for all
real u with |u| < a.

It is well known (see [Lu 55], [Mal 89], [Mu 83] and [Ra-Re 91]) that & is an Ortlicz

||

function if and only if ®(u) = [ p(t)dt, where p is the right derivative of ® satisfying
the following conditions:

(iii) p is right-continuous and nondecreasing on R,
(iv) p(t) > 0 whenever ¢t > 0,

(v) p(0) =0 and lim;_, p(t) = oo.

Hence it follows immediately that

1 /u D(u)

Sol=) <« =2 <

5p(5) <=~ <p)  (@>0). (1)
By the convexity of ® and ®(0) = 0, we get

P(au) < a®P(u) O<a<l, u>0), (1.2)
which yields

M< () (0 <u<w).
u v

For the function p satisfying conditions (iii), (iv) and (v), we define
g(s) = sup{t > 0: p(t) < s} =inf{t > 0: p(t) > s},

which we call the right-inverse function of p. It is easy to show that ¢ also satisfies
conditions (iii), (iv) and (v). If ® is an Orlicz function with the right derivative p and
q is the right-inverse function of p, then the function

vl
\I/(v):/ q(s)ds

0

is called the complementary function of ® (or the Young conjugate of ®). It is well
known (see [Ch 96], [Lu 55], [Mal 89], [Mu 83] and [Ra-Re 91]) that we have the Young
inequality
w < &(u) + V() (u,v>0)
and that the equality
wv = &(u) + ¥(v) (1.3)

holds for u > 0 if and only if v € [p_(u), p(u)], where p_ is the left derivative of ®.
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Sometimes Orlicz functions are defined only by condition (i). Tt is easy to see that
(®(u)/u) — 0 as u — 0 is equivalent to the fact that ¥ vanishes only at zero and
(®(w)/u) — 00 as u — oo is equivalent to the fact that ¥ has only finite values.

Example 1.1 Let ® be an Orlicz function. If ¥; is the Young conjugate of the function
®; defined on R by ®1(u) = a®(bu), where a, b are fixed positive numbers and p is the
right derivative of ® on R, then the right derivative of ®1, is p1(t) = abp(bt) and so

its right-inverse function is
() = 7a(o7s)
= —ql—s
qQ\s b‘] a5/

where ¢ is the right derivative of ¥, and ¥ is the Young conjugate of ®. Hence
b g o]
Uy (v) :/ gi(s)ds = a/ q(s)ds = a¥ (——) .
0 0 ab
Example 1.2 Let ¥, U2 be the Young conjugates of Orlicz functions ®; and &5,
respectively. Suppose that
@1(11.) < <I>2(’Ll,) (’LL > ug > 0).

Consider the relationship between ¥ and ¥,. By the Young inequality and equality
(1.3), we have

Bo(g2(v)) + ¥2(v) = g2(v)v < P1(g2(v)) + T1(v) (v > 0).

Hence by
Do(g2(v)) > D1(g2(v))  (g2(v) 2 o),

we obtain

o(v) < ¥1(v)  (g2(v) 2 uo)-

Let (T, 2%, u) denote a nonatomic, complete and finite measure space and denote by
I9 = LO(T,%, 1) the space of all (equivalence classes of) Y-measurable real functions
defined on T

Given an Orlicz function ®, we define on L° a convez modular Ig by
Ip(x) = / O(z(t))dp.
T

The Orlicz space L generated by ® is the set of those x € L° that Is(A\z) < oo for
some A > 0. If % is the space of all real sequences z = (z(1))$2,, then the modular I
is defined on {0 by

and the corresponding space (= {z € 1°: Is(Az) < co for some A > 0} is called the
Orlicz sequence space. We also define

E® = {z eI’ Iy(\x) <oo forany A >0}, and
h® = {z €% Iz(iz) <co forany X >0}
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Lemma 1.3 Let ® be an Orlicz function and ¥ be its Young conjugate. Then the
following are equivalent:

(i) D e A,
(ii) There existl > 1,ug > 0 and K > 1 such that
Q(lu) < K®(u) (u> uyg). (1.4)

(iii) For any ly > 1 and uy; > 0 there exists K’ > 0 such that (1.4) holds for | =
li,up=u; and K = K'.

(iv) For anyly > 1 and ug > 0 there exists € in the interval (0,1) such that

O((1+e)u) <1a®(u) (u>up). (1.5)
(v) For anyls > 1 there exist vo > 0 and § > 0 such that
\IJ(lg’U) > (13 + 5)\11(1)) (’U > ’Uo). (16)

(vi) There exist I3 > 1, vo > 0 and & > 0 such that (1.6) holds.

Proof.

The implication (i) = (ii) is obvious.

(ii) = (iii). Given [ > 1, choose an integer ¢ such that {* > {1. Then by (1.4),
O(lu) < (%) € K*@(u) (u > up).

Hence, if u3 > ug, then K% is a candidate for K. If u; < ug, then, we choose
K’ = max(K*, Ky), where

Ko = max{®(Liu)/P®(u): u € [u1,ug]}

(iii) = (iv). For la > 1 and wug > 0, by (iii), there exists K’ > lg such that
(2u) < K'0(w) (v uy).
Take € = (I —1)/(K’ — 1). Then 0 < € < 1 and by the convexity of @,
D((1 +e)u) = (1 — e)u + 2eu) < (1 — e)®(u) + e®(2u),
<(1—e)®u)+eK'®u) =LPw) (u>u).

(iv) = (v). For any I3 > 1 and vg > 0, choose u2 € (0,¢(vp)]. Then inequality (1.5)
and Examples 1.1 and 1.2 imply

T(v) < l{)(lljsv) (v > vp)-

Hence it follows that

W (v) < xp(lljeu) < —1%\1:(13(@)) (v > v0).

By setting § = lse, we get (1.6).
The implication (v) = (vi) is trivial.
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(vi) = (1). Let g = (I3 + 6)/l3. Then (1.6) can be written in the form
L
Bla

Choose n € N such that 8% > 2 and set K = g™F. Then by Examples 1.1 and 1.2, we
get

V(lgv) > ¥(v) (v = vg).

B(2u) < ®(B™u) < BHUED(u) = KO() (u > ug).

2. Normal structure, weak normal structure, weak sum
property, sum property and uniform normal structure

Let X be a Banach space and {z,} a sequence in X such that z; # z; whenever ¢ # j.
If for any = € co{zy,}, the convex hull of {z,}, the limit A(z) = lim, ||z — z,| > 0
exists and A(z) is affine on co{z,}, then {z,} is called a limit affine sequence. If, in
particular, A(z) is equal to a constant on co{z,}, then {z,} is called a limit constant
sequence. If X contains no (weakly convergent) limit affine sequence {z,} satisfying
A(zy) 1, then it is said to have the (weak) sum-property. We say that X has (weak)
normal structure (NS (WNS)) if it contains no (weakly) convergent limit constant
sequence.

The original definition of the (weak) normal structure is given in the following equivalent
way:

X has (weak) normal structure if for any nonsingleton (weakly compact) nonempty
bounded closed convex subset C of X, there exists z € C such that

re(z) == sup{llz — y||: y € C} < diam (C) := sup{|ju —v|: u,v € C}.

Moreover, if there exists h € (0, 1) such that for each nonsingleton nonempty bounded
closed convex subset C, there exists z € C such that r¢(z) < (1 — h)diam (C), then X
is said to have uniform normal structure (UNS).

The above concepts are introduced as a powerful tool in fixed point theory. For instance,
if X has weak normal structure, then it has weak fixed point property (w-FPP), that is,
any nonexpansive self-mapping defined on a weakly compact convex nonempty subset
of X has a fixed point (see [Ki 65] and [Go-Ki 90]).

In this section we will consider Orlicz spaces over a finite nonatomic measure space

only.

Theorem 2.1 Let X be equal to one of the space Lg, Lg,lq> or l%, Then X has UNS
if and only if it is reflezive.

To prove this theorem, we need the following lemmas.

Lemma 2.2 Suppose @ € Ay, Then for any B > 1 and e > 0, there exists K > 2 such
that for all x € Lg,
Ip(fz) < Klg(x) + €.

Proof. Let o > 0 satisfy U(Bo)u(T) < . Thensince ® € Ay, there exists K > 2 such
that ®(fu) < K®(u) for all u > a. For given z € Lo, set FF = {t € T : |z(t)] > a}.
Then

1o (Bz) = I (Bz|r) + Io(Bzlr\F) < Klo(z|r) + 2(Ba)u(T\ F) < Klo(z) +e,
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where z|p = zxF. |

Lemma 2.3 Assume & € Ny NVy. Then for any a > 0, there exist ¢ > 1 and § > 0

such that 15
& (131) < 15200 + o)

2

whenever |u| > a and [u] > c|v|, or uwv < 0.
Proof. By Lemma 1.3, there exist v > 0,and € € (0,1/2) such that

o (%)< 1_77@(10) (| > a)

and 5
S((1+e)w) < mé(w) (lw]| Z ).
Set . 9_g
c=26=1-2"21
€ 2—y

Then |u| > o, |u| > clu| or wv < 0 imply

B(E) ca(1tl) < g@((H g)u)

1—v 2 1-6
< qu’(“) < _2‘[4’(“) + @(v)].

Lemma 2.4 If a Banach space X does not have UNS, then for eachm € N and e > 0,
there exists a family {z;:1 <i<n41} in X such that

ol <1, fles —x5 €1 (1<i<j<n+1)
and

>1l—-e¢ (m=1,---,n).

m
1
Im+l — — E Ty
m -
i=1

Proof. By the assumption, there exists a bounded nonempty closed convex subset C
of X such that for each z € C, there exists z € C satisfying ||z — z|| > (1 —¢) diam C.
Without loss of generality ,we may assume that 0 € C and diam C = 1, that is, [|z]| < 1
and ||z —y|| <1forall z,y € C.

Pick 21 € C arbitrarily. Then, by the hypothesis, there exists z2 € C such that
|z2 — z1]] > 1 — . Since C is convex, (x1 + z2)/2 € C. Therefore, there exists z3 € C
such that |jz3— (z1+22)/2|| > 1—¢, and so on, by induction, we can choose the desired
system of elements. |

Proof of Theorem 2.1 We only prove the theorem for X = Lg. The proofs for other
spaces are analogous. Since all Banach spaces with UNS are reflexive,we only need to
show the sufficiency. By Lemmas 2.2 and 2.3, there exist K > 2,b> 0,c > 1land § > 0
such that

1@(21‘) < Kfq)(l') + é (z € Lg), (2,1)
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e(b)u(T) < si (2.2)

and

o (“’;”) < 1—;5[@@) +3W)] (Jul2b, |ul >clv], or uv<O0). (2.3)

Select an integer p > 16c2K? and set n = 8p. If Ly fails to have UNS, then Lemma 2.4
and ® € Aj yield the existence of {z;}, 1 <7< n+ 1, such that

I@(Ii) S 1, I@(Iz —Ij) S 1 (]. _<__ 1 S ] S n+ 1) and (24)
1 & 6
1 > I@(Zm,}_l - — ZI‘L m (25)

=1

Now, we first introduce some notation. Set u;(t) = zp41(¢) — z;(t) (2 < n) and for each
t € T, rearrange {u;(¢) }i<n into {ys(t) = s, (t)} such that y1(¢) <--- < yn(t). Then
it is not difficult to check that each y,(¢) is ¥-measurable. Moreover, define

o) = Lt O gy 2 25 ),

I(t) = {i < n:|uwi)] > cz(t)] or clui(t)] < z(t) or wi(t)z(t) €0},
A= {t €T :I(t) contains at least 4p elements}, B =T\ A.

Then
|z(8)] < max{|ys(*)], lyap+s(0)]} < zo(2)- (2.6)
Moreover, (2.1), (2.4) and the convexity of ¢ imply
1 K& 1 1
Lp(il?o <K[q> ( Z|’U,z) g —ZIIQ(U,)+§<K+§ (27)
In the first step, we show that
o F1(t) — 7a(t) 1
/<1>( L (2.8)
B
Since (2.4) and (2.1) yield
7 § T 1
- —zp) < =
8<l 42K<I¢(I1 :Ez) KI( )<K+8

That is, Ip(2522) > 53, to verify (2.8) it suffices to show that

C () — za(t) 1
A/@(%)dt <%

For this purpose, we first check that ¢t € A implies

ys(B)] > clyapts()] or clys(t)] < lyapss(t)] or ys(t)yaprs(t) <O

for each s < 4p. In fact, if there exist some j < 4p and ¢ € A such that none of the
above three inequalities holds, then we get

M yapii () S yi(t) < cyapr(t) or ¢ Myapy;(8) 2 yi(8) = cyapy ()
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Since z(t) is between y;(t) and yap4;(t), we derive that
cTla(t) < ys(t) <ex(t) or ¢ lz(t) > y(t) > ex(t)
foralls=4,7+1,---,4p + j, which contradicts the definition of A.

