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1. Introduction 

The aim uf this chapter is to prescnt criteria for the most import,ant geometric properties 
related to the metric fixed point theory in some classes of Banach function lattices, 
mainly in Orlicz spaces and Cesaro sequence spaces. We also give some informations 
about respective results for RiIusielak-Orlicz spaces, Orlicz-Loreritz spaces and Calder6n- 
Lozanovsky spaces. 
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1.1. Orlicz Spaces 

Some general facts. We denote by R, R+ and N the sets of real numbers, 
nonnegative real numbers and natural numbers respectively. 

A mapping @ : R + R+ is said to  be an Orlicz function if: 

(i) @ is even, continuous, convex and vanishing only at  zero, 

(ii) l im, ,o (q)  = 0 and lim,,,(F) = co. 

An Orlicz function is said t o  satisfy the Az-condition at  zero ( a  E Az for short) if 
there are constants K > 2 and a > 0 such that @(a) > 0 and @(2u) < K@(u) for all 
real u with 1uI < a .  

It  is well known (see [Lu 551, [Mal 891, [Mu 831 and [R.a-R.e 911) that is an Orlicz 

function if and only if @(u) = J!' p(t)dt, where p is the right derivative of @ satisfying 
the following conditions: 

(iii) p is right-continuous and nondecreasing on R+, 

(iv) p(t) > 0 whenever t > 0, 

(v) p(0) = 0 and limt,,p(t) = co. 

Hence it follows immediately that 

By the convexity of @ and @(0) = 0, we get 

@(au)  < a @ ( u )  ( O < a  < 1, u > O ) ,  

which vields 

For the filnction p satisfying conditions (iii), (iv) and (v), we define 

which we call the right-inverse function of p. It  is easy to  show that q also satisfies 
conditions (iii), (iv) and (v). If @ is an Orlicz function with the right derivative p and 
q is the right-inverse function of p, then the function 

is called the complementary function of @ (or the Young conjugate of a). It is well 
known (see [Ch 961, [Lu 551, [Mal89], [Mu 831 and [R.a-R.e 911) that we have the Young 
inequality 

uv 5 @(u) + Q(v) (u, v 2 0) 

and that the equality 
UV = @(u) + Q(v) 

holds for u > 0 if and only if v E [ ~ - ( U ) , ~ ( U ) ] ,  where p- is the left derivative of a .  
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Someti~nes Orlicz functions are defined only by condition (i). It  is easy to see that 
(@(PL) /u )  -+ 0 as u -+ 0 is equivalent to  the fact that Q vanishes only at  zero and 
( @ ( u ) / u )  -+ m as u -+ co is equivalent to the fact that J! has only finite values. 

Example 1.1 Let @ be an Orlicz function. If lTrl is the Young conjugate of the function 
defined on R by Q1(u)  = a@(bu) ,  where a ,  b are fixed positive numbers and p is the 

right derivative of @ on R+, then the right derivative of Q1,  is p l ( t )  = abp(bt )  and so 
its right-inverse fu~lction is 

where q is the right derivative of P ,  and P is the Young conjugate of @. Hence 

Example 1.2 Let P I ,  P2  be the Young conjugates of Orlicz functions and Q2,  
respectively. Suppose that 

Consider the relationship between P1 and Qz .  By the Young inequality and equality 
(1.3),  we have 

Hence by 
@z(q2(.)) 2 @1(qz(v) )  (q z (v )  2 u o ) ,  

we obtain 
P 2 ( v )  l P , ( v )  (q2(v) 2 ~ 0 ) .  

Let (T, C, p )  denote a nonatomic, complete and finite measure space and denote by 
LO = L o ( T ,  C , p )  the space of all (equivalence classes of) C-measurable real functions 
defined on T .  

Given an Orlicz function @, we define on LO a convex modular I* by 

The Orlicz space L" generated by @ is the set of those x E LO that I*(Xz)  < co for 
some X > 0. If lo is the space of all real sequences x = ( x ( i ) ) z l ,  then the modular I* 
is defined on lo by 

00 

and the corresponding space 1" = { x  E l o :  I*(Xx)  < co for some X > 0) is called the 
Orlicz sequence space. We also define 

E* = { x  E L o :  I*(Xx) < m for any X > 01, and 

h? = { x  E lo: I*(Xx) < m for ally X > 0). 



Lemma 1.3 Let @ be an Orlicz function and Q! be its Young conjrrgate. Then the 
follou~ing are equivalent: 

( i )  @ E Ag. 

(ii)  There exist 1 > l ,uo > 0 and K > 1 srrch that 

(iii) For any l1 > 1 and ul > 0 there exists K' > 0 such that (1.4) holds for 1 = 
l l ,uO = u1 and K = K t .  

( i v )  For any l2 > 1 and uz > 0 there exists E i n  the interval ( 0 , l )  such that 

@ ( ( I  + E ) U )  < 1 2 @ ( ~ )  (U > 1~2) .  (1.5) 

( v )  For any l3 > 1 there ezist vo > 0 and 6 > 0 such that 

Q ! ( 1 3 ~ )  2 (13 + 6 )  Q!(v) ( v  2 vo). (1.6) 

( v i )  There exist l3 > 1,  vo > 0 and 6 > 0 such that (1.6) holds. 

Proof. 

T h e  implication ( i )  + (i i)  is obvious. 

(i i)  + (iii). Given l1 > 1, choose an integer N such that la > 11. T h e n  b y  (1.4),  

Hence, i f  u l  2 uo, then K a  is a candidate for K t .  I f  ul < uo, then, we choose 
K t  = m a x ( K a ,  K O ) ,  where 

(iii) + ( i v ) .  For l2 > 1 and I L Z  > 0, by (ii i) ,  there exists K' > l2 such that 

@(2u)  < K t @ ( u )  (11 > u2). 

Take E = (lg - l ) / ( K t  - 1) .  Then  0 < E < 1 and b y  the  convexity o f  @, 

( i v )  + ( v ) .  For any l 3  > 1 and vo > 0, choose u g  E (O,q(vO)].  Then  inequality (1.5) 
and Examples 1.1 and 1.2 imply 

1 13 
Q )  < - ( v )  (11  > vo)  

13 I + &  

Hence it  follows that  

B y  setting 6 = l3&, we get (1.6). 

T h e  implication ( v )  + ( v i )  is trivial. 
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( v i )  + ( i ) .  Let IJ = ( 1 3  + 6)/13.  Then  (1.6) can be  written in the  form 

1 
- V 3 v )  L Q ( v )  ( v  L vo).  
Pl3 

Choose 72. E N such that IJn  2 and set I< = pnly. Then  by Examples 1.1 and 1.2, we 
get 

@(2u)  5 @(IJnu) I Pnly@(u) = K @ ( u )  ( u  2 uo). 

2. Normal structure, weak normal structure, weak sum 
property, sum property and uniform normal structure 

Let X be a Banach space and {x,) a sequence in X such that xi # x j  whenever i # j .  
I f  for any x E co{x,}, the convex hull o f  {x,}, the  lirnit A ( x )  = l im ,  11s - xnll > 0 
exists and A ( x )  is affine on co {x,}, then {x,} is called a limit a f ine  sequence. I f ,  in 
particular, A ( x )  is equal to  a constant on co {x,}, then {x,} is called a limit constant 
sequence. I f  X contains no (weakly convergent) limit affine sequence {x,) satisfying 
A(x,)  t, then it is said to  have the (weak) sum-property. W e  say that X has (weak) 
normal structure (NS ( W N S ) )  i f  i t  contains no (weakly) convergent limit constant 
sequence. 

I T h e  original definition o f  the  (weak) normal structure is given in  the  following equivalent 
way: 

X has (weak) norrnal structure i f  for any nonsingleton (weakly compact) nonempty 
bounded closed convex subset C o f  X ,  there exists x E C such that 

I r,(x) := sup{ ) (x  - yll : y E C }  < diam ( C )  := snp{ ( (u  - vll: U , V  E C } .  

I Moreover, i f  there exists h E ( 0 , l )  such that for each nonsingleton nonempty bounded 
closed convex subset C ,  t,here exists x E C such that r,(x) 5 (1 - h,)diam ( C ) ,  then  X 
is said t o  have uniform normal structure (UNS) .  

T h e  above concepts are introduced as a powerful t.001 in fixed point theory. For instance, 
i f  X has weak normal structure, then it has weak fixed point property (w-FPP),  that  is, 
any nonexpansive self-mapping defined on a weakly compact convex nonempty subset 
o f  X has a fixed point (see [Ki 651 and [Go-Ki 901). 

In this section we will consider Orlicz spaces over a finite nonatomic measure space 
only. 

Theorem 2.1 Let X he equal to one of the space L a ,  L:, l* or 1;. Then X has UNS 
if and only if it is  rejexive. 

T o  prove this theorem, we need the  following lenimas 

Lemma 2.2 Suppose @ E A 2 .  Then for any P > 1 and E > 0, there exists K 2 2 such 
that for all x E L a ,  

I*(IJx) 5 K I a ( x )  + E.  

Proof. Let a > 0 satisfy \II(IJa)p(T) < E .  T h e n  since E A2, t.here exists K 2 2 such 
that ~ ( I J u )  5 K @ ( u )  for all u 2 a. For given x E L*, set F = { t  E T : Ix( t ) (  2 a } .  
Then  

Ia(IJx) = I*(IJXIF) + I*(IJXIT\F) I K I a ( x 1 ~ )  + @(IJa)p(T \ F )  5 K I Q ( x )  + E ,  



Lemma 2.3 Assume @ E A2 n Vz. Then for any a > 0 ,  there exist c > 1 and 6 > 0 
such that 

whenever 1u( > a and IuI 2 ~ 1 ~ 1 ,  or uv I 0.  

Proof. By Lemma 1.3, there exist y > 0,and E E (0,112) such that 

and 
2 

@ ( ( I  + E ) W )  5 -@(w) (IwI 2 0)  

Set 

Then 1uI 2 (Y, IuI 2 clul or uv 5 0 imply 

Lemma 2.4 If a Banach space X does not have UNS, then for each 1% E N and E > 0 ,  
there exists a family {x i  : 1 < i I n + 1 )  in X such that 

and 

Proof. By the assumption, there exists a bounded nonempty closed convex subset C 
of X such that for each z E C,  there exists x E C satisfying llz - xll > (1  - E )  diam C.  
Without loss of generality ,we may assume that 0 E C and diamC = 1, that is, llxll I 1 
and llx - yII < 1 for a11 x ,  y E C .  

Pick xl E C arbitrarily. Then, by the hypothesis, there exists x2 E C such that 
llx2 - X I  1 1  > 1 - E .  Since C is convex, ( x l  + x2) /2  E C .  Therefore, there exists x3 E C 
such that / ( x 3  - ( x l  + x2)/21( > 1 - E ,  and so on, by induction, we can choose the desired 
system of elements. W 

Proof of Theorem 2.1 We only prove the theorem for X = L*. The proofs for other 
spaces are analogous. Since all Banach spaces with UNS are reflexive,we only need to 
show the sufficiency. By Lemmas 2.2 and 2.3, there exist K 2 2, b > 0, c > 1 and 6 > 0 
such that 
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and 

Select an integer p > 16c2K2 and set n = 8p. If L* fails to have UNS, then Lemma 2.4 
and E Az yield the existence of { x i ) ,  1 I i 5 n + 1, such that 

I*(xi) 5 1, I * ( x i - x j )  5 1 ( 1  < i  < j  5 n + l )  and (2.4) 

Now, we first introduce some notation. Set u i ( t )  = ~ , + ~ ( t )  - x i ( t )  (i  _< n )  and for each 
t  E T, rearrange { ~ ~ ( t ) ) ~ ~ ,  into { y s ( t )  = uis( , , ( t )}  such that y l ( t )  5 . . . < y,(t). Then 
it is not difficult to check that each y s ( t )  is C-measurable. Moreover, define 

I ( t )  = { i  5 n : l e~ i ( t ) )  > clx(t)l or clui( t ) (  < x ( t )  or u i ( t ) z ( t )  I O),  
A = { t  E T : I ( t )  contains at  least 4p elements), B = T \ A. 

Then 
Ix(t)l I 111ax{IYs(t)I, IY4p+s(t)l} l xo( t ) .  (2.6) 

Moreover, (2.1),  (2.4) and the convexity of @ imply 

In the first step, we show that 

1 j m ( x l ( t )  > -. 
2 2 K 

I3 

Since (2.4) and (2.1) yield 

That is, I*(-) > A, to  verify (2.8) it suffices to  show that 

For this purpose, we first check that t  E A implies 

for each s I 4p. In fact, if there exist some j  5 4p and t  E A such that none of the 
above three inequalities holds, then we get 



Since x ( t )  is between y j ( t )  and ~ ~ ~ + j ( t ) ,  we derive that 

c P 1 x ( t )  .< y s ( t )  .< c x ( t )  or c P 1 x ( t )  2 y s ( t )  2 c x ( t )  

for all s  = j ,  j + 1,.  . . , 4 p  + j ,  which contradicts the definition of A. 

Hence if we define for each s  5 4p ,  A ( s )  = { t  E A : max{ly , ( t ) l ,  I y Q f s ( t ) I )  > b ) ,  then 
(2.3)  and the convex it,^ of @ imply 

It  follows from (2.4)  that 

Now, we define 

Di = { t  E A :  luz(t) l  > 6 )  ( i =  1 , 2 ) ,  and 

B i ( s )  = { t  E A : u i ( t )  = y s ( t )  or y d p f s ( t ) )  (i = 1 , 2 ) .  

Then from (2 .2) ,  (2.9)  and the fact that U ~ ~ B ~ ( S )  = A, D ;  n B ; ( s )  c A(s) (i = 1 , 2 ) ,  
we derive 
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1 1 1  <-+-=--. 
8 K  8 K  4K 

This ends the proof of inequality (2.8). 

In the second step, we set for each i = 3 , .  . . , n - 1, 

G ( i )  = { t  E B : Ix,(t) - xi(t)I I c ( x ( t ) ) / p  for some s > i and s I n } .  