Hence if we define for each s < 4p, A(s) = {t € A : max{[ys(t)|, |yap+s(¢)|} > b}, then
(2.3) and the convexity of ® imply

L lzn: -
AnlK & | Tntl n Z;

i=1
4p
2 Ys + Y4 +3
=1y (_Z Js T Z4pts
ni 2

< Z Ys + Y4p+s
-n

—Z— / B(ys(£)) + © (yapss ()]t

s=1 G/A(s)

+2 Z (1-6) /ms ) + @ (yapr (1))t
§= l (S)

——21@(%)——2 [ 06 + Sap )t

5= 1A(s
It follows from (2.4) that
Eo 11
> [ 180) + S0t < e < g (29)

=)
Now, we define
D, ={te A: |Ju;(t)] > b} (¢=1,2), and
Bi(s) = {t € A:ui(t) = ys(t) or yapis(H)} (G =1,2).
Then from (2.2), (2.9) and the fact that U% | B;(s) = A, D; N Bi(s) C A(s) (i = 1,2),

we derive

//@ (Lt) ’2'““)) dt:/[@ (4“1(” . ) %zi:/ (wi(t))d

1 2
<30 D/ B(us()dt + SO
2 4p .
ZZ / & (us(t))dt + D(b)u(A)

1 S:IDiﬁBi (.9)

N =

o,

2 4p
Y3 [ @)+ Bt + 20)4)
=1 5=1p.Bi(s)

IA
No| =

.
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Sl
8K 8K 4K’
This ends the proof of inequality (2.8).
In the second step, we set for each 1 =3,--- ;n—1,
G(i) = {t € B : |z,(t) — z:(t)| < c|z(t)|/p for some s >3 and s < n}.
Then
n—1
U Ge) =8B (2.10)
=3

In fact, for any t € B = T\ A4, by the definition of A, there exist at least five u;(¢)
such that their distance from each other is no more than ¢|z(¢)|/p, and thus, there exist
4,75 3 <1i< j < n,such that

ui(t) — ui(B)] < ()] < e

(t)|/ps
that is ¢ € G(2). This proves (2.10).

Now, we define
i—1
D@E)=G@), DH)=6() [ |JGW) =4, ,n-1).
k=3

Then {D(2)}7} are pairwise disjoint and UPZ1D(i) = B. Let, foreach i =3,--- ,n—1
and each t € D(i),
P (t) =4,4"(t) = max{k < n: |zx(t) — zi(t)| < clzt)|/p}

Then ¢'(¢), ¢"(t) are well defined by the definition of G(%) and () < i”(¢). Next, we
construct two Y-measurable functions as follows:

n-1 n—1

ml(t) = in’(t)(t)XD(i) (t)v :C”(t) = Zmi”(t)(t)XD(.')(t)'
=3 i=3

Then by (2.6) and the definition of ¢'(¢),¢"(¢),
[2'() — 2" (8)] < el (t)|/p < cxo(t)/p- (2.11)
Since (2.8) and the convexity of M imply

5 [186"0) - 210) + 2 () - ma@ar > [Ty
B B

without loss of generality, we assume that

/ B(a"(t) — 21(t))dt > % (2.12)

B
Finally, let B = {t € B : |2"(t) — z1(t)| > max{b,c?24(t)/p}}. Then by (2.11),t € E
implies |2”(t) — z1(t)| > c*zo(t)/p > |2/ (t) — 2"(2)]. It follows from (2.3) that if t € £,
then

o (I”(t) - CE/(t) "2‘ mll(t) - :El(t)) < 1 ; 6[@(1”@) —I,(t)) +¢’(I"(t) —:131(17))]. (2.13)
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Moreover, (2.12), (2.3), (2.1), (2.7) and the inequality ¢?/p < (4K)~2 < 1 imply that

/cp(m"(t) — ey (t))dt = /@(m"(t) — ()t - / B () —z1(t)dt  (2.14)

E B B\E

CZI
> % - [/ @ (%) dt+ @(b)u(B/E)]
B\E

2
Z 2—— - l:;/q)(xo(t))dt-‘r 8}(
G

m=2 ' k=1
1 m—1
= > (m——l (m(t) — zIc(t)))
2<m<n k=1
m#Ai(t)

2<k < (£) -1
ktif (1)

”’(ﬁ[ > (w"(wzk(t)m-*”(t)w’@);w"(t)zl(wh

<3 @(ﬁ (wma)—zk(t»)

1 " a”(t) — a'(t) + 2" () ~ z1(2)
M ’i”(t) -1 2<k§'”%t)——l <D($ (t) - mk(t)) e < 2 )
kA1 (£)

g m—1
<> . > 20" () — =) - 1O = ) + B () - ma ()

Combining this with (2.5), (2.14) and 2"(t) — 1 < n — 1, we deduce

[ 1 m—1
4n2K n—1 > I (lm_m—l sz)

m=2 k=1
1 n 1 m—1
< I —
“n-1 Z m—1 Z 2 (@m — )
m=2
6

/[cb(m”(t) — () + (" (1) — z1(t)])dt < 1 — *62—1{'

G
E
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This contradiction completes the proof. n

Lemma 2.5 Suppose z, € B(Lg) for n € N and =, — = in measure. Then x €
B(Lg).

Proof. Since Ig(xn) < 1 for all n € N, by the Fatou Lemma, we have Is(2) <
lim inf, Ie(z,) < 1. | ]

Theorem 2.6 The spaces LY and lg have the weak sum-property, so they have WNS.
We will prove this theorem together with the next theorem.

Lemma 2.7 If {z,} is a bounded sequence in LY, kn € K(z,) forn=1,2,..., and
kn — o0, then , — 0 in measure.

Proof. For each o > 0, define G, = {t € T: |zn(t)| > o}. Then

1
0 _
Jeal® =

— [+ Ip(knzy)] 2 —P(kno)u(Gr).

1

kn

Applying the fact that ®(u)/u — oo as u — oo, we get u(Grn) — 0. ]

Lemma 2.8 (i) If {z,} is a bounded sequence in Lg and it converges to zero in
measure, then x, — 0 Ey-weakly, where U is the Young conjugate of ®.

(i1} If {zn} is a bounded sequence in lg and it converges to zero coordinate-wise, then

Tp — 0 hyg-weakly.

Proof. We only prove (i) because the proof of (ii) is analogous. Suppose that ||z, || <
K for any n € N. For any v € Ey and £ > 0, choose 6 > 0 such that E € 3 and
p(E) < 6§ imply ||zxg||% < e. Since &, — 0 in measure, we can find G, € ¥ with
#(Gr) < 6 such that |z,(¢)] < on T\ G, for all large n. Hence, for such n,

el < [ len(to(oldn
T\Gy
< elierl ol + enll ox, 1% < elixrd ol + <

Since € > 0 is arbitrary, this shows that (v, z,) — 0. ]

In the following by SAI of & we denote an interval [a,b] such that & is affine on [a, d]
but it is not affine neither on [a — £,a] nor on [b, b+ €], where € > 0.

Theorem 2.9 Let X be one of the spaces LY, E2,19 or kY. Then the following are
equivalent:

(i} X has the sum-property.
(it} X has NS.
(iii} There exist a > 0 and ¢ > 1 such that for any SAI [u,v] of ®,

u>a=uv<cu (when X = LY or EI),
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O<u<a=v<cu (when X =13 or h$).

Proof of Theorems 2.6 and 2.9. We only prove the theorems for X = L% and
X = EJ. Let {x,} be a limit affine sequence in LY and ki; € K(z; — ;) (i # 7). First
we show that there exists a subsequence N; of N such that for any j € Ny, {ki; : ¢ € N1}
is bounded. Indeed, if {k;; : ¢ € N} is bounded for all j € N, then we set N; = N.
Otherwise, there exist some m € N and a subsequence I of N such that k;, — oo
as i(€ I) — oco. This shows that z; : ¢ € I converges to z, in measure according to
Lemma 2.7. Since x; # z; for all { # j, by the same reason, we get that Ny = I\ {m}
satisfies our requirement.

By the diagonal method, we can pick a subsequence Nz of N} such that kij; — k < oo
as i(€ Na) — oo for each j € N;. We claim that k; — oo as i(€ Na) — oco. In
fact, if this is not true, then N2 contains a subsequence N3 such that &; — k < co as
j(€ N3) — oo. Therefore, for all n,,j € N3 with n #1,7,

lzn — zz“O + [lzn — Ij”O = 1225 — z; — -"”j“o
1
kni

IV

1+ Is(kni(zn — 23))] + /»Ln][l + Ip(knj(@n — x5))]

km’ + k'n.j kniknj
DT 4 I [ 2 (9g, — 3 — 2.
kniknj e kni + knj (2:1:” i :L‘]) ( 15)

/{immmm—nm»+if%ﬂ%@—%@”
G

ni

Denote the last integrand in (2.15) by fi/(t). Then fi > 0 for all t € T since ® is
convex. Recall that A(z) is affine on co{z}. By letting n — oo we get

/ﬁmwea
G

and thus fﬁbj(t) — 0 in measure. Hence, the diagonal method allows us to find a
subsequence Ny of N3 such that f77(t) — 0 p-a.e. on T as n(€ Ny) — oo for all
1,7 € N3.
Now, for each ¢t € T, we pick a subsequence {n, = n,(t)} of Ny such that
t)| = liminf |z i = . .
0163] hnnelII\E |zn(t)], and 11}}11%(75) v(t) (2.16)

Then, by the Fatou Lemma, |[v(t)| < oo p-a.e. on T, analogously to the proof of Lemma
(2.5). Let v — oco. Then the convexity of ® gives

0= tim £ () = R0 (0E) ) + TRU0() ~m(0) (217
_ ’“,;c]k j (kl- ?]Z—j (2v(t) = 2:(t) — 25 (t))>

p-a.e. on T. Since for p-a.e. t € T, (2.17) holds for all 4,5 € N3, by replacing j by n,
in (2.17) and letting v — oo, we have for p-a.e. t € T,

1 ki+k; Kok
—B(kv(t) — z () = = 1 [ 2
ks ( ’l)( ) 11( ))) kikj (ki"‘ k:]'

(ww—zm»). (2.18)
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Since 0 < K,LHC] < 1, by (2.7), condition (2.18) holds only for v(t}) = z;(¢). This means
v = x; for all ¢ € N3, contradicting the assumption that «; # z; whenever ¢ # j. This
contradiction proves that k; — co as j(€ N3) — co.

Now, we prove (iii) = (i) in Theorem 2.9. If Z§ does not have the sum-property,
then there exists a limit affine sequence {y,} in L§ such that A(y,) 7. By the above
discussion, {yn} contains a subsequence {z,} satisfying k;; — k; < oo as i — oo, and
k; — co as j — oo, where k;; € K(z; — z;),% # j. Since ®(u)/u — oo as u — oo, for
the constant a > 0 in (iii), we can find b > a such that

o (a—;b) RIORRI0)

2
Since @ is convex, by (iii),
P(au + (1 — a)v) < ad(u) + (1 — a)®(v) (2.19)

forall0 < o <landallu < a,v>boru> a,v > cu. If we define v(t) as in (2.16), then
by (2.16) and (2.19), for p-a.e. t € T, if k;|u(t) — xi(t)| < a, then k;jjv(t) — z;(¢)] < b; if
kslv(t) — zi(t)] = a, then kjju(t) — z;(t)| < ckilv(t) — xi(t)|. Therefore, for prae. t €T,

kslo(®) — ()] < max{b, ckylo(t) — aa(t)]} = wi(t). (2.20)
By the Fatou Lemma,
A(x5) 2 kL4 Ta(ks(v — 25))] 2 lle = a5])°. (2.21)

Thus v —x; € Lg, whence u; € L. Since A > 0, liminf; [[v—z;{|° =: v > 0. It follows
from (2.20) that k; = [|k;(v — z;)||%/|lv — z;]|° < Jluel|%/|Jv — z;]|°. Letting j — co, we
get a contradiction: oo = ||Ju;]|%/y < .

Now, we turn to Theorem 2.6. If L% does not have the weak sum-property, then
by (2.15), there exists a weakly convergent (to zero) limit affine sequence (z) with
llzx]|°® — 1 and A(z,) — 1. By the first part of the proof, passing to a subsequence if
necessary, we may assume that k;; — k; < co as¢ — oo and k; — oo as j — oo, where
ki; € K(z; — x;). It follows from (2.21) that «; — v in measure (verified as in the first
part of the proof). Therefore, by Lemma 2.7, v = 0. We may also assume that z; — 0
p~a.e. on T. We prove the theorem by showing that lim A(z;) > %, which contradicts
the assumption A(z;) — 1.