Then 

In fact, for any t  E B = T \ A, by the definition of A, there exist a t  least five u i ( t )  
such that their distance from each other is no more than clx(t) lip, and thus, there exist 
i ,  j; 3 < i < j I n, such that 

that is t  E G(i ) .  This proves (2.10). 

Now, we define 

k=3 

Then { ~ ( i ) } : ! :  are pairwise disjoint and U ~ Z : D ( ~ )  = B. Let, for each i = 3 , .  . . , n - 1 
and each t  E D ( i ) ,  

Then i l ( t ) ,  i l '( t)  are well defined by the definition of G ( i )  and i l ( t )  < i l ' ( t ) .  Next, we 
construct two C-measurable functions as follows: 

Then by (2.6) and the definition of i l ( t ) ,  i l ' ( t ) ,  

Since (2.8) and the convexity of M imply 

1 '  1 
- / [@(xl l ( t )  - x l  ( t ) )  + @(x1I(t) - x2( t ) ) ]d t  2 1 @ ( * p ) d t  > -, 2 2 K  

without loss of generality, we assume that 

Finally, let E = { t  E B : Jxl ' ( t )  - xl( t ) l  2 max{b, ~ ~ x ~ ( t ) / ~ } } .  Then by (2.11), t  E E 
implies Jx1I(t) - xl( t ) l  2 2 Ixl(t) - xI1(t)J.  It  follows from (2.3) that if t  E E, 
then 

xl'(t)  - x l ( t )  + xl'(t)  - x l ( t )  1 - 6 
2 ) ~t -  XI(^)) + m(."(t) - ~ ~ ( t ) ) l .  (2.13) 



Moreover, (2.12), (2.3),  (2.1),  (2.7) and the inequality c2Ip  < ( 4 ~ ) - '  < 1 imply that 

In light of (2.13) and the convexity of @ ,  for all t E E, we have 

+. (+ [ x (x1I(t)  - x . ( t  + 2 xll(t)  - x l ( t )  + x1 / ( t )  - x1 ( t )  
b1I(t) - l ZjhS, " ( t ) - l  

2 
k # i l ( t )  1)  

k=l 
m#,"(t)  

xl1(t)  - x l ( t )  + z1l(t)  - z ,  ( t )  x @ ( x n ( t )  - ~ k ( t ) )  + 2@ 
2 

n m-l 5 
[@(xI1(t)  - x l ( t ) )  + @(x1I(t)  - x1( t ) ) ] .  

m=2 k=l 

Combining this with (2.5),  (2.14) and xI1(t) - 1 5 n - 1, we deduce 

6 
m-l 

I - -  4n2K < A 5 I* (x7n - rn-l 
7n=2 k=l 

5- p x I* ( x m  - zk) 
m=2 k=l 

6 6 
- - ~ [ m ( x ~ ~ ( t )  - ( t ) )  + ( ( t )  - x l ( t ) ) ] d t  < 1 - -- 

n(n - 1)  4n2 K ' 
E 
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This contradiction completes the proof. 

Lemma 2.5 Suppose x ,  E B ( L * )  for n E N and z, -+ x i n  measure. Then a: E 
B ( L * ) .  

Proof. Since I*(I:,) 5 1 for all n E N, by the Fat011 Lemma, we have I*(T) 5 
lim inf, I*(xn) 5 1. 

Theorem 2.6 The spaces L$ and 1; have th,e weak sum-property, so they h,ave WNS. 

We will prove this theorem together with the next theorem. 

Lemma 2.7 If {I:,,) is a bounded sequence i n  L;, k,  E K(z , , )  for n = 1 , 2 , .  . . and 
k ,  4 co, then x ,  4 0 i n  measure. 

Proof. For each a > 0, define G ,  = { t  E T :  (xn( t ) l  2 a}. Then 

1 1 1 1 ~ , ~ 1 1 ~  = -[I. + I*(knxn)] 2 - @ ( k n a ) ~ ( G n ) .  
kn kn 

Applying the fact that @ ( u ) / u  4 m as u + m, we get p(Gn)  4 0. 

Lemma 2.8 ( i)  If {x,} is  a bounded sequence i n  La  and i t  converges to zero i n  
measure, then x,, 4 0 Eu-weakly, where Q is  the Young conjugate of @. 

(ii) If {x,} is a bounded sequence i n  1+ a.nd it converges to zero coordanate-wise, then 
x ,  -+ 0 h s  -weakly. 

Proof. We only prove (i) because the proof of (ii) is analogous. Suppose that llx,,ll 5 
K for any n E N. For any v E El and E > 0, choose 6 > 0 such that E E C and 
p ( E )  < 6 imply I I x x ~ l l t  < E. Since x ,  4 0 in measure, we can find G,, E C with 
p(Gn)  < 6 such that Ix,(t)l < E on T \ G ,  for all large n. Hence, for such n, 

n / I x n ( t ) v ( t ) d ~  

T(G, 
0 0 5 E I I X T I I  llvllu + IIxnll Il?lx~,lIw 5 E I I x T I I  1 1 ~ 1 1 ~  + EK. 

Since E > 0 is arbitrary, this shows that (v,x,)  4 0. 

In the following by SAI of @ we denote an interval [a,  b] such that @ is affine on [a ,  bj 
but it is not affine neither on [a - E ,  a] nor on [b, b + E ] ,  where E > 0. 

Theorem 2.9 Let X be one of the spaces L : , E ~ , Z ;  or h;. Then  the following are 
equivalent: 

( i)  X has the sum-property. 

(ii) X ha.s NS. 

(iii) There exist a > 0 and c > 1 such that for any S A I  [u, u] of @, 

u > a + v  5 cu ( w h e n X  = L$ o r ~ g ) ,  



Proof of Theorems 2.6 and 2.9. We only prove the theorems for X = L$, and 
X = E:. Let { x n )  be a limit affine sequence in Lg and kij E K (x i  - x j )  ( i  # j ) .  First 
we show that there exists a subsequence Nl of N such that for any j  E N l ,  {k i j  : i  E N l )  
is bounded. Indeed, if {kt3 : i  E N )  is bounded for all j  E N ,  then we set Nl = N .  
Otherwise, there exist some m E N and a subsequence I of N such that k;,,, + co 
as i ( €  I )  + co. This shows that xi : i E I converges to x ,  in measure according to 
Lemma 2.7. Since zi # x3 for all i  # j ,  by the same reason, we get that Nl = I \ {m,) 
satisfies our requirement. 

By the diagonal method, we can pick a subsequence N2 of N1 such that kij + k < co 
as Z ( E  N2) + co for each j  6 N I .  We claim that k j  -+ co as i ( ~  N2) -+ co. In 
fact, if this is not true, then N2 contains a subsequence N3 such that k j  -t X: < co as 
j ( ~  N3) + co. Therefore, for all n , i , j  E N3 with n # z ,  j, 

1 1 
2 - [1+ I*(kni(xn - xi))]  + - [1+ I*(knj(xn - xi))]  

kni Lnj 

Denote the last integrand in (2.15) by fki(t). Then fk3 2 0 for all t  E T since @ is 
convex. Recall that A ( x )  is affine on co{xk).  By letting n -+ co we get 

and thus fdi(t) + 0 in measure. Hence, the diagonal method allows us to  find a 
subsequence N4 of N3 such that fA3(t) + 0 p-a.e. on T as n ( €  N4) + co for all 
i, j  E N3. 