For each j € N, we choose a set G € 3 such that z; is bounded on G; and
- _ 1
k71 + Ta(kjzixe,)] > k5 {1 + To(kz5)] — =
3
Then by (2.21),

1
Alxy) = k1 + To(kszy)] = k51 + To(kjzixe,)] + Ky {1+ Ts(kjzixne,)] — —

k;

» 1 o 1
> ki (U Ta(kyzs)] = = +lleixme Il —
7 7

2

2 Jlas 1 + Hzsxre, I =
7
that is
2
lzjxre, Il < Az) = llzs)° = -~ (2.22)

k;
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It follows that

536, 11° = Nl 1° = llwjxre, 1°

2
> 2||z]|° — Alzy) - = (2.23)
j
Since z; is bounded on Gj, there exists § = §(j) > 0 such that
1
”-'L'jXEHD < o whenever E C G; and p(E) < 6. (2.24)
¥

Since z; — 0 p-a.e. on T, there exists F' € 3, with p(F) < § such that z; — 0 uniformly
on T'\ F. Hence, there exists I = I(j) € N such that for all ¢ > I,

HmiXT\FHO < kl] {2.25)

It follows that 1
lzsxel® > llzil® = e rell® > lle:)® - o (2:26)
j

Hence, by (2.22)-(2.26),
i — 2511° = ki L+ To(kij(zi — )X\ (0 1))
_ 1
+ kML Ta (ki (s — 25)x/p)) — o
i

1
> (i — z)xr e + @i — z)xm\ el — T
ij

> lzaxr s l° = llzsx s I
1
+llzixe, ell° = lzxe, /ell® - T

= lzixnnmlI° = leixne, + zixe;nrll°

1

0

+ lleixe; — $jXGjnF||O - ||$z‘XGj\F|| T %
7

1 2 1
0 0

zil|" — — | = | &(z;) — ||zy —+

>(uz I kj) ( (25) = llas +k]_+kj)

2 1 1 1

W — Alzs) — - — — | — — — —

+(||z]|| @) - kj) el

1
= Dl + 81l = 280m) =

Letting ¢ — oo, we have A(z;) > 1+ 3||z;]|° — 2A(z;) — %. Hence, lim; A(z;) 2 §.
Finally, we prove the implication (ii)=(iii) of Theorem 2.9. If (iii} does not hold, then
there exist sequences {u;}, {v;} such that ®(uy)u(T) > 1,uj41 > 2u;,v; > 27u; and

p(u) is a constant on [uj,v;], j € N. By the first two assumptions, we can choose
disjoint sets G; € T such that u(T \ U en G;) > 0 and

279 — u;p(uy)(Gy) = [®(us) + U(p(us)JH(Gy). (2.27)
Hence, we can find ug large enough so that there is Go € T'\ |J; G; satisfying,
> (p(us))(G5) + T(p(uo))u(Go) = 1. (2.28)

jEN
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Define

v = ZP(U]')XG,», Tn = UOXGo T ZvaG,- + ZUJ'XGJ--
=0 jsn jzn

Then by (2.28), Is(v) = 1, whence v € L}, and |jv]¢ = 1.

First we show that z,, € Eg for any n € N. Givep arbitrary K > 1, choose J > n such
that 27 > K. Then for all j > J, we have v; > 29u; > Kuj > u;. Therefore,

D B(Ku)u(Gy) = Y [Kujp(Kug) — ¥(p(Kujz))u(Gy)

i>J 3>J
<Y Kusp(Kuy)u(G;)
i>J
= > Kujp(uy)u(G;) = Ky 27" < oo.
1>J >J

This implies that I(Kx,) < co. Since K > 1 is arbitrary, we have z,, € Eg.
Let &, = ||2,)|° and yn, = zn/kn. Then y, € Eg and ||y,||° = 1. By (2.28),

lyal® > (W, yn) = k' {uop(uo)u(Go) + D vip(u)i(Gy) + > uip(us)(Gy)

j<n j>n
=k ow(v) + Io(knyn)] > |lyal® = 1.

Moreover, since

b = ||z > W, 2n) > Y 0p(uy)(Gy) 2 D Pupluy)u(Gy) =,
j<n i<n
we have k,, — co as n — oo.

We complete the proof by showing that A = 2 on co(yy). Indeed, for any y € co(yn),
there exist A; > 0 with 3, A = 1 such that y = 37, ., Awys. Since (v,yn) = 1, we
have (v,y) = 3, ., Mi(v,yn) = 1. For any € > 0, since y € Eg, there exists I > m
such that |lyxr||® < €, where F' = U;<;G;. In view of z,(t) < max{vs,ug} on G\ F
and k, — oo as m — oo, we can find ng € G; such that ||ynxT\p“0 < ¢ for all n > nyg.
Define vo = vxp\p — vXF- Then |juo||y and for n > np,

22> [lyll° + lynll® = lly = al®
> {00,¥ — Yn)
= (o, yxXT\F) + (v0, YXF) = (0, YnXT\F) — (¥, YnXF)
= (0, yxm\F) — 0, uxXF) — (0, YuXT\F) T (0, YnXF)
= (v,9) = 2(v,yxF) — 200, YnXT\F) + (¥, ¥Un)
> 1= 2)lyxrl°® - 2lyxrell — 2yaxel® +1> 2 - 46,

which shows that A(y) = 2. |

Theorem 2.10 Let X be one of the spaces Ly, Eg,lp or hg. Then the following are
equivalent:

(1) X has the sum-property.
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(ii) X has WNS.
(ill) M € Ay.

Proof. This time, we prove the theorem for X = g and X = hg.
(i) = (ii).This implication is trivial.
(it)= (iii). If @ & Ay, then there exist ax | 0 such that ®(a1) < £ and ®((1+ £)ag) >

2£®(ay) (k € N), where 0 < £ < 1 is a given constant. For each k& € N, choose an
integer my such that

& €
’ITL[C@(C!/C) < 2_k:’ (’ITLk; + 1)(1)(ak;) > 27
and define m
(i) = ap 26i+s" (n € N),
i-1

where {e;} is the natural basis of ¢p and s, = Z;:ll m;. Obviously, {x,} have mutually

disjoint supports, and so, Is(z;—~z;) < &/2'+¢&/2 < 1 (i # ). Moreover, for any v > 1,
it is easy to check that Ig(vz,) — 00 as n — oco. Therefore, for any n € N, A(z,) =1
and A(z) = 1 for all z € co{z,}. Clearly, x, — 0 lg-weakly, that is, z,, — 0 weakly
in hg. This means that {z,} is a weakly convergent limit constant sequence, thus, he
does not have the WNS.

(iii) = (i). Assume that lp has a limit affine sequence {z,} with A(z,) 1 A'. By the
diagonal method, we can find a subsequence of {z,}, again denoted by {z,}, such that
z, — x coordinate-wise. By Lemma 2.5, x € l3. Hence, we may assume that z, — 0
coordinate-wise and that A’ = lim A{z,) > 0.

For any 7,7 € N, since A is affine on co{z,},

lim ||22, — z; — ;]| = A(x:) + Axy).
n

Hence, as @ € Ay,

lim I (‘v" - w’) = lim I <’T" — Ij) = lim I (M) =1 (2.29)
n T

A(z:) ACH) n Alzi) + Alzy)
Let A\ = A(Iﬁf&% . Then by the convexity of @,

ot (Z28) + e (223 o n (Bemon)
> A @ (M) + (1= N;)@ (M)

Alzy) Alzy)
B 2x,(k) — zi(k) — z;(k)
? ( A@) + A() )
>0 (keN).

Recall that x, — 0 coordinate-wise. By letting n — oo, we conclude from (2.19) and
(2.30) that
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Letting j — o0, this equality becomes the equality
A(z;) zi(k) z;(k)
o =0 ——— k € N).
Alw:) + & (A(zi) Ae)r o) FEN
But ¢ < A(zi)/(A(x:)+A") < 1 by (2.7), so the above equality holds only for z;(k) = 0.

This means that z; = 0 (¢ € N), contradicting the assumption that {z,} is a limit affine
sequence.

To end this section, we present a different sufficient condition for ks to have the weakly
fixed point property.

Lemma 2.11 The space hg has the weak orthogonality property, that is for any se-
quence {z,} in hg such that z, — 0 weakly, there holds

lim inf liminf |||z,) A |zol] = 0,
n m

where (z Ay)(t) = min{z(t),y(t)} (see [S 88] and [S 92]).

Proof. The lemma results from obvious fact that the mapping y — |z| A |y| is
weak-norm continuous for every fixed € hg. In fact weak convergence of (yn) to
zero implies that y, — 0 coordinate-wise. So, if z € hg then |y,| A |z| < |z| and
|gn| A |T] — 0 coordinate-wise. By the dominated Lebesgue convergence theorem, we
get || [yl Azl || — 0. u

Lemma 2.12 The Riesz angle a(ls) < 2 if and only if & € Vy, where

a(le) = sup{[| =] v Iyl [ : lz| < 1, [y} <1}

Proof. If & ¢ Vg, then there exist u, | 0 such that
Un 1
20 (7) > (1= )0(un) (n€N). (2.31)

Let my, be an integer satisfying m,®(un) < 1 and (my + 1)@(un) > 1. Define

2maq

—unE €, Yn = Un E ;-

i=mn+1

Then it is easy to check that 1 > Is(y,) — 1 and by (2.31),

I (#) =2m,® (%) > (1 - %) mpP(u,) — 1.

This shows that ||z, V yn|| — 2.
Next we assume @ € V,. That is, there exist § > 0 such that

B((2 - 0)u) > 28(u) (Jul < 27H(1)).

Given z,y € B(lg), we have |z(3)|, |y(¢)| < ®71(1), whence

Ie (%) Ie (2‘" 5) +1s (29 5> %[Iep(w)H@(y)]
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that is, |||z V [y]ll < 2 —é.
|

Applying a result of Borwein and Sims [Bo-S 84] stating that every weakly orthogonal
Banach lattice X with Riesz angle a(X) < 2 has the weak fixed point property, from
Lemmas 2.11 and 2.12 we deduce the following

Theorem 2.13 If & € V3, then hg has the weak fired point property.

Remark 2.14 Theorems 2.10 and 2.13 furnish a natural example of a space with the
weakly fixed point property but without WNS.

Remark 2.15 Dowling, Lennard and Turett [Do-Le-T 96] investigated Orlicz spaces
for which every nonexpansive self-mapping of a nonempty, closed, bounded, convex
subset has a fixed point. This property is called the fixed point property (FPP). They
proved that L has FPP if and only if it is reflexive. In fact, this can be obtained
immediately from Theorem 2.1 presented above, Theorem 1.90 in [Ch 96] and the
following two results given by Dowling and Lennard [Do-Le 97]:

(a) A Banach space X fails FPP if it contains an asymptotically isometric copy of I1.
That is, for every positive sequence (g,) decreasing to 0, there exists a sequences
{zn} of norm-one elements in X such that > (1 —ep)|an| < || 3, anzy| for all
sequences (o) of real numbers.

(b) If the dual of X contains an isometric copy of I°°, then X contains an asymptot-
ically isometric copy of I*.

It is still an open problem whether the above conclusion is true or not for the Orlicz
space Lg equipped with the Luxemburg norm. The only trouble is that one cannot
prove the necessity of ® € Ag in the same way as for the Orlicz norm.

Notes. Criteria for normal structure and uniform normal structure of Musielak-Orlicz
spaces were given by Katirtzoglou [Kat 97]. In Orlicz-Lorentz spaces the criteria were
presented by Kaminska, Lin and Sun [Ka-L-Sun 96].

3. Uniform rotundity in every direction

Recall that a Banach space X is said to be uniformly rotund in every direction (URED)
if for any z € S(X) and every two sequences {z,} and {y,} in S(X) such that z, —y, =
enz, where {e,} is a sequence of reals, and ||z, + ynl| — 2 we have ||z, — yn| — 0. If
we change S(X) into B(X) in the above definition, we get the same property.

In the fixed point theory this geometric property is important because of the following
well known theorem.

Theorem 3.1 Any Banach space X which is uniformly rotund in every direction has
normal structure.

Now we will present criteria for URED of Orlicz spaces. We do not assume in this
section that Orlicz functions & satisfy condition (ii) from the definition (see page 1).
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Theorem 3.2 Let (T, u) be a nonatomic complete and o-finite measure space and
® be an Orlicz function. Then the Orlicz space Lg equipped with the Luzemburg norm
is uniformly rotund in every direction if and only if ® is strictly convex and ¥ satisfies
the Ay-condition on Ry if p is infinite and the Ay-condition at infinity if it p is finite.

Proof. Sufficiency. Let {z,},{yn} be sequences in S(Lg), 2z € S(Ls), Trn—Yn = €n2,
where {£,,} is a sequence of reals and ||(z,, + ¥ )/2|| — 1. Then by the As-condition,
we have Is((zn + yn)/2) — 1 (see [Ch 96]). We will show that z, — y, — 0 in
measure. Assume for the contrary that it is not true. Then we can assume (passing
to a subsequence if necessary) that for some €, ¢ > 0 there holds p(E), > ¢ for all
n € N, where

E,={teT: |z,(t) - yu(t)| > o}.

Choose k > 1 such that F € ¥ and pu(F) = £/4 implies that ||xr|| = 1/k and define
A, ={teT: |z, )| >k}, B,={teT: |y(t)| > k}.

Then we have 1 = ||zals > |Tnxa.le > k|lX4. (e, whence |[x4,lls < % and conse-
quently, u(An) < e/4. Similarly, u(B,) < /4 (n € N). By strict convexity of ¢ there
is § > 0 such that if u,v € [0, k] and |u — v| > o, then

u+v 1-4
< — .
e(57) < 5o + o))
Denote Cp = Ey \ (An U Byp). Then we have u(Cr) > u(E,) — (u(An) + p(Br))
e —e/2 = €/2. Moreover for any t € Cp, we have |z,(t) — yn(t)| > o and |z,(t)]
k, lyn(t)| < k for any k € N. Consequently

Al

® (zn(t);yn(t)> < 1;6{<1>(zn(t))+‘1>(yn(t))} (teCn), n=1,2,....

Consequently
Ty + 1 Tp +
01— Ié( - "”") = ~{lo(@n) + La(ya)} — IQ("T?’")
1 o+
2 {Ia(@n)Xe,) + la(n)xe, )} — Lo (P, )

1 1-6
2 5lle(2nXc,) + Ta(ynxe, )} — — s (znxc,) + Lo (UnXe, )}

b Tn —Yn
= Sl (@axc,) + Ialmxe, )} 2 01a (T2, )

2 se(F)uc > s3(3)5

a contradiction. Therefore z,, — yn, — 0 in measure. Since z € S(Lg) and so z # 0, we
conclude from the equality z, — yn = €n2 (n € N) that e, — 0. Consequently, there
is np € N such that |e,| < 1 for n > ng and so |z, — yn| < |2 for n > ng. By the
Lebesgue dominated convergence theorem, we get (z, — yn) — 0 and by the suitable
Ag-condition for @, we get Ig(A(zn — yn)) — 0 as n — oo for any A > 0, which means
that ||z, — yn| — 0 as n — oc.

Necessity. Assume that ® does not satisfy the suitable Ap-condition. Then L® contains
an order isometric copy of I (see [Ch 96], [Ra-Re 91] and [T 76]). Since lo is not
URED, Lg is not URED, either.
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Assume now that ® is not strictly convex. We will show that Lg is not rotund and
so is not URED. Since @ is not strictly convex, there exists u > v > 0 such that
O((u +v)/2) = {®(u) + ®(v)}/2. Choose two disjoint sets A, B € ¥ and a > 0 such
that u(A) > 0, p{B) > 0 and

(@(u) + 2(v))u(A) + ®(a)u(B) = 1.

[Nl

I
=

Let C,D C A be measurable sets such that u4(C) = u(D) = 1u(A) and C N D
Define

z =uxc +vxp + axs,
Yy =vxc +Uuxp +axs-

Then Ig(2) = B(u)u(C)+ (0)u(D)+B(a)s(B) = H(B(u)+(w))u(A)+@(a)(B) = 1.
In the same way we can prove that Is(y) = 1. Moreover,

1o(5Y) = 0 (1) () + B(a)u(B)
1

= S(B(w) + 2@)u(4) + H(a)u(B) = 1.

Consequently, ||z]le = |lylle = |[(z +¥)/2|e = 1. Since, evidently, z # y, Ls is not
rotund. This finishes the proof. |

Notes. Kaminska [Ka 84] first gave criteria for URED of Musielak-Orlicz spaces of
Bochner type. Theorem 3.2 can be easily deduced from her paper. The proof that we
presented here is different.

4. B-convexity and uniform monotonicity

These properties are related to the fixed point theory by the following

Theorem 4.1 (see [Ak-K 90]) If a Kdthe function space X is B-convexr and uniformly
monotone, then it has the fized point property.

Recall that a Banach space X is said to be B-convez if no nonreflexive space Y is
finitely represented in X (see [Ak-K 90] and [Ch 96]). Since UR implies nonsquareness,
nonsquareness implies B-convexity and B-convexity is preserved by equivalent norms,
we know that uniformly covexifiable Banach spaces are B-convex. The converse is also
true.

Now, we will present criteria for B-convexity and uniform monotonicity of Orlicz spaces.
We do not assume generally in this section that Orlicz functions that they must satisfy
condition (ii) from the definition on page 1. First we will prove the following.

Lemma 4.2 Let ® be an Orlicz function such that its right derivative p on Ry satisfies
the condition:

For any € > 0, there exists K > 1 such that p((1 +¢)t) > Kp(t) (t>0).

Then ® is uniformly convez.
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Proof. Given ¢ € (0,1), take K > 1 such that
p((L+2/20) > Kp(t) (22 0).

We shall show that for any »,v € R satisfying |u — v| > e max{|u|, [v}, the inequality
q;(“"ZH)> g(l—é)?—@%ﬂﬂ (4.1)

holds for § = (1 — 1/K)/4 > 0. We may assume without loss of generality that
u—v >eu>ev >0, that is (1 —e)u > v > 0. Define

p(t) = B(u) + 0(1) ~ 22(*10) (2 0).

Then for almost all ¢ € [0,u],

&0 =) —p("57) <0
Hence ¢(t) is nonincreasing on [0, u]. Therefore,
plv) = ®(u) + B(v) - 2<I>(u ;—v)
> O(u) + O((1 — c)u) — 28((1 — ¢/2)u)
u (1—e/2)u u
= [ woa— [ sa= [ - s - el
(1-£/2)u (1-e)u (1—€/2)u

u

> [ 0-yKpE = 4 - VKB - (1 - &2
(1—e/2)u
> 2(1 = 1/K)[@(u) + 2(v)]

for « and v as above, that is inequality (4.1) holds with § = (¢/4}(1 —1/K)>0. &
Theorem 4.3 For any Orlicz space Lg the following are equivalent:

(i) Lg s reflexive.
(il) @ € Ay and T € Ay,
(iii}) Le is uniformly covexifiable.
(iv) Lg is B-conves.
Proof. It is well known that (i) < (i) (see [Ra-Re 91] and [T 76]). Let us prove
that (ii) = (iil). We consider only the case of a nonatomic finite measure space, when

& € A, means that ® satisfies the Ax-condition at co. By (ii) there exist ug > 0, K > 2
and 6 > 0 such that

(24 86)®(u) < P(2u) < KO(w) (u > ug).

Since changing the value of ® on [0,ug] does not affect the equivalence, we may assume
that the above inequalities hold for all v € R. Let

Jul ul
éo(u) = / @dt, and (Dl = / QOT(t)dt
JO J0
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We claim that & ~ ®; ~ &. Indeed, denoting by p the right derivative of ® on R,

we have
D (u) S B(2u)

plu) > w2 Ka z%p(u) (u>0).

Integrating each term of the last inequalities from zero to u, we get K ®(u) > K ®p(u) >
&(u), that is @ ~ Pg. Similarly &g ~ $;. Next, we will show that &; is uniformly
convex. Since

[ul/2 ]
- P(u/2) &(t)
K '9 < N = /__ t < /_
wea(y)= | Gogpas | =
0 [l /2
< @O(U)
luVZ(I) t E P(t
= / ® g+ / ®) 4
0 lul/2
u ®(u)
< - A\
<e(3)+ =
1 1 1
< (37575 +2)20 = 7o),
where L = 42 > 1, we obtain for ¢ > 0,
Lo B0 e

Do(t)  Po(t)

Hence we get

!
L %) K
t = Bolt) ~ ¢
Integrating this inequality with respect to ¢ from u to fu, where 6 > 1, we have

~—

0 ®o(u) < o(0u) < 6Xd(u) (0>1, ueR).
Set p1(t) = M]|(t) = ®g(t)/t for t > 0. We have for any € > 0 and u > 0,

P, +e)u + )l ®o(u
Pl((l +5)”)' 0((1(1—}— E)U) ) 2 (1 (1 +) E)’IOL( )
=1+ e)L 1<I>0(u)/u =(1+ E)L lpl(u),

whence, by Lemma 4.2, ®; is uniformly convex. Finally we will show that ¥ is also
uniformly convex, where ¥; denotes the function complementary to ®; in the sense of
Young. Let (¥,)(u) =: q1{u) and

a((1+e)v) = a@)a(v) (v>0).
Then a(v) > 1 (v > 0). Replacing v by p1{u), we get

(1+ () = paafo)) = L2
< K@)

=aof (v n{u).
oo = onw

Hence, o(v) > (1+ &)Y/E—1), and so 1((1 + €)v) > (1 + e)V/(E=Dg, (v), that is ¥ is
uniformly convex.
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Therefore, applying the result of Kamiriska [Ka 82b] and the fact that a Banach space
X is uniformly rotund if and only if X* is uniformly smooth, we get that both spaces
Lg, and Ly are uniformly rotund and uniformly smooth for both the Luxemburg and
Orlicz norms. Since ® ~ @, the space Lg is B-convex, which finishes the proof of the
implications (ii) = (iii) = (iv).

Let us prove that (iv) = (i). We will show that if Lg is not reflexive, then Lg is not
B-complex. Lg is nonreflexive if and only if ® &€ Az or ¥ ¢ Ag. If & ¢ Ay, then
Lg equipped with the Luxemburg norm contains an order isometric copy of I (see [T
76]). Therefore Lg is not B-complex. Assume now that ¥ ¢ As and ® € Ag. Then the
dual space of Lg is Ly, which contains an order isometric copy of I, and consequently
LY contains an asymptotically isometric copy of I; (see [Ch-H-Sun 92)), so LY (and
consequently Lg) is not B-convex. This completes the proof.

Let us denote by ® € Ay the fact that the Orlicz function @ satisfies the suitable
Aj-condition, which means the Aj-condition on R if ¢ is nonatomic and infinite, the
Ag-condition at infinity if x4 is non-atomic and finite and the Aj-condition at zero if u
is the counting measure.

Theorem 4.4 An Orlicz space Lg equipped with the Luzemburg norm is uniformly
monotone if and only if @ vanishes only at zero and ® € Ag.

Proof. Sufficiency. Assume that a(®) := sup{u > 0: ®(u) =0} =0 and & € Ay. Let
z € S(Lg), 0 <y<zand ||lyl|le > ¢, wheree € (0,1). Then, by ® € Ay and I3(z) =1,
there is 6() € (0, €] such that Is(y) > 6(¢) (see [Ch 96]). Since ® is superadditive cn
R, we have
Is(z) = Io((z —y) +y) 2 la(z —y) + L5(y),

whence Ip(z —y) < 1 - I3(y) < 1— 6(e). Again by ® € Ay, there is a function
a: (0,1) — (0,1) such that ||z|| < 1 — o(e) whenever Ig(z) < 1 — ¢ (see [Ch 96]).
Consequently, ||z ~y|| < 1— a(6(¢)), that is Lg is uniformly monotone.

Necessity. Assume that a(®) > 0. First assume that the measure space is infinite.
Then ¢ = x7 € S(Ls). Let A € ¥ be such that u(A) = u(T \ A) = co and define
y = xa. Then 0 <y < z and ||z — ylle = |Ix7\alle = 1, which means that Ls is not
uniformly monotone. If p is finite take y > 0 such that ||y||l¢ = 1 and p(T\suppy) > 0.
Define z = y + a(®)X1\suppy- Then 0- <y <z and |jzflg = 1, whence we get that Lg
is not uniformly monotone.

Assume now that ® ¢ Ay. Then there exists © € S(Lg), = > 0, such that [3(Az) = +oo
for any A > 1 (see [Ch 96] and [Ra-Re 91]). Consequently, there exists A € X such that
lzxalle = lzxmalle = |z — zxalle = 1, that is Lg is not uniformly monotone. This
finishes the proof of the theorem. a

Theorem 4.5 Let ® be an Orlicz function such that ®(u)/u — oo as u — co. The
Orlicz space LY equipped with the Orlicz norm is uniformly monotone if and only if
® € Ay and ® vanishes only at zero.

The proof of this theorem is similar to that for Theorem 4.4 and so will be omitted.

Notes. B-convexity for Musielak-Orlicz spaces was characterized in [H-Ka 85] and
for Orlicz-Lorentz spaces in [H-Ka-M 96]. Uniform monotonicity of Musielak-Orlicz
spaces was characterized in [H-Ka-Ku 87], [Cu-H-W] and [Ku 92]. For Orlicz-Lorentz
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spaces it was done in [H-Ka 95]. In some Calderon-Lozanowsky spaces and Banach
lattices monotonicity properties were considered in [C-H-M 95], [F-H 97], [F-H 99] and
[H-Ka-M 00].

5. Nearly uniform convexity and nearly uniform
smoothness

First we introduce the notions of nearly uniform convexity, k-nearly uniform convexity
and nearly uniform smoothness.

For a given € > 0 a sequence {z,} in a Banach space X is said to be e-separated if
sep({zn}) := Inf |lzm — 24| > €.
m#n

A Banach space X is called nearly uniformly convex (NUC) if for any £ > 0 there
is § > 0 such that for every sequence {z,} in B(X) with sep({z,}) > € there is an
element = € co({z,}) such that ||z|| < 1 — §. This notion was introduced by Huff [Hu
80], where it was also proved that a Banach space X is NUC if and only if it is reflexive
and it has the uniform Kadec-Klee property (UKK). Recall that a Banach space X is
said to have the UKK - property if for any & > 0 there is § = §(¢) > 0 such that for any
sequence {z,} with sep({z,}) > € and any z € B(X), we have ||z|| <1 — § whenever
T — x weakly.