Now, for each t  E T, we pick a subsequence {nY = n y ( t ) )  of N4 such that 

Iv(t)J = lim irlf Is:,(t) 1 ,  and lim xn7 ( t )  = v ( t ) .  
n t N 4  

(2.16) 
Y 

Then, by the Fatou Lemma, Iv(t)l < co p-a.e. on T, analogously to the proof of Lemma 
(2.5). Let y + co. Then the convexity of @ gives 

1 1 
0 = lim f:: ( t )  = -@();(v(t)  - x i ( t ) ) )  + G@(X:j(v(t)  - x j ( t ) ) )  (2.17) 

ki 

p-a.e. on T. Since for p-a.e. t  E T, (2.17) holds for all i , j  E IV?, by replacing j  by nY 
in (2.17) and letting y -+ m, we have for p-a.e. t  E T, 
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It  follows that 

Since x j  is bounded an G j ,  there exists 6  = 6 ( j )  > 0 such that 

1  
I x j x ~ l l O  < whenever E  c Gi and p ( E )  < 6. (2.24) 

Since xi + 0 p-a.e. on T ,  there exists F  E C with p ( F )  < 6  such that xi + 0 uniformly 
on T \ F .  Hence, there exists I  = I ( j )  E N such that for all i > I ,  

I t  follows that 
0 0 1 

I ~ x ~ x F I I O  2 llxil1° - ~ ~ x ~ x T \ F I I  > IIxill - -. (2.26) 
I c j  

Hence, by (2.22)-(2.26), 

Letting i + crs, we have A(zj)  > 1 + 3 1 1 ~ ~ 1 1 ~  - 2 A ( z j )  - E. Hence, limj A ( z j )  2 2 
3 

Finally, we prove the implication (ii)+(iii) of Theorem 2.9. If (iii) does not hold, then 
there exist sequences { u j ) ,  { u j )  such that @ ( u l ) p ( T )  > l,uj+i > 2 j u j , 9  > 2 ju j  and 
p(u )  is a constant on [ u J , u j ] ,  j E N .  By the first two assumptions, we can choose 
disjoint sets G j  E C such that p(T  \ U j E N  G j )  > 0 and 

2-j - u j ~ ( u j ! ~ ( G j )  = [@(uj) + Q(p(? l j ) ) ]p (Gj ) .  (2.27) 

Hence, we can find uo large enough so that there is Go c T \ U j  G j  satisfying 
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Define 

" = x p ( u j ) x G j ,  X n  = UOXGO + x ? l j X ~ ~  + xUjX~, . 
j20 35n j2n 

T h e n  b y  (2.28),  I + ( v )  = 1 ,  whence v E L; and 1 1 ~ 1 1 ~  = 1. 

First we  show t h a t  x,, E Eo for any  TZ  E N .  Given  arbitrary K > 1, choose J > n such 
t h a t  2 J  > K .  T h e n  for all j > J ,  w e  have v j  > 2 j u j  > Kuj > u j .  There fore ,  

T h i s  implies t h a t  I a ( K x n )  < cu. Since K > 1 is arbitrary, w e  have x n  E E*. 

Let kn = 1 1 ~ ~ 1 1 ~  and yn = x n / k n .  T h e n  yn E E+ and J l y n l 1 0  = 1. B y  (2.28),  

Moreover, since 

w e  have k,, + cu as n + cu. 

W e  complete t h e  proof b y  showing tha t  A = 2 o n  co(yn) .  Indeed,  for a n y  y E c o ( y n ) ,  
there  exist X i  2 0 w i t h  Ci,,Xi = 1 such t h a t  y = xi,, Xiyi. Since ( v ,  y,) = 1, w e  
have (11, y )  = xi,,Xi(v, y,l) = 1. For any E > 0 ,  s ince  y E E*, there  exists I > m 
such t h a t  J l y X F I I O  < E ,  where F = UisIGi .  In  v iew o f  x n ( t )  _< m a x { ~ , ~ , u ~ }  o n  G \ F 
and kn + co as 71. + cu, w e  can find no E G; such t h a t  I \ y n X T \ F l 1 0  < E for all n > 71.0. 

Define vo = VXT\F - V X F .  T h e n  IIvollq and for n > n o ,  

which shows t h a t  A ( y )  = 2. W 

Theorem 2.10 Let X be one  of the spaces L o ,  E+,1* o r  h a .  T h e n  the following are 
equivalent: 

( i )  X has the sum-property. 
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(ii) X has WNS. 

(iii) AP E A 2 .  

Proof. This time, we prove the theorem for X = la and X = ha. 

(i) + (ii).This implication is trivial. 

(ii)+ (iii). If @ @ A,, then there exist ak 4 0 such that @(a l )  < E and @((l  + i ) a k )  > 
2 k @ ( ~ k )  (k E N ) ,  where 0 < E < 1 is a given constant. For each k E N, choose an 
integer m k  such that 

and define 

where {ei} is the natural basis of co and s, = m;. Obviously, {x,) have mutually 
disjoint supports, and so, I*(xi-xj) < ~ / 2 ~ + a / 2 3  < 1 (i # j ) .  Moreover, for any v > I ,  
it is easy to  check that I*(vxn) -+ co as n -+ co. Therefore, for any n E N, A(x,) = 1 
and A(x)  = 1 for all x E co{x,). Clearly, x, + 0 la-weakly, that is, x, -+ 0 weakly 
in ha. This means that {x,} is a weakly convergent limit constant sequence, thus, ha 
does not have the WNS. 

(iii) + (i). Assume that la has a limit affine sequence {x,) with A(x,) A'. By the 
diagonal method, we can find a subsequence of {x,), again denoted by {x,), such that 
x, 4 x coordinate-wise. By Lemma 2.5, x E la.  Hence, we may assume that x, 4 0 
coordinate-wise and that A' = lim A(xn) > 0. 

For any i ,  j E N ,  since A is affine on co{x,), 

Hence, as @ E A 2 ,  

22, - Xi  - X J 
l i n ~  I* (=) = 1:- I* (D) = l i ~  ( = 1. (2.29) 

A (xi) 4 % )  A(xi) + A(xj) 

Let Xi j  = &$&-J. Then by the convexity of @, 

x, - xi 
AijIa (-1 + (1  - X ~ ~ ) I *  (3) - I* ( 25, - 5; - x j  

A (xj) 4 4  + A(xj) 
xn(k) - xi (k) > Xij@ + (1 - Xjj)@ 

Recall that x, 4 0 coordinate-wise. By letting n 4 co, we conclude from (2.19) and 
(2.30) that  
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Letting j + co, this equality becomes the equality 

xi ( k )  

But C < A ( x i ) / ( A ( x i ) + A 1 )  < 1 by (2.7),  so the above equality holds only for x i ( k )  = 0. 
This means that xi = 0 (i E N ) ,  contradicting the assumption that {x,) is a limit affine 
sequence. rn 

To end this section, we present a different sufficient condition for h* to  have the weakly 
fixed point property. 

Lemma 2.11 The space ha has the weak orthogonality property, that is for any se- 
quence {x,) in he such that x ,  -t 0 weakly, there holds 

liminf liminf IIlxnl A Ix*III = 0,  
n m 

where ( x  A y ) ( t )  = m i n { x ( t ) ,  y ( t ) )  (see [S 881 and [S 921). 

Proof. The lemma results from obvious fact that the mapping y + 1x1 A lyJ is 
weak-norm continuous for every fixed x E ha. In fact weak convergence of (y,) to 
zero implies that y, + 0 coordinate-wise. So, if x E h* then ly,l A 1x1 5 1x1 and 
Jy,l A 1x1 -t 0 coordinatewise. By the dominated Lebesgue convergence theorem, we 

get 1 1  lynl A 1x1 I I  + 0. rn 

Lemma 2.12 The Riesz angle a ( l+)  < 2 if and only i f  E V2, where 

a ( l+)  = sup{ll 1x1 v I Y I  I 1  : 11x11 5 1, l l ~ l l  5 1 ) .  

Proof. If 6 Vz, then there exist u, 1 0 such that 

Let m, be an integer satisfying m,@(u,) 5 1 and (m, + l )@(u,)  > 1. Define 

Then it is easy to  check that 1 2 I*(y,) + 1 and by (2.31), 

This shows that llx, v ynll + 2. 

Next we assume E V2. That is, there exist 6 > 0 such that 

Q ( ( 2  - 6 ) u )  2 2@(u)  (lul 5 a - l ( l ) ) .  

Given x ,  y E B(1*), we have Ix(i)l, ( y ( i ) l  5 @ - ' ( I ) ,  whence 



that is, 1 1  1x1 V 1ylIl 5 2 - 6. 

Applying a result of Borwein and Sims [Bo-S 841 stating that every weakly orthogonal 
Banach lattice X with Riesz angle o ( X )  < 2 has the weak fixed point property, from 
Lemmas 2.11 and 2.12 we deduce the following 

Theorem 2.13 If @ E V2, then  ho has the weak fixed point property. 

Remark 2.14 Theorems 2.10 and 2.13 furnish a natural example of a space with the 
weakly fixed point property but, without WNS. 

Remark 2.15 Dowling, Lennard and Turett [Do-Le-T 961 investigated Orlicz spaces 
for which every nonexpansive self-mapping of a nonempty, closed, bounded, convex 
subset has a fixed point. This property is called the fixed point property ( F P P ) .  They 
proved that L: has F P P  if and only if it is reflexive. In fact, this can be obtained 
immediately from Theorem 2.1 presented above, Theorem 1.90 in [Ch 961 and the 
following two results given by Dowling and Lennard [Do-Le 971: 

(a) A Banach space X fails F P P  if it contains an asymptotically isometric copy of l l .  
That is, for every positive sequence (en) decreasing to 0 ,  there exists a sequences 
{x,) of norm-one elements in X such that C , ( 1  - &,)la,( 5 1 1  C ,  a,x,(( for all 
sequences (a,) of real numbers. 

(b) If the dual of X contains an isometric copy of l a ,  t.hen X contains an asymptot.- 
ically isometric copy of 1'. 

It is still an open problem whether the above conclusion is true or not for the Orlicz 
space L+ equipped with the Luxemburg norm. The only trouble is that one cannot 
prove t.he necessity of E Az in the same way as for the Orlicz norm. 

Notes. Criteria for normal structure and uniform normal structure of Musielak-Orlicz 
spaces were given by Katirtzoglou [Kat 971. In Orlicz-Lorentz spaces the criteria were 
presented by Kamiriska, Lin arid Sun [Ka-L-Sun 961. 

3. Uniform rotundity in every direction 

Recall that a Banach space X is said to  be uniformly rotund in every direction (URED) 
if for any z E S ( X )  and every two sequences {x,,) and {y,) in S ( X )  such that, x ,  -y ,  = 
e,z, where {E,) is a sequence of reals, and llx, + ynll 4 2 we have 11x, - y, 1 1  + 0 .  If 
we change S ( X )  into B ( X )  in the above definition, we get the same property. 

In the fixed point theory this geometric property is important because of the following 
well known theorem. 

Theorem 3.1 A n y  Banach  space X which is  u .n i fomly  rot.und i n  every direction has  
normal structure. 

Now we will present criteria for URED of Orlicz spaces. We do not assume in this 
section that Orlicz functions satisfy condition (ii) from the definition (see page 1 ) .  
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Theorem 3.2 Let (T, C, p )  be a nonatomic complete and a-finite measure space and 
@ be a n  Orlicz function. Th.en the Orlicz space L+ equipped with th,e Luxemburg n o r m  
i s  uniformly rotund in every direction if and only if @ i s  strictly convex and @ satisfies 
th,e Az-condit ion o n  R+ if p i s  infinite and the Az-condit ion at inf ini ty zf i t  p i s  finite. 

Proof. Suf ic iency .  Let {x,) ,  {y,) be sequences in S ( L + ) ,  z E S ( L + ) ,  x,-y, = ~ , z ,  
where {E,) is a sequence of reals and ( J ( x n  + yn)/211 4 1. Then by the A2-condition, 
we have I+( ( xn  + yn ) /2 )  4 1 (see [Ch 961). We will show that x ,  - y, 4 0 in 
measure. Assume for the contrary that it is not true. Then we can assume (passing 
to a subsequence if necessary) that for some E ,  u > 0 there holds P ( E ) ~  2 E for all 
n E N ,  where 

En = { t  E T :  Ixn(t) - y,(t)l 2 a ) .  

Choose k > 1 such that F E C and p ( F )  = ~ / 4  implies that I(xF/( = I l k  and define 

A n  = { t  E T :  Ixn(t)l > k ) ,  B, = { t  E T :  Iyn(t)l > k ) .  

Then we have 1 = IIxnll+ 2 (IxnxAn (I' > kllxA,  ( I * ,  whence I(xAn ll+ < and come- 
quently, p ( A n )  < &/4 .  Similarly, p ( B n )  < & / 4  (n  E N ) .  By strict convexity of @ there 
is 6 > 0 such that if u , v  E [0, k ]  and I P L  - V I  2 u, then 

Denote C ,  = E,, \ (A, U B,). Then we have p(C,) 2 p(E,) - ( p ( A n )  + p ( B n ) )  = 
E - e / 2  = ~ / 2 .  Moreover for any t E C,, we have Ix,(t) - yn(t)l 2 a and Ixn(t)l 5 
k ,  Iyn(t)l 5 k for any k E N .  Consequently 

Consequently 

a contradiction. Therefore x ,  - y, 4 0 in measure. Since z E S ( L + )  and so z # 0, we 
conclude from the equality xn  - yn = cnz  (n  E N )  that E ,  4 0. Consequently, there 
is no E N such that 1en1 5 1 for n 2 no and so lxT, - ynI 5 J z J  for n 2 no.  By the 
Lebesgue dominated convergence theorem, we get ( x ,  - y,) 4 0 and by the suitable 
A2-condition for @, we get I+(X(xn - yn))  4 0 as n + oo for any X > 0, which means 
that (lxn - ynll 4 0 as n 4 ca. 