It is well known that NUC Banach spaces have the FPP (see [Go-Ki 90]). The property
NUC has also been defined by using the measure of noncompactness by Goebel and
Sekowski [Go-Se 84].

Kutzarova [Kur 30] introduced the notion of k-nearly uniform convewzity of Banach
spaces (k-NUC). Let k be an integer, £ > 2. A Banach space X is said to be k-NUC
if for any € > 0 there exists § > 0 such that for every sequence {z,} in B(X) with
sep({zr}) > ¢, there are n1, ny, ... ,ng € N such that ||[(zn, +2p,+- - -+2p, )/ k) < 1-6.
Clearly k-NUC Banach spaces are NUC but the opposite implication does not hold in
general (see [Cu-H-Li]).

The notion of nearly uniform smoothness (NUS) has been introduced by Sekowski and
Stachura [Se-St 82]. The definition uses the notion of the measure of noncompactness.
Prus [Pr 89], [Pr 99] used another (equivalent) definition of this property which is easier
to formulate. Namely a Banach space X is said to be NUS if for every € > 0 there
exists § > 0 such that for each basic sequence {z,} in B(X) there is k > 1 such that

”IEl —{—t.’l)k” <1+4te

for each t € [0,6]. Prus [Pr 89} showed that a Banach space X is NUC if and only if
its dual space X* is NUS.

A natural generalization of NUS is WNUS where the condition "for every € > 0” in
the definition of NUS is replaced by ”for some € € (0,1)”. Let A be a bounded set of
X. Its Kuratowski measure of non-compactness a(A) is defined as the infimum of all
numbers d > 0 such that A may be covered by finitely many sets of diameter smaller
than d.

A Banach space X is said to be nearly uniformly *-smooth provided that for every e > 0
there exists § > 0 such that if z € S(X), then

a(S*(z,§)) <e,
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where §*(z,6) = {z* € B(X*): z*(z) > 1 - §}. NUC and NUS have been also studied
by Bana$ [B 87], [B 91].

Also nearly uniform smoothness and weakly nearly uniform smoothness are related to
the fixed point theory as it follows from the following.

Theorem 5.1 (see [Ga 97]) If X is a WNUS Banach space, then X has the FPP.
In particular, NUS Banach space have the FPP.

In order to get criteria for NUS of Orlicz spaces it is natural to present first criteria
for NUC of these spaces because NUC and NUS are dual properties (see [Pr 89]).

Since k-NUC implies NUC we present first criteria for k-NUC of Orlicz spaces given in
[Cu-H-Li].

Theorem 5.2 Let (T,X, 1) be a nonatomic and finite measure spaces and ® be a Orlicz
function satisfying ((u)/u) — oo as u — oo and X be equal to Ly or LY. Then X
is k-NUC if and only if ® is a strictly convex and satisfies the Ag-condition at infinity
and & is uniformly convez outside a neighbourhood of zero.

Corollary 5.3 Under the assumptions of Theorem 5.2 on u and ®, the spaces Ly and
LY are NUC if and only if both ® and U (where WU is the Young conjugate of ®) satisfy
the condition Aq at infinity.

Proof. It follows directly from the facts that k-NUC implies NUC, NUC implies
reflexivity and reflexivity of L (respectively, L} ) is equivalent to the fact that both &
and W satisfy the suitable As-condition. |

Theorem 5.4 The Orlicz sequence space lg is k-NUC if and only if both & and ¥
satisfy the Aq-condition at zero, that is lg is reflezive.

Proof. We need only to prove the sufficiency of the theorem . Suppose that the
implication is not true. Let any ¢ > 0 and {z,} C B(ls) with sep(z,)> € be given. By
& € Aq(0), there exists § = §(¢) > 0 such that

inf {I@(W> T n# m} > 6.

Next, we will show that for any 7 € N there exists n; € N such that

(5.1)

w| o

> B(zn; (1) >

i=j
Otherwise, there exists jo € N such that

fe o]

D B, (i) <

i=j

W >

for any j € N.

Defining Zn, = (zn(1),2n(2), -+ ,zn(j0),0,0,...) for n € N, we easily see that there
exists a subsequence {Zn, } of {Tn} such that

Tp, —fnj &
Is (T) < g
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for any 7 # j. Hence

00
k=
1 +2 > @zn,(k))Jr- Z B(2n, (k)
k=3j0+1 k—]o+1
Tn; — T, 1 &=
=1 __) +5 > B(zn, (k) + Z B (zq, (k)
k=jo+1 k=jo+1
6 & 6 2
< 3 + 3 + 5 35 6

This contradiction shows that (5.1) holds.
Since V¥ satisfies the Ag-condition at zero, there is © € (0,1) such that
u P(u) -1
<1 -e)—~ <u<
e(3)<1-0=2  (W<use(D)
(see [Ay-D-Lo 97] and [C-H-Ka-M 98]). By & € Az(0), there exists ¢ > 0 such

Is(z +) — Ia(2)] < 2

6k
whenever Ip(z) <1, Ip(y) < o (see [Ay-D-Lo 97], [Ch 96]).
Take ny < mg < -+- < ng_y1; N1,n2, - ,Ng—1 € N. Notice that
Is (znl + Tnp, ‘:: e +$nk_1) <1

and Ig(xp,) <1fori=1,2,---,k— 1. There exists j; € N such that

i & (wnl(i)+znz(i) +"'+$nk_1(i)> <o

= k
i=j0+1
and
> 1)
7 @ (zn, (1)) <3 G=12,...,k—1).
i=jo+1

By (5.1), there exists ng € N such that

Z B(zp, (7)) 2 3

i=jo+1

feot

So, in virtue of (5.2), (5.3), (5.4) and (5.5), we get

Tn; + + Ty
o ()

(5.2)

(53)

(5.4)

(5.5)
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_Zq><1"1 i)t . +Im.-(i)> n i F) (Inl(i)+‘]'c‘+znk(i)>

i=jo+1

g—ZqunJ i) + i (“*T(Z))+%

F=1 =1 i=jo+1

}CZZCI) I"J(Z +__ Z (I’(Tﬂx(7)+

j=11i=1 i=jo+1

=kZZ¢>sz »n-23 ‘1>(rnk())+65

7=1 1=1 i=jp+1

1_@_’_@_5—]_9?
3k ' 6k 3k’

I/\

which completes the proof. |

Theorem 5.5 For any Orlicz function ® satisfying (P(u)/u) — oo as u — oo the
Orlicz sequence space 19 is k-NUC if and only if both & and U satisfy the Az-condition
at zero, that is l% is reflexive.

Proof. We only need to prove the sufficiency. Let any ¢ > 0 and {z.} C B(13) with
sep({z,})> £ be given. By ® € Ay(0), there exists 6 > 0 such that

inf {Lp(z—";—xm> : n;ém} >4

By the same argument as in Theorem 5.4, we have that for any j € N there exists
n; € N such that

oo

Z ®(zn, (i) =

i=j

Wi

(5.6)
Take k, > 1 satisfying
1
| Zally = . (1 + Ip(knzn)) (n=1,2,...).

Such numbers k, > 1 exist by the assumption (®(u)/u) — oo as u — oo (see [Ch 96]).
Since U satisfies the Ag-condition at zero, the number

kog=sup{k,:n=1,2,...}

is finite (see {Ay-D-Lo 97]). Fix n1 < ng < -+ < 7tg—1; n1,7M2,- .- ;g1 € N. For any
ng € N | put

k k k klg—]
21
H =[] kn;, hj =[] bnir k=] 77 and A S
i=1 iztj i=1 E h; 0
=1

By ® € A(0), there exists © € (0,1) such that

O(wu) < (1 - 0)Ad(u) whenever 0<u< &1 (ko).
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Since ® is convex, for any ! € [0, A] and u € [0, ®~!(kp)], we have
l l
= Zu) < (1= bl
(lu)y =2 (A/\u) <(1-0))\® (/\u>

<A1 e)é@(u) < (1- ©)d(w).

k—
Since - = — M < K1 _ )\ the following holds
3 hs R+ 37 hs 1+ko
i=1 i=1
h h
£ < (1-0)-a(w) (5.7)
E hi E hi
i=1 i=1
whenever 0 < u < @~ 1(kg). By ® € Ay(0), there exists o > 0 such that
Oks 6
Is(z +y) — Is(z)| < ——o— .~
| CI’( y) @( )| 1+k6¢,1 6

if Ip(z) < ko and Is(y) < o (see [Ay-D-Lo 97] and [Pr 89]). Consequently, we need
only to prove that (ii) = (iii). We will show that (ii) implies the As-condition at zero
for @. If ® does not satisfy the Az-condition at zero, we can construct z € S(lg) such
that Ip(z) < 1 and Te((142)z) = oo for every n € N (see [Ch 96] and [Ka 82a]). Take
a sequence {ix} of natural numbers such that i, 7 and

k41

i:%l(l)((l + %)ui)) >1 (keN).
Put
zr = (0,0,...,0, z(ix + 1), (i + 2), ..., (46+1),0,0,...) (k€ N).
Then it is obvious that A
el <z €1 (k eN).

Moreover,
g — 0 weakly. (5.8)

Indeed, for every y* € (lp)* we have y* = y§ + y uniquely, where yj is the order
continuous part of y* and y} is the singular part of y*. That is yj(z) = 0 for any
z € hg (see [Ch 96]). The functional y§ is generated by some yg € ly by the formula

[o o]

vi(@) = (o) = Y _a(iyo(d) (= € la).

=1
Let A > 0 be such that > 50, U(Ayo(4)) < oo. Since zx € hg for any k € N, we have

(T y") = (@ru) = S 2(iyold)
i=ig+1
g§< 3 @)+ Y ‘I’(/\yo(i)))

imig+1 i=ig+1
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—0 as k— oo,

that is (5.8) holds.

Since the space lg is nearly uniformly *-smooth, it has property A$§, that is for any
€ > 0 there exists § € (0,1) such that for each weakly null sequence (z,) in B(lg) there
is m > 1 such that

21 + tzm| < 1+ te

whenever ¢ € [0, 6] (see [Pr 89] and [Pr 99]). Take ko € N such that 2y < (1 —€)§ if
k > ko. We have for k > ko,

k
1+ 6e > ||z + x| > (1 + &)zs] > (1 +6)m

2

:(1+5)(1—L) >146- =

E+1
whence % > (1 —¢)6. This is a contradiction which finishes the proof of the fact that
(ii) implies the Aq-condition at zero for ®.

Next, we will show that (ii) implies the §z-condition for ¥. By the above part of the
proof, we can assume that ly is nearly uniformly *smooth and $ satisfies the Ao-
condition at zero. So, lg is order continuous. Moreover, any Orlicz space lg has the
Fatou property and consequently, it is weakly sequentially complete. So, in view of
Corollary 5.3, lg is nearly uniformly smooth and consequently reflexive. This yields
the Ag-condition at zero for W. |

6. WORTH and uniform nonsquareness

Garcia-Falset [Ga 94] has proved that if a Banach space X has WORTH and is uniformly
nonsquare, then X has the FPP.

So, we will present now criteria for uniform nonsquareness in Orlicz spaces and criteria
for WORTH in Kothe sequence spaces. We say following Sims [S 88] that a Banach
space X has WORTH if for any =z € S(X) and any weakly null sequence (z,) in X, we
have

lim | |zn + || — |zn — 2| | — 0.

n—o0

Let 0 be an Orlicz sequence space. A Banach space X C £ is said to be a Kdithe
sequence space (or a Banach sequence lattice) if there is a sequence z = (z(7))2, € X
with all z(3) # 0 and for every = € £ and y € X with |z(i)] < |y(i)| for all i € N it
follows that z € X and ||lz|| < |ly||.

Theorem 6.1 (see [Cu-H-P 99]) A Kéthe sequence space X has WORTH if and only
if it is order continuous.

In this section we do not assume that ¢ satisfies condition (ii) from the definition of
an Orlicz function.

Corollary 6.2 Orlicz sequence spaces lg equipped with the Luremburg norm or with
the Orlicz norm have WORTH if and only if ® € Ag(0).

Proof. Since order continuity of I and 12 is equivalent to ® € A4(0), the corollary
follows immediately from Theorem 6.1. |
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The notion of uniform nonsquareness of a Banach space was introduced by James [J
64]. Recall that a Banach space X is said to be uniformly nonsquare (UNSQ) if there
is ¢ € (0,1) such that for every =,y € B(X) there holds

() < -
mln(H 2 || 5 <l-—e.

Theorem 6.3 (see [H 85], [H-Ka-Mu 88] and [Su 66])

(a) In the case of a nonatomic infinite and o-finite measure space as well as in the case
of the counting measure space the Orlicz space Lg equipped with the Luzemburg
norm is uniformly nonsquare if and only if it is reflezive.

(b) In the case of any finite nonatomic measure space the Orlicz space Lg equipped
with the Luzemburg norm is uniformly nonsquare if and only if Lg is reflerive and
B(b(®))u(T) < 2, where b(®) = sup{u > 0: D is linear on the interval [0,u]}.