Necessity. Assume that @ does not satisfy the suitable A2-condition. Then L' contains 
an order isometric copy of 1 ,  (see [Ch 961, [Ra-Re 911 and [1' 761). Since 1 ,  is not 
URED, L+ is not URED, either. 



Assume now that @ is not strictly convex. We will show that L+ is not rotund and 
so is not URED. Since @ is not strictly convex, there exists u > v > 0 such that 
@ ( ( u  + v ) / 2 )  = { @ ( u )  + @ ( v ) ) / 2 .  Choose two disjoint sets A, B E C and a > 0 such 
that p ( A )  > 0 ,  p(B) > 0 and 

Let C, D c A be measurable sets such that p ( C )  = p ( D )  = ~ / L ( A )  and C I- D = 0. 
Define 

Then I + ( x )  = @ ( u ) p ( C ) + @ ( v ) p ( D ) + @ ( a ) p ( B )  = ; ( @ ( u ) + @ ( v ) ) p ( A ) + @ ( a ) / ~ ( ~ )  = 1. 
In the same way we can prove that I+(y )  = 1. Moreover, 

Consequently, 11x11@ = Ilyll+ = II(x + y)/211+ = 1. Since, evidently, 1: # y ,  L* is not 
rotund. This finishes the proof. 

Notes. Kamiriska [Ka 841 first gave criteria for URED of Musielak-Orlicz spaces of 
Bochner type. Theorem 3.2 can be easily deduced from her paper. The proof that we 
presented here is different. 

4. B-convexity and uniform monotonicity 

These properties are related to the fixed point theory by the following 

Theorem 4.1 (see [Ak-K 901) If n Kothe fr~nction space X is B-convex and r~nzformly 
monotone, then  i t  has the fixed point property. 

Recall that  a Banach space X is said to be B-convex if no nonreflexive space Y is 
finitely represented in X (see [Ak-K 901 and [Ch 961). Since UR implies nonsquareness, 
nonsquareness implies B-convexity and B-convexity is preserved by equivalent norms, 
we know that uniformly covexifiable Banach spaces are B-convex. The converse is also 
true. 

Now, we will present criteria for B-convexity and uniform monotonicity of Orlicz spaces. 
We do not assume generally in this section that Orlicz functions that they must satisfy 
condition (ii) from the definition on page 1. First we will prove the following. 

Lemma 4.2 Let @ be an  Orlicz fr~nction such that its right derivative p on  R+ satisfies 
the condition: 

For any  E > 0 ,  there exasts K > 1 such that p ( (1  + ~ ) t )  2 K p ( t )  ( t  2 0 ) .  

Then  @ i s  r~niformly convex. 
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Proof. Given E E (0, I),  take K > 1 such that 

~ ( ( 1  + c/2)t) 2 K P ( ~ )  ( t  2 0). 

We shall show that for any u , ~  E R satisfying JZL - v J  _> E ~nax{lul, Ivl), the inequality 

t L  + v @(u) + a t u )  ( )  - 6 )  2 (4.1) 

holds for 6 = ~ ( 1  - 1/K)/4 > 0. We may assume without loss of generality that 
u - v _> EU > EV > 0, that is (1 - E)U 2 v > 0. Define 

Then for almost all t E [O,u], 

Hence ~ ( t )  is nonincreasing on [O, u]. Therefore, 

P(V)  = ~ ( z L )  + @(v) - 2@ - (":") 
2 @(u) + @((I - €)U) - 2@((1 - €/2)U) 

(1 - E / ~ ) u  

= 7 ~ ( t ) d t  - J ~ ( t ) d t  = 1 b(f)  - ~ ( ( 1  - ~/2) t ) ld t  

( I  - € / Z ) U  (1 -E )U  ( 1 - € / 2 ) ? 1  

(1 - I/K)p(t)dt )dt> (1 - I/K)j@(u) - (1 - ~ / 2 ) @ ( u ) ]  

( I - E / ~ ) u  

> c ( l  - l/K)[@(u) + @(v)] 
4 

for u and v as above, that is inequality (4.1) holds with 6 = ( ~ / 4 ) ( 1  - 1 /K)  > 0. . 
Theorem 4.3 For any  Orlicz space La th,e following are equivalent: 

(i) L* is reflexive. 

(ii) @ E A2 and E A2. 

(iii) La is uniformly covexifiable. 

(iv) La is B-convex. 

Proof. It is well known t.hat. (i) @ (ii) (see [Ra-Re 911 and [T 761). Let us prove 
t,hat (ii) + (iii). We consider only the case of a nonatomic finite measure space, when 

E Az means t,hat. @ satisfies the An-condition at. oo. By (ii) t,here exist uo > 0, K > 2 
and 6 > 0 such that 

Since changing the value of Q on [O,uO] does not affect the equivalence, wc may assume 
t,hat the above inequalities hold for all v E R. Let, 

a,(.) = hlU' ?dl, and @I = 
t 



We claim that Qo - - @. Indeed, denoting by p the right derivative of @ on R+, 
we have 

Integrating each term of the last inequalities from zero to u ,  we get K@(u)  > KQo(u)  2 
@(u) ,  that is @ - QO. Similarly Qo w Q1. Next, we will show that is uniformly 
convex. Since 

where L = > 1, we obtain for t  > 0, 

Hence we get 

Integrating this inequality with respect to  t  from u to 6'u, where 6' > 1, we have 

eL@o(u) aO(eu) 5 oK@(u) (6' 2 I ,  E R). 

Set pl(t)  = Mi(t)  = Qo(t) / t  for t  > 0. We have for any E > 0 and u > 0, 

whence, by Lemma 4.2, is uniformly convex. Finally we will show that is also 
uniformly convex, where denotes the function complementary to in the sense of 
Young. Let (*l)'(u) =: ql(u) and 

Then a(v )  > 1 (v > 0).  Replacing v by pl(u), we get 

Hence, a ( v )  L (1 + ~ ) l / ( ~ - l ) ,  and so ql(( l  + s)v) 2 (1 + ~ ) ~ I ( ~ - l ) q ~ ( v ) ,  that is q1 is 
uniformly convex. 
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spaces it was done in [H-Ka 951. In some Calderon-Lozanowsky spaces and Banach 
lattices monotonicity properties were considered in [C-H-M 951, [F-H 971, [F-H 991 and 
[H-Ka-M 001. 

5 .  Nearly uniform convexity and nearly uniform 
smoothness 

First we introduce the notions of nearly uniform convexity, k-nearly uniform convexity 
and nearly uniform smoothness. 

For a given s > 0 a sequence {x,} in a Banach space X is said to be &-separated if 

sep({xn}) := inf llxm - xnll > E. 
m#n 

A Banach space X is called nearly uniformly convex (NUC) if for any E > 0 there 
is 6 > 0 such that for every sequence {x,} in B ( X )  with sep({x,}) > s there is an 
element x E co({x,}) such that llxll < 1 - 6. This notion was introduced by Huff [Hu 
801, where it was also proved that a Banach space X is NUC if and only if it is reflexive 
and it has the uniform Kadec-Klee property (UKK). Recall that a Banach space X is 
said to  have the UKK - property if for any s > 0 there is 6 = 6(s) > 0 such that for any 
sequence {x,} with sep({x,}) > s and any x E B ( X ) ,  we have llxll 5 1 - 6 whenever 
x, + x weakly. 

It  is well known that NUC Banach spaces have the FPP (see [Go-Ki 901). The property 
NUC has also been defined by using the measure of noncompactness by Goebel and 
Sekowski [Go-Se 841. 

Kutzarova [Kur 301 introduced the notion of k-nearly uniform convexity of Banach 
spaces (k-NUC). Let k be an integer, k 2 2. A Banach space X is said to be k-NUC 
if for any s > 0 there exists 6 > 0 such that for every sequence {x,} in B ( X )  with 
sep({xn}) > s, there are nl, nn,. . . ,nk E N such that Il(x,,+x,,+. . .+x,,)/klJ < 1-6. 
Clearly k-NUC Banach spaces are NUC but the opposite implication does not hold in 
general (see [Cu-H-Li]). 

The notion of nearly uniform smooth,ness (NUS) has been introduced by Sekowski and 
Stachura [Se-St 821. The definition uses the notion of the measure of noncompactness. 
Prus [Pr 891, [Pr 991 used another (equivalent) definition of this property which is easier 
to  formulate. Namely a Banach space X is said to  be NUS if for every s > 0 there 
exists 6 > 0 such that for each basic sequence {x,} in B ( X )  there is k > 1 such that 

for each t E [O,S]. Prus [Pr 891 showed that a Banach space X is NUC if and only if 
its dual space X *  is NUS. 

A natural generalization of NUS is WNUS where the condition "for every s > On in 
the definition of NUS is replaced by "for some s E (0,l)".  Let A be a bounded set of 
X .  Its Kuratowski measure of non-compactness a(A) is defined as the infimum of all 
numbers d > 0 such that A may be covered by finitely many sets of diameter smaller 
than d. 

A Banach space X is said to  be nearly uniformly *-smooth provided that for every s > 0 
there exists 6 > 0 such that if x E S ( X ) ,  then 
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where S*(x, 6) = {x* E B ( X f ) :  x*(x) > 1 - 6). NUC and NUS have been also studied 
by BanaS [B 871, [B 911. 

Also nearly uniform smoothness and weakly nearly uniform smoothness are related to  
the fixed point theory as it follows from the following. 

Theorem 5.1 (see [Ga 971) If X is  a W N U S  Banach  space, t h e n  X has  the FPP. 
I n  particular, N U S  Banach  space have the FPP. 

In order to  get criteria for N U S  of Orlicz spaces it is natural to present first criteria 
for N U C  of these spaces because N U C  and N U S  are dual properties (see [Pr 891). 

Since k-NUC implies NUC we present first criteria for k-NUC of Orlicz spaces given in 
[Cu-H-Li]. 

Theorem 5.2 Let (T, C, p) be a nonatomic andf in i te  measure spaces and be a. Orlicz 
function satisfyin,g (@(u)/u) -+ CXJ as u -+ cm and X be equal t o  L* or L:. T h e n  X 
i s  k-NUC if and only if i s  a strictly convex and satisfies the A2-condit ion at in,f;nity 
and i s  ~ ~ n i f o r m l y  convex outside a neighbourhood of zero. 

Corollary 5.3 Under the assumptions of Theorem 5.2 o n  ,LL and a ,  the spaces L* and 
L$ are NUC if and only if both and Q (where Q i s  the Young conjugate of a) satisfy 
the condition A2 at ir~fini ty .  

Proof. It follows directly from the facts that k-NUC implies NUC, NUC implies 
reflexivity and reflexivity of Lo (respectively, L:) is equivalent to the fact that both 
and Q satisfy the suitable A2-condition. rn 

Theorem 5.4 The  Orlicz sequence space 1* i s  k-NUC if and only if both and Q 
sa.tisfy the A2-condit ion at zero, that is I* i s  reflexive. 

Proof. We need only to prove the sufficiency of the theorem . Suppose that the 
in~plication is not true. Let any a > 0 and {x,) c B(1*) with sep(x,)> E be given. By 

E A 2 ( 0 ) ,  there exists 6 = 6(a) > 0 such that 

inf {, (F) : n # m )  > 6. 

Next, we will show that for any j E N there exists n j  E N such that 

Otherwise, there exists jo E N such that 

for any j E N. 

Defining Zn = (xn(l) ,  xn(2), . . . ,xn(jo),  0, 0, . . . ) for n E N, we easily see that there 
exists a subsequence {G,) of {z,) such that 



for any i # j .  Hence 

This contradiction shows that (5.1) holds. 

Since Q satisfies the A2-condition at zero, there is O E (0 , l )  such that 

(see [Ay-D-Lo 971 and [C-H-Ka-M 981). By @ E A2(0), there exists a > 0 such 

whenever I*(x) 5 1, I*(y) _< (7 (see [Ay-D-Lo 971, [Ch 961). 

Take n l  < 122 < . . . < nk-l; n l ,  n2,. . . , nk-1 E N. Notice that 

and I@(xn,) _< 1 for i = 1,2,  - . . , k - 1. There exists jo E N such that 

and 

By (5.1), there exists nk E N such that 

So, in virtue of (5.2), (5.3), (5.4) and (5.5), we get 
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which completes the proof. 

Theorem 5.5 For any  Orlicz function Q, satisfying (Q,(u)/u) + IXJ as  u + IXJ th,e 
Orlicz sequence space 1: i s  k-NUC if and only if both Q, and P satisfy the Aa-condi t ion  
at zero, that is  1: i s  reflexive. 

Proof. We only need to prove the sufficiency. Let any E > 0 and {z,,) C ~ ( 1 : )  with 
sep({zn))> E be given. By Q, E A2(0), there exists 6 > 0 such that 

By the same argument as in Theorem 5.4, we have that for any j E N there exists 
nf E N such that 

Take kn 2 1 satisfying 

Such numbers k, 2 1 exist by the assumption (Q,(u)/u) + IXJ as u + co (see [Ch 961). 
Since P satisfies the Az-condition at  zero, the number 

is finite (see [Ay-D-Lo 971). Fix n l  < nz < . . . < rak-1; n l ,nz , .  . . ,nk-1 E N. For any 
nk E N , put 

By Q, E A2(0), there exists 0 E (0 , l )  such that 

@(Xu) 5 (1 - O)X@(u) whenever 0 5 u < W1(ko). 



Since @ is convex, for any 1 E [0, A] and u E [0, @-'(ko)], we have 

Since = A k;-l 
5 l+k;-l = A, the following holds 

Ch. hk+,Chi 
i= 1 ,=1 

whenever 0 < u. < @-l(k0). By @ E Az(0), there exists u > 0 such that 

if I a (z )  < ko and < u (see [Ay-D-Lo 971 and [Pr 891). Consequently, we need 
only to  prove that (ii) + (iii). We will show that (ii) implies the A2-condition at zero 
for @. If does not satisfy the Az-condition at zero, we can construct x E S(1a) such 
that I*(x) < 1 and I a ( ( l +  A)x) = 03 for every n E N (see [Ch 961 and [Ka 82al). Take 
a sequence {ik) of natural numbers such that ik f and 

t k + l  c @ ((1 + z )  2 1 (k E N ) .  
i=ir;+l 

Put  

XI, = (0 ,0 , .  . . ,O, x(ik + I) ,  x(ik + 2), . . . , x(ik+l), 0 ,0 , .  . .) ( k  E N) .  