Note. Uniform nonsquareness of Musielak-Orlicz spaces was characterized in [H-Ka-Ku
87]. For Orlicz-Lorentz spaces it was done in [H-Ka-M 96], where uniform nonsquareness
of some Calderon-Lozanowsky spaces was also considered.

Note. The characteristic of convexity of Orlicz function spaces equipped with the
Luxemburg norm was calculated in [H-Ka-Mu 88] in the case when the measure spaces
is nonatomic and infinite. Recall that this coeflicient for a Banach space X is defined
by

eo(X) = inf{e € (0,2]: &x(e) > 0},
where §x denotes the modulus of convexity of X. In the case of nonatomic and finite

measure space eo(L?) was calculated in [H-W-Wa 92]. Lower and upper estimates for
the characteristic of convexity of Kéthe-Bochner spaces were given in [H-Lan 92].

7. Opial property and uniform Opial property in modular
sequence spaces

In this section we will present some results on the uniform Opial property of modular
sequence spaces. As a corollary we will obtain criteria for the Opial property and the
uniform Opial property of Orlicz sequence spaces for both the Luxemburg and Orlicz
norms.

Let X be a real vector space. A functional m: X — [0, 00] is called a modular if (see
[Mu 83] and [Mal 89]):

(i) m(z) =0if and only if =0,
(ii) m(—z) = m(z) for all z € X,

(iii) m{az + By) < am(z) + fm(y) for all ¢,y € X and a,3 > 0 such that a + 8 =1
(that is m is convex).

For any modular m on X, the space

Xm={z € X: m(Az) <co forsome A>0}
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is called the modular space (generated by m). It is obvious that X,, is a vector space.
The functional

|z = inf{A > 0: m(z/X) <1}

is a norm on X, which is called the Luzemburg norm (see [Cu-H 98a] and [Cu-H 99a]).
A modular m is said to satisfy the Ag-condition (m € Ay) if for any € > 0 there exist
constants K > 2 and a > 0 such that

m(2z) < Km(z) + ¢

for all z € X, with m(z) < a.

If m satisfies the Ap-condition for any a > 0 with K > 2 dependent on a, we say that
m satisfies the strong Ags-condition (m € A$).

In this section a function ®: (—o00,00) — [0,00) is said to be an Orlicz function if it
is convex, even and ®(0) = 0 (see [Ch 96], [Lu 55], [Mal 89], [Mu 83], [Kr-R 61] and
[Ra-Re 91]). For a given Orlicz function ® one can define on the space {0 of all real
sequences « = (z(7)) the modular

ma(z) =Y ®(x(i)).
i=1

The modular space (£0),, is called an Orlicz sequence space (see [Ch 96], [Kr-R 61],
[Lu 55], [Mal 89], [Mu 83] and [Ra-Re 91]).

It is easy to see that if ® vanishes only at zero, then mg € Aj whenever & € A3(0).

Let X be a Banach sequence space (or Kothe sequence space), an element z € X is
said to be absolutely continuous if

nlirro10||(0,... ,0,z(n+1),z(n+2),...)| =0.

The set of all absolutely continuous elements in X is denoted by X, and it is a subspace
of X. X is called absolutely continuous if X, = X.

We say that a Banach sequence lattice X has the Fatou property if for any x € X and
a sequence {zn} in X such that 0 < z, < z and z, 1 z, there holds ||z,| T |z| (for
the theory of Kothe sequence spaces we refer to [Kan-Aki 72]). A Banach space X is
said to have the Opial property (see [O 67]) if for every weakly null sequence {z,} and
every ¢ # 0 in X there holds

lim inf ||z,|| < liminf ||z, + |
n—00 n—oo

The Opial property is important because Banach spaces with this property have the
weak fixed point property (see [G-La 72}).

Opial has proved in [O 67] that the Lebesgue sequence spaces £, (1 < p < oo) have
this condition but Ly[0,27] (p # 2, 1 < p < o0) do not have it. Franchetti [Fr 81] has
shown that any infinite-dimensional Banach space admits an equivalent norm under
which it has the Opial property. A Banach space X is said to be the uniform Opial
property (see [Pr 92|) if for every e > 0 there exists 7 > 0 such that for any weakly null
sequence {z,} in §(X) and £ € X with ||| > € there holds

1+ 7 <liminf ||z, + ||
n—00
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Let 3 be the ball-measure (that is the Hausdorff measure) of noncompactness in X,
that is

B(A) =inf{e > 0: A can be covered by a finite
family of sets of diameter < £}

for any A C X. A Banach space X is said to have property (L) if lim.1 A(e) =1,
where

Ae) = mf{1 — inf{||z||: =z € A}},
and the first infimum is taken over all closed sets A in the unit ball B(X) of X with
B(A) > e.

The function A is called the modulus of noncompact converity (see [Go-Se 84]). It has
been proved in [Pr 92| that property (L) is useful to study the fixed point property
and that a Banach space X has property (L) if and only if it is reflexive and has the
uniform Opial property. We start with the following auxiliary lemma.

Lemma 7.1 Assume that m € A3, Then for every L > 0 and € > 0 there exists
§ = 6(L,e) > 0 such that for all z,y in Xy, with m(z) < L and m(y) < 8, there holds

[m(z +y) —m(y)| <e.

Proof. Let L > 0 and e > 0 be given. By m € Aj, we conclude that there is Ko > 2
such that
m(2z) < Kom(z) + /8

for all z € X,,, with m(z) < L. Set 8 = ¢/2KyL. Using again m € A, one can find
K, > 2 such that

m (%w) < Kim(zx)+¢/8
for all z € X, with m(x) < L. Set § = £/28K; and assume that m(z) < L and
m(y) < 6. Then
m(z +y) = m((1 = Bz + Bz + F7'y))
< (1= Bym(z) + fmfz + 5 1y)
< m(z) + Bm(27 (2 + 267 "y))
< m(z) + 27 Bm(2z) + 27 Am (267 'y)
< m(z) + 27 BK,L + % + 27 Bm(y) + %
< m(z) +e.

In a similar way we can show that m(z) —e < m(z +y). Hence |m(z+y) —m(z)| < e
whenever m(z) < L and m(y) < §, which finishes the proof.

Corollary 7.2 If m € A3, then for any € € Xm, |z|| =1 if and only if m(z) = 1.

Proof. We only need to show that ||z|| = 1 implies m(z) = 1 because the opposite
implication is obvious. Assume that m € Aj. We can easily get from Lemma 7.1 that
the function f defined on R by f(A\) = m(Az) is continuous. Namely, it easily follows
by m € Aj that f is finitely valued, which yields that f is continuous. Take any ¢ > 0
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and Ap € R\ {0}, and apply Lemma 7.1 which L = m(Aez) and § = §(L,¢). We have
m(z +y) — m(z)| < € whenever m(z) < L and m(y) < §. Hence

|m(Ax) — m(Aozx)| = [m((X = Ao)z + Aoz) — m(Xaz)| < €
whenever |A — Ag| < 8. So, we easily get that m(z) = 1 whenever |z| = 1. |

Lemma 7.3 If m € Ay, then for any sequence (zn) in X, the condition ||zz) — 0
holds if and only if m(zn) — 0.

Proof. It is easy to see that ||z,|| — 0 if and only if m(Az,) — 0 for each A > 0. By
m € Ay it follows from Lemma. 7.1 that the property holds for sufficiently small positive
L (say L < Lp). Assume that m(z,) — 0. There is m € N such that m(z,) < Ly for
all n > m. So, for any ¢ € (0,1) there is K, > 0 such that

() < ont

for n sufficiently large. Let ng € N be so large that m(z,) < 1/(2K;) for n > ng. Hence
m(zn/e) < Kem(wn) + 3 < 1 for n > ng sufficiently large. This yields [|z,|| < € for n
sufficiently large. The opposite implication follows from the inequality m(z) < ||z|| for
z with Jlz|| < 1.

Lemma 7.4 If m € A3, then for any € > 0 there exzists § = 6(e) > 0 such that
lz|| = 1+ 6 whenever m(z) >1+e¢.

Proof. Suppose that there exist eg > 0 and a sequence {ry} in X, such that ||z,] | 1
and m(z,) > 1+ ep. Since m € Aj, for any € > 0 there exists § > 0 such that
|m(z +y) —m(e)] <e

whenever m(z) < 1 and m(y) < 6 (see Lemma 7.1). We may assume without loss of
generality that 1 — 1/||z.|| < 6. Hence, applying the fact that m(z,/||z,||) = 1 for any
n € N (see the proof of Lemma 7.1), we get

(- ) (en)

That is |m(z,) — 1| < e. This contradiction shows that Lemma 7.4 is true. n

< E.

Theorem 7.5 Suppose that a Kéthe sequence space X has the Fatou property. Then
X is absolutely continuous whenever it has the uniform Opial property.

Proof. Assume that X is not order continuous. Take e = 1/2 and an arbitrary 7 > 0.
Let § =1/(1+7/2), whence 6 > 1/(1+ 7). By Riesz’s lemma (see [Ta-Lay 80], p. 64),
for any 8 € (0,1) there is zp € S(X) such that |lzg — z|| > 6 for any z € X,. Let z¢
corresponds to § = 1/(1 4+ 7/2). By the Fatou property of X,

Z profy) (i)ei

i=1
Let n; = 0. There is ny € N such that

n2
> " xolies
i=1

T llzoll = 1.

(-8
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Since Y 72, zg(i)e; € X,, it follows that

oo

D> wo(ies

i=nz+1

>0.

So, there is ng € N, n3 > ng, such that

n3

Z xo(z')ei

=ng+1

o8

Omne can find by induction a sequence (n;)%2; in N such that n1 =0, ny <ng <.,
and v

i 1 1
> zoi)es|| > (1— A—Ja> (1——_)0 (j=1,2,...).
i=n;+1 J + Y
Define
nj+1
x;= Z zo(iJe; (1=1,2,...).
i=n;+1
It is obvious that z*(z;) = 0, j = 1,2,..., for any singular functional z* € X*. If

z* € X* is order continuous, there is y = (y(7))32; € X' (the Kothe dual of X, see
[Kan-Aki 72]) such that

o o]
2*(2) = Y y(D)2() (V2 = (2(0) € X).
=1
Since > 2, y(i)mo(i) is convergent it follows that
Tjt+1 Ti+1
z*(z;) = z‘( Z 270(1)61‘) = Z y(i)zo(d) — 0
i=n;+1 i=n;+1

as j — oo. Therefore, x; — 0 weakly as j — 0o. Moreover

(1_5)05”@”31 (G=1,2...). (7.1)

Define y; = zj/|lz;]|. Then |jy;|| =1 for all j € N and

To — T [EN 1 1
-yl <i|i—/— (ST S 71— 5
o =93l < | T || < Tyl = 7= T8 ~ @
Since 1/6 < 1 + 7, there is j5 € N such that
lzo = ysll <1+7 (V5> Jjo)- (7.2)

Since z; — 0 weakly, inequalities (7.1) yield that y; — 0 weakly. Hence and by (7.2) it
follows that X does not have the uniform Opial property . This finishes the proof. W

Theorem 7.6 Assume that a modular m € A§ and m is countably orthogonally ad-
ditive and that the modular sequence space Xm is a Banach space. Then X, has the
uniform Opial property.
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Proof. Let e > 0 be given. There is £; > 0 such that (see Lemma 7.3) m(z) > €1
whenever ||z|| > ¢. Since m € A, by Lemma 7.1, there is § € (0,£1/4) such that

€1
8

whenever m(z) < 1 and m(y) < §. By countable orthogonal additivity of m, there is

19 € N such that
m( Z :c(i)ei) <é.

i=ig+1

[m(z +y) — m(z)| <

Let {z,} be a weakly null sequence in S(X). It is obvious that =, — 0 coordinate-wise.
Hence, there is ny € N such that

ig
m(z a:n(z')ei) <68 (Yr 2 ng).
i=1
Therefore

m(z, +x)=m

i(xn(z) + x(z))ef) +m (Z(zn(z) + z(z))el)

(i:l =1
10 e oo €1
> m(Z m(z)ei) ) + m(l Z wn(z)e,) sy
i=1 i=ig+1
3 €1 g1 €
>l -2 2 N
2397 +mea) -3~ g
—148
=14

for n > ng. By Lemma 7.4, there is 2 > 0 that depends only on €1 and such that
llzn + || > 1 + ez whenever n > nmp. This means that X, has the uniform Opial
property. a

In this section we write m in place of I in Orlicz spaces.

Corollary 7.7 Orlicz sequence spaces £2 equipped with the Luzemburg norm have the
uniform Opial property if and only if ® € Ay(0).

Proof. Sufficiency. Orlicz spaces £2 are Banach spaces and they are modular spaces
(), where

ma(z) = 3 (i)
=1

for x = (x(d)) € £0. I ® € A2(0), then mg is countably orthogonally additive and
mg € Af. Therefore, by Theorem 7.6, £® have the uniform Opial property.

Necessity. If @ ¢ Aa(0), then £2 contains an order isometric copy of £>° (see [Ka 82a]),
so £2 is not absolutely continuous. Since £® has the Fatou property (see [Lu 53]), by
Theorem 7.5, £2 does not have the uniform Opial property. ]

Corollary 7.8 Orlicz sequence spaces |2 equipped with the Luzemburg norm have the
Opial property if and only if ® € Ay(0).
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Proof. If & € Ay(0), then by Corollary 7.7, I® has the uniform Opial property, and
hence has the Opial property as well.

Assuming that & ¢ As(0), one can find a sequence {,} in S(I®) such that zm Lz, for

m # n and
o

T = Z z, € 8(1%) (see [Ka 82a)).
n=1
Then we easily get that z,, — 0 weakly. However, ||z1 + zp| = 1 for any n > 2.
Consequently [2 fails to have the Opial property. |

Corollary 7.9 The Nakano sequence spaces ¢ with 1 < p; < oo for all i € N have
the uniform Opial property if and only if limsup, . p; < co.

Proof. The Nakano space P is a Banach space and it is generated by the modular

m(a) = 3 Jai)
=1

defined on £ (see [Na 50] and [Mu 83]). If

limsupp; < co
71— 00
then m € Aj and m is countably orthogonally additive. Therefore, by Theorem 7.6,
24 has the uniform Opial property.

If
limsupp; = oo
11—

then the Musielak-Orlicz function ¢ = (2)$2,, where ®;(u) = |u|?, does not satisfy the
&2-condition (for the definition of ® € 83 see [Ka 82a] and [F-H 99]). Therefore (see gKa
82a), [F-H 99] and [H 98]) £ contains an order isometric copy of £%°, whence £P4) is
not absolutely continuous. Moreover, £P) has the Fatou property whence, by Theorem
7.5, it follows that #P) does not have the uniform Opial property, which finishes the
proof. ]

For some other properties of £(P?) we refer to [H-Wu-Y 94].

In the following we will consider the uniform Opial property for Orlicz spaces equipped
with the Amemiya norm

.1
l2li4 = inf 2 (1 +ma(ha)).

We write ¢4 in place of @ - ||é) Denote by K(z) the set of all £ > 0 such that
|zl|4 = 1(1 + ma(kz)). It is known (see [Ch 96], [Ra-Re 91] and [Wu-Sun 91]) that
K(z) = [k%, k2], where k% = inf{k > 0: mg(pokz) > 1} and k2* = sup{k > 0: ma(po
kz) < 1} whenever K(z) # @ (that is k} < co), where p denotes the right hand side
derivative of @ on Ry = [0,00) and p o kz denotes the composition of p and kz. It is
also well known that K(z) # 0 for all z € £% whenever (®(u)/u) — o0 as u — co (see
[Ch 96] and [Cu-H-N-P 99]).

The following lemma from [Cu-H-N-P 99] will be useful to get criteria for the uniform
Opial property of Zi.
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Lemma 7.10 Ifz € ¢® and K(z) = @, then A := lim,_,oo(®(u)/u) < co and

lzlig =4 2(3)]-

i=1

Theorem 7.11 The Orlicz space éi has the uniform Opial property if and only if
o € Ay(0).

Proof. Since £% is not absolutely continuous whenever @ ¢ A2(0), by Theorem 7.5,
the necessity is obvious.

Sufficiency. Take any ¢ > 0 and z € ¢4 with ||z|§ > . Let (z,) be a weakly
null sequence in S(£%). By ® € Az(0) there is § € (0,¢) independent of = such that
me (%) > 6. Take j € N such that

A

<0
8.
P

(oo}

Z z(i)e;

i=j+1

JFrom z,, 20 it follows that z,(i) — 0 for any ¢ € N. So, there exists ng € N such

that
i A 5
an(v)el <3 (Vn > ng).
=1 &
Hence
Jj 00 A
o+ zalld = | 3@ + oal@es + 3 (@) +ule))e
i=1 j=j+1 $
J 00 A 5
2 Z(‘E(l) + zn(i))e: + Z zn(i)es|| — 8
i=1 1=j+1 -3
Jj 00 A 5
>N z@ei+ Y anli)es]| — 1 (7.3)
=1 i=j+1 ]

whenever n > ng. We will consider now two cases for n > ng.

j 00
I. K(Z (e, + zn(i)ei) # (. Then there exists k, > 0 such that
1

i= 1=j+1
7 oo
@n + || 8 = EIZ 1+m (kn (Z z(i)e; + Z zn(1)ez))

i=1 i=j+1

Combining this with (7.3), we get

> O

j 00
”1571 + 93||é > k:i (Z ‘b(knl'(i)) + Z ‘b(knmn(i))> -
™ \i=1

i=j+1

= ki (Z @(knm(’i))> + kl—n Z & (kpxn(i)) — g (7.4)

™ \i=1 i=j+1
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Moreover, from the inequalities

o o A
m( Z x(z’)ei) < Z z(i)e|| < 8 and m (i) > 6,
i=j+1 =j+1 @ 8 2

it follows that )
L 76
m (; x(z)ei) >3 (7.5)

We may assume without loss of generality that &k, > % Hence, inequalities (7.4)
and (7.5) yield

o0 A J
. 1 1)
|z +x||2 > Z zn(t)e; +QZ¢ (Ex(z)) -1
i=j+1 & i=1
5 76 6 5
1-2+2 2142
- 8 + 8 4 + 2
m o
IL. K(Z w(i)e; + 30 mn(i)q) = {. Then
i=1 i=j+1
3 oo A 7 oo
doa(ei+ Y walie|| =AY |3 +A D |z
i=1 i=j+1 % i=1 i=j+1
J A o0
> Zx(i)ei + Z zn(i)e;
=1 & lli=g+1
76 1] 36
Zi1-Z2=142
> 3 * 8 + 4
Therefore, by inequality (7.3) we get
5
ln +z)2 > 1+ 7
So, in any case, ||z, + x| > 1+ % for n > ng, which finishes the proof. ]

Corollary 7.12 Orlicz spaces lg generated by Orlicz functions ® satisfying
(®(u)/u) — 0 as u -~ 0o
have normal structure if and only if @ € A2(0).
Proof. If & € A(0), then /4 has uniform normal structure, and so it has normal
structure as well.

Assume that & ¢ Az(0). Then there exist x € S(I3) and a sequence {xz,} in ({f)* such
that zm Lz, for m # n, zplx, {z,} has a majorant in (lfl,})Jr and Ig(kozy,) < 27" for

any n, where ko > 1 satisfies xlg(l +m(kox)) = fz||4 =1, and ||za||§ — 1 as n — co.
Then z, — 0 weakly. Moreover,

1 1 1

—(1+ m{ko(z + zn)) = — (1 + m(koz)) + —m(koxs) < 14+277.

ko ko ko

Therefore, lim [lzn + 2§ = lim |z.]|4 = 1. That is, I3 does not have the Opial
n—oo n—oc
property. |
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8. Garcia — Falset coefficient

First we need to introduce some notation and definitions. Garcia-Falset [Ga 94] defined
the coefficient

R(X) = sup {1211}013 ln — z||: = € B(X), {zn} C B(X), xn o}
and proved in [Ga 97] that any Banach space X with R(X) < 2 has the weak fixed
point property.

A Kéthe sequence space X is said to have the semi-Fatou property (X € SFP) if for
every sequence {z,} in X and x € X such that 0 < x,, T x, we have ||z,] — ||=]|.

Theorem 8.1 (see [H-M 93]) If X is a Kithe sequence space with the semi-Fatou
property and with the norm not being absolutely continuous, then X contains almost

isometric copy of los. That is, for any e > 0 the exists a closed subspace Y of X and
an isomorphism P of loo onto Y which is a (1 + €)-isometry.

Corollary 8.2 If a Kithe sequence space with the semi-Fatou property is not absolutely
continuous, then R{(X) = 2.

Proof. It is easy to see that R(lo) = 2. Moreover, by Theorem 8.1, R{X) = R(lx).
]

Corollary 8.3 If & does not satisfy the Aqg-condition at zero, then R(lg) = R(I$) = 2.
Proof. Each of the norms || || and || || have the semi-Fatou property (in fact they even
have the Fatou property). Moreover, if ® ¢ A5(0), then lg and I3 are not absolutely
continuous (see [Ch 96]). So, by Corollary 8.2, we get the desired conclusion. ]

Theorem 8.4 (see [Cu-H-Li 00]) For any Orlicz function ®, the equality

R(hg) = sup {Ca:: = Zz(i)ei € S(lg) for somem € N}

i=1

holds, where c; is positive number satisfying Is(z/cz) = 1/2.

Remark 8.5 Note that R(X) = R;(X) for any K6the sequence space with the semi-
Fatou property and an absolutely continuous norm.

Corollary 8.6 For any Lebesgue sequence space Iy (1 < p < 00), we have R(l,) = 21/p,

Proof. For any z € §(lp) we have ¢; = 21/P_ which follows by the equalities

o()-E P

C.
T i—1 T

=N 1 1
:gé,f(l”pzzzi.

To formulate the next corollary we need an equivalent definition of the Riesz angle for
a Banach lattice X. It is defined by

a(X) = sup{fijz| v lyl|l : =,y € B(X),|z| A Jy| = 0}
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Corollary 8.7 For any Orlicz function ®, the equality R(he) = a(hs) holds.

Proof. By the equality R(hg) = d that was obtained in the proof of Theorem 8.4, we
can easily get the inequality R(hg) < a(hg). On the other hand, for any ¢ > 0 there
exist z € S(hs) and y € S(hs) such that |z] A Jy| = 0 and

] v [glll > alle) — e

For the sake of convenience, we may assume that  Vy = (z(1),y(1),z(2),y(2),- - ).
By the fact that hge has an absolutely continuous norm, there exists ig € N such that

NIzl (1), lyl (1), -+ 5 | (o), Jyl (30), 0,0, - )|| = cha) — €.
(Zo+n)th

R R —
Defining zo = (]}(1),:13(2), ,$(’Lo) 0, 0 ) and yn = (0) » 0, ly| (1)7|y| (2)7 P
ly] (30),0,0,---) for all n € N, we get y, — 0 and

limin g + 7o > a(ha) —c.

n—o0
Hence R(X) > a(X) — . By the arbitrariness of ¢ > 0, we get R(hs) > a(hs) and
consequently R(hs) = al(hs). [ ]

Corollary 8.8 For any Orlicz sequence space lg, R(lp) < 2 if and only if € A2(0)
and ¥ € AQ(O).

Corollary 8.9 For any Orlicz function ®, R(hg) < 2 if and only if ¥ € Ay(0).

Proof. By Corollary 8.2 and Theorem 3.11 in [Ch 96], which says that if ¥ € Ay(0),
then he has the w — FPP, both Corollaries 8.8 and 8.9 follow. |

Notes. It is known that property () which has been introduced by Rolewicz [Ro 87] is
stronger than NUC and it implies normal structure of the dual space (see [Kut-Ma-Pr
92]). Property (8) has been considered in Orlicz-Bochner spaces, Musielak-Orlicz se-
quence spaces of Bochner type, Orlicz-Lorentz spaces and Calderén-Lozanovskii spaces
in [Ko-a], [Ko-b] and [Ko-c|. Properties UKK and NUC in Kéthe-Bochner spaces have

been considered in [Ko-d].

9. Cesaro Sequence Spaces

For 1 < p < oo the Cesaro sequence space ces, is defined by

S

n=1

(see [Lee 84] and [Sh 70]).

Lemma 9.1 (see [Cu-H ()Ob]) For any e > 0 and L > 0, there exists 6 > O such that

\Z( - |a:<z>+y<z)|) S S CONISET

n=1 i=1
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14 P
whenever 1 < p < 00, o2 (3 Ly lo(@)])” < L ond £, (250, w@)]) <.

Proof. It follows by the uniform continuity of the function f(u) = «” on any compact
interval [0, {]. n

Theorem 9.2 For the Cesaro sequence space cesp (1 < p < o0) we have R(cesp) =
2l/p,

Proof. We can apply Remark 8.5. Let € > 0 be given. For any

In In
fo o]
{zn = E zn(i)ei} ,C S(cesy), Tn 2 0, z = E z(i)e; € S(eesp), Iy < Iy < ---,
n=
i=I,_1+1 =1

there exists ng € N such that

I
(%)p < min(e,§), where a= Z (&)
i=1

k=ing+1

and § > 0 is the number corresponding to our € > 0 and L = 1 in Lemma 9.1. Hence
for any m > np there holds

2 — =" = If(%ilz(i)\)p+ ) (%(Qfl ’Im(“'))p

= \"io k=Im_1+1
Im—1 1k r o0 1 k P

> S (1)) + 3 (13l

k=1 i=1 k=Ipn_1+1 i=1

o0 1 k ' P oo a\p 00 1 k . 4
ko) - 5@ 3 (30l
= \" =1 E=Im_1+1 k=Im+1\" =1

>l—e+1=2—-c¢.