Then it is obvious that 
k 
- < llxkll < 1 (k E N).  
k + l -  

Moreover, 
xk -+ 0 weakly. 

Indeed, for every y* E (la)* we have y* = yi  + y; uniquely, where yl; is the order 
continuous part of y* and yf is the singular part of y*. That is y;(x) = 0 for any 
x E (see [Ch 961). The functional yi  is generated by some yo E lq by the formula 

Let A > 0 be such that C z ,  Q(Ayo(i)) < 03. Since xk E ha for any k E N,  we have 
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that is (5.8) holds. 

Since the space la is nearly uniformly *-smooth, it has property A;, that is for any 
E > 0 there exists S E (0 , l )  such that for each weakly null sequence (z,) in B(l@) there 
is m > 1 such that 

j(z1 + tz,II 5 1 + tE 

whenever t E [O, 61 (see [Pr 891 and [Pr 991). Take ko E N such that & < (1 - ~ ) b  if 
k 2 k o  We have for k 2 ko,  

whence & > (1 - ~ ) b .  This is a contradiction which finishes the proof of the fact that 
(ii) implies the A2-condition at zero for a. 
Next, we will show that (ii) implies the b2-condition for 4. By the above part of the 
proof, we can assume that lq, is nearly uniformly *-smooth and satisfies the A2- 
condition at  zero. So, la is order continuous. Moreover, any Orlicz space la has the 
Fatou property and consequently, it is weakly sequentially complete. So, in view of 
Corollary 5.3, l+ is nearly uniformly smooth and consequently reflexive. This yields 
the Az-condition at zero for 4. rn 

6. WORTH and uniform nonsquareness 

Garcia-Falset [Ga 941 has proved t,hat if a Banach space X has WORTH and is uniformly 
nonsquare, then X has t,he FPP. 

So, we will present now criteria for uniform nonsquareness in Orlicz spaces and criteria 
for WORTH in Icothe sequence spaces. We say following Sims [S 881 that a Banach 
space X has WORTH if for any x E S ( X )  and any weakly null sequence (x,) in X ,  we 
have 

lim 1 lxn + X J I  - lxn - 211 1 - 0. 
n t m  

Let e0 be an Orlicz sequence space. A Banach space X c e0 is said to be a Kothe 
sequence space (or a Banach sequence lattice) if there is a sequence x = ( x ( i ) ) z l  E X 
with all x( i )  # 0 and for every x E !? and y E X with Ix(i)l 5 Iy(i)l for a11 i E N it 
follows that x E X and llxll 5 Ilyll. 

Theorem 6.1 (see [Cu-H-P 991) A Kothe sequence space X has WORTH if and only 
if it is order continuous. 

In this section we do not assume that satisfies condition (ii) from the definition of 
an Orlicz function. 

Corollary 6.2 Orlicz sequence spaces la equipped with the Luxemburg norm or with 
the Orlicz nonn have WORTH if and only if E Az(0). 

Proof. Since order continuity of la and 1; is equivalent to E Az(0), the corollary 
follows immediately from Theorem 6.1. rn 



The notion of uniform nonsquareness of a Banach space was introduced by James [J 
641. Recall that a Banach space X is said to be uniformly nonsquare (UNSQ) if there 
is E t ( 0 , l )  such that for every x, y t B ( X )  there holds 

Theorem 6.3 (see [H 851, [H-Ka-Mu 881 and [Su 661) 

(a) I n  the case of a nonatomic infinite and u-finite measure space as well as i n  the case 
of the counting measure space the Orlict space La equipped with the Luxemburg 
norm is uniformly nonsquare i f  and only if i t  is  reflexive. 

(b) I n  the case of any finite nonatomic measure space the Orlict space L+ equipped 
with the Luxemburg norm is un,iformly nonsquare if and only ,if L* is  reflexive and 
@(b(@))p(T) < 2, where b(@) = sup{u 2 0:  @ ,is linear on the interval [O,u]}. 

Note. U~iiform nonsquareness of Musielak-Orlicz spaces was characterized in [H-Ka-Ku 
871. For Orlicz-Lorentz spaces it was done in [H-Ka-M 961, where uniform nonsquareness 
of some Calderon-Lozanowsky spaces was also considered. 

Note. The charact,erist,ic of convexity of Orlicz function spaces equipped with the 
Luxemburg norm was calculated in [H-Ka-Mu 881 in the case when the measure spaces 
is nonatomic and infinit,e. Recall t,hat this coefficient for a Banach space X is defined 
by 

E,(X) = inf {E t (0,2] : 6~ (E) > 01, 

where hx denotes the modulus of convexity of X .  In the case of nonatomic and finite 
measure space E ~ ( L * )  was calculated in [H-W-Wa 921. Lower and upper estimates for 
the characteristic of convexity of Kothe-Bochner spaces were given in [H-Lan 921. 

7. Opial property and uniform Opial property in modular 
sequence spaces 

In this section we will present some results on the uniform Opial property of modular 
sequence spaces. As a corollary we will obtain criteria for the Opial property and the 
uniform Opial property of Orlicz sequence spaces for both the Luxemburg and Orlicz 
norms. 

Let X be a real vector space. A functional m :  X -+ [0, a] is called a modular if (see 
[Mu 831 and [Mal 891): 

(i) m(x) = 0 if and only if x = 0, 

(ii) m(-x) = m(x) for all x t X ,  

(iii) m ( a x  + jjy) 5 am(x)  + jjm(y) for all x ,  y t X and a,  jj 2 0 such that a + jj = 1 
(that is m is convex). 

For any modular m on X ,  the space 

X, = {x t X :  m(Xx) < co for some X > 0) 
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is called the modular space (generated by m). It  is obvious that X, is a vector space. 
The functional 

llxll = inf{A > 0 :  m(x/A) 5 1) 

is a norm on X,, which is called the Luxemburg norm (see [Cu-H 98a] and [Cu-H 99al). 
A modular ~ n ,  is said to  satisfy the An-condition (m E A2) if for any E > 0 there exist 

constants K 2 2 and n > 0 such that 

for all x E X, with m(x) 5 a. 

If m satisfies the A2-condition for any a > 0 with K > 2 dependent on a, we say that 
m satisfies the strong An-condition (m E A;). 

In this section a function @ :  (-m, m )  -+ [O,m) is said to  be an Orlicz function if it 
is convex, even and @(O) = 0 (see [Ch 961, [Lu 551, [Mal 891, [Mu 831, [Kr-R 611 and 
[Ra-Re 911). For a given Orlicz function one can define on the space lo of all real 
sequences x = (x(i)) the modular 

The modular space (lo),, is called an Orlicz sequence space (see [Ch 961, [Kr-R 611, 
[Lu 551, [Mal 891, [Mu 831 and [Ra-Re 911). 

It  is easy