That is, liminf ||z, — || > (2 - 5)% On the other hand, for any m > ny,
n—00

el =35 (130k01) + 5 (Has Sl

k=1 i=1 k=in_1+1
oS 1 k P [eS) 1 k P

SZ(E, |:v(i)|> + 0> (E2|wm(i)|) +e=2+4e¢
k=1 i=1 k=Im_1+1 =1

That is, lim inf ”xn — z“ <(2+ s)i By the arbitrariness of € > 0 and by Remark 8.5,
7n—00

1
we get R{cesp) = 27. ]
Corollary 9.3 Cesaro sequence spaces ces, (1 < p < 00), have the fized point property.

Proof. For 1 < p < 0o, ces, is a reflexive space and since R(cesp) = /P < 2, cesp
has the weakly fixed point property. Therefore, ces, has the fixed point property. W
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10. WCSC, uniform Opial property, &-NUC and UNS for

cesy

Our main aim in this section is to calculate the weakly convergence sequence coefficient
for Cesdro sequence space cesp and to prove that for any p € (1,00), ces, is k-NUC
for any integer ¥ > 2 and has the uniform Opial property and property (L). The
weakly convergence sequence coefficient, which is connected with normal structure, is
an important geometric constant. It was introduced by Bynum [By 80}.

For a sequence {z,} C X, we consider
A({@n}) = lim (sup{[lzs — 5]+ 4,52 m.i # )}
Ar(fen)) = Tim {inf(la: — 23] 6,52 n.i# 5}

The weakly convergence sequence coefficient, of X, denoted by WC'S(X), is defined as
follows:

WCS(X)=sup{k >0: for each weakly convergent sequence {z,}, there is
y € co({zn}) such that k- limsup ||z, —yl|| < A{{z,})},
n—oo

see [B 91].

The number M(X) = 1/WCS(X) for a reflexive Banach space is called the Maluta
coefficient and it is known that M(X) = 1 for every non-reflexive Banach space X
(see [Ma 84]). It is also well known that a Banach space X with WCS(X) > 1 has
weak normal structure (see [Cu-H-Li]). A sequence {zn} is said to be an asymptotic
equidistant sequence if A({zn}) = A1({zn}) (see [Z 92]). The formula

inf{A({z.}): {zn} € S(X) and z, =0}
inf{A({zn}): {zn} an asymptotic equidistant

WCS(X)

I

Il

sequence in §(X) and z, =0}

was obtained in [Z 92].

A Banach space X is said to have weak uniform normal structure if WCS(X) > 1.
Recall that the functions a and 3 are the Kuratowski measure of noncompactness and
the it Hausdorfl measure of noncompactness in X, respectively. We can associate these
functions with the notions of the set-contraction and the ball-contraction (see [De 85]).
These notions are very useful in the study of nonlinear operator problems (see [De 85]).

The packing rate of a Banach space X is denoted by v(X) and it is defined by the

formuia
YX) = §(X)/o(X),

where §(X) and ¢(X) are defined as the supremum and the infimum, respectively, of
the set

{%: AC X, A is a-minimal, a(A)>0}'

Recall that A C X is said to be a-minimal if a(B) = a(A) for any infinite subset
of A. For those definitions and for results concerning the existence of a-minimal and

B-minimal sets we refer to [Ay-D-Lo 97], Chapter X.

Theorem 10.1 If 1 < p < oo, then the space ces, is k-NUC for any integer k > 2.
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Proof. Let & > 0 be given. For every sequence {z,} C B(X) with sep({z,}) > ¢, we
put z7 = (0,0,...,0,zp(m), zn(m + 1),...). For each 1 € N, the sequence {£, ()},
is bounded. Therefore, using the diagonal method one can find a subsequence {z,, }
of {z,} such that the sequence {z, (i)} converges for each ¢ € N. Therefore, for any
m € N there exists km such that sep({z}} }x>k.) = €. Hence for each m € N there
exists n;, € N such that

(El =3 (10.1)

Write Ip(z) = > 07, (% Yo |1:(z)[)p and put €1 = ———”,,Ek_i (%)p. Then 36 > 0 such
that
p(z + y) — L(z)| < &1 (10.2)

whenever I,(z) < 1 and I,(y) < 6 (see Lemma 9.1).

There exists m; € N such that [,(zT") < 8. Next, there exists mo > m; such that
L(z5?) < 6. In such a way, there ex1sts mg < mg < --- < my_y such that I(z 5 ’) <é
for all j = 1,2,... ,k —~ 1. Define my = mp_1 + 1. By condition (10.1), there exists
ny € N such that Ip(z%) > (¢/2)P. Put n; =i for 1 <4 <k — 1. Then in virtue of
(10.1), (10.2) and convexity of the function f(u) = [ul?, we get

I

Sy

i=1

(zm tZny +o T, F 'Tnk)

k
z"l )+"'+Zﬂk(i)‘)p
k

> 1 5| @y (8) + Zng () + -+ + Ty, (4) + T, (4)
p> (52 P |
n=mjy+1 i=1
my k n 4 00 n , . 4
1 1 . 1 Tp (1) + - + 20, (1)
Sis(igo) 5 (esmma)..,
n=1" =1\ =1 n=my+1 \  i=1
my k n P me n .
_ 1 1 . 1 Tna(3) 4+ T () NP
S (E ] ¢ 3 (A jetie i)
n=1j=1 =1 n=mi+1 i=1
oo n . . . . y4
1N @0 () + B (6) + -+ Ty () + 2, (3) )
n=mg+1 n i=1 k
mi 1 k 1 n 4
S 319 EPSATY D oI S ST
n=1 j=1\ =1 noma1
o] n . . . Y4
1 Tng (1) 4+ Ty (T) + - + T, (2) + Zn, (4)
(s )
n=mj i=

L(@n) 4 + D(#n,_,) 17231/ Y
<® 2 +2 Z_jl (;(g |wnk(1)l))
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1 & (1 v
> (ngwnk(i)l) + (k= 1e

n=mg_1+1 i==1

:1-%+ 1.(1— i (%g’“k(i”))p

n=my_1+1

>

o

NE> GD%@)() + (k= Dey
i=1

n=mg_;+1

.p—1 _ e n P
<14 (k=1)1— (E—kp“l) Z <% z lx'ﬂk(z),)
=1

n=my_1+1

<1+ (h =1 - (%)@P

-3 6

Therefore, cesp is (k — NUC) for any integer £ > 2. |

Theorem 10.2 For any 1 < p < oo, the space cesy has the uniform Opial property.
Proof. For any ¢ > 0 we can find a positive number g¢ € (0,¢) such that
&P
1+'5> (1+€0)p.
Let = € X and |[z]| > . There exists n; € N such that

> (%lew) <%y
=1

i=n1+1 i

Hence we have

> € €
- 0
Z z(i)e; <7<y
i=n1+1
ith
where ¢; = (0,..., 1,0,0,...). Furthermore, we have
[ 1 n r 00 1 n P
oS (A0 + 3 (23 w0])
n=1 i=1 n=n1+1 =1

S + ()

whence
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For any weakly null sequence {z,,} C S(X), in virtue of z,,(¢) — 0 for i = 1,2,...,
there exists mg € N such that

when m > mg. Therefore,

7] 20
[2m + 2l = Y (@m@) + 2@))es+ D (@mli) + 2()es
i=1 i=nj+1
‘ ny o0 ny oo
> Zw(i)ei + Z T (i)e; Z;zcm(i)ez — Z z(i)e;
i—1 t=ni1+1 i=1 i=my+1
ny o0 E(]
> (2)es Tmi)ei|l — =
> Zz(z)e + ' Z Tm(i)e 5
i=1 i=n;+1
when m > mq. Moreover for a := le |z(%)| there holds
i=1
ny oo p 1 o 1 n P
D a(eit+ Y xmli)e Z(n > et el‘) > (; Z(a+|zm(i)[))
i=1 i=n) +1 i= n=ni+1 i=1

2

Z( Z el) + Z (%Z‘mm(l)o
n= i=1 n=n1+1 i=1

3eP eP

T3

=1+5>(1+50)P.

Therefore, combining this with the previous inequality, we get

ni 0o
B . €
|Zm +z|| = Zw(z)ei + » Z Tm(3)e; EO
i=1 i=ni+1
€0 €p
>1 ——==1+—.
> 1l+e 5 + 2
This means that cesp has the uniform Opial property. |

By the reflexivity of ces, for 1 < p < oo, we get the following.
Corollary 10.3 For 1 < p < oo the space cesp has property (L) and the fized point
property.

Now, we will calculate the weakly convergence sequence coeflicient of ces,.

Theorem 10.4 For 1 < p < oo, WCS(ces) = 27,

Proof. Take any ¢ > 0 and an asymptotic equidistant sequence {z,} C S(X) with
£, =0 and put v; = z1. There exists i; € N such that

x

Z U1 (z)e,

i=iz+1

< €.
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Since 2, — 0 coordinate-wise, there exists ny € N such that

i1
> zn(ies
i=1

<€

whenever n. > ng.
Take vy = xp,. Then there is 49 > 4; such that

00

Z va(i)e;

i=t2+1

< e.

Since z, () — 0 coordinate-wise, there exists ng € N such that

iz
Z xn(i)ei
=1

<€

whenever n > ns.

Continuing this process in such a way by induction, we get a subsequence {v, } of {z,}

such that _
oo in
Z vn(i)es|| < e and Zvnﬂ(z’)ei <e.
i=int1 i=1
Put .
in
Zn = Z vpli)e;
i=ip_1+1
forn=2,3,... . Then
00 in—1 00
1> [zl =Y vn(i)ei = Y _vali)ei— D wvali)es (10.3)
i=1 i=1 i=in+1

oo in-1 oo
> Zvn(z’)ei — Z vp(t)es|| — Z up(B)e;|| > 1 — 2e.
i=1 =1 i=in+1

Moreover, for any n,m € N with n # m, we have

o o
[on = vell = ||D un(i)es = Y vm(ie; (10.4)
i=1 i=1
in tm in—1
> D w@e— Y vmled| = || vnlides
t=in_1+1 f=tm_1+1 i=1
oo im—1 )
- Z vn(i)e;|| — va(i)ei - Z U (1)e;
i=in+1 =1 i=im+1

> |lzn = zm|| — 4e.

This means that A({zn}) = A({vn}) = A({zn}) — 4e. Put u, = 2,/||2s| for n =
2,3,.... Then

U, € S(cesp); (10.5)




.
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A{za}) 2 1 - eA({un}) - 4e. (10.6)
On the other hand

llon = vml < llzn — 2mll +4e < llun — um| +4e
for every m,n € N, m # n. Therefore
A({un}) > A({za}) — 4. (10.7)
By the arbitrariness of € > 0, we have from (10.5), (10.6) and (10.7) that
WCS(cesp) = inf{A({un}): Up = Z tn (3)e; € S(cesy),
i=ip_g+1
O=dp<i1 <ig<..., unﬂo}.

Using Lemma 2 in [Z 92], we have

WCS(ces,) = inf{A({un}): un= 3 un(i)e; € S(eesp), 0 =g < iy < -,
i=in-1+1

Uy =0 and {un} is asymptotic equidistant}.

Take m € N large enough such that

oo

byp
- <e,
> ®)
where b := Z::li.,.ﬂﬂ |un(?)|. We have for n <m
— 1 P
i — P = S ( 3 fun z)l) (z (b+ Z ;um<z>|))
k=in_1+1\" =1 k=im_1+1

wlr—*

Epmo) - £ (i5eo)
_ i (}cimnz);) Z @ + i (Zlum )P

k=i, _q1+1 i=1 k=ip_1+1 k=im_1+1 i=1

S1-et+1=2—¢, thatis, Ai({ur}) > (2 -¢)?.

o-e0)

1
P

Note that

o=

x| =

B
£ (o]

k=im_1+1

1 1
SIDS 3“+ 5 (A3 k) | <t o
=l K . ™ ST
k=tim_1+1 k=tm_1+1 i=1
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Therefore
Tm—1 1 k p oo 1 k P
fom — P =3 (;Dum(m D (;(HZIUW(Z')I))
k=ip_1+1 =1 k=tpm_1+1 i=1
oo 1 k p 0o 1 k p
< Y EZ|um(i)| + Y E(b+2|um(i)|)
k=inp_1+1 i=1 k=ipm_1+1 i=1

S1+(1+s%)P

for any n,m € N, m # n. This yields A({un}) < 1+ (1 +5113)P]113 and, by the
1
arbitrariness of € > 0, we obtain WCS(cesy) = 2». n

Corollary 10.5 For 1 < p < o0, ces, has the weak uniform normal structure and
normal structure.

Corollary 10.6 For any 1 < p < oo, we have y(cesp) = 2=1)/p,

Proof. By [Ay-D 93], if X is reflexive Banach space with the uniform Opial property,
then y(X) = 2/WCS(X). Since, by Theorem 10.1, ces,, is NUC for 1 < p < oo and
property NUC implies reflexivity, Theorem 10.2 yields ~y(ces,) = 2/ 2l/r = ov-Vp, W

Note. Banach-Saks and weak Banach-Saks properties in Cesaro sequence spaces has
been characterized in [Cu-H 99b].
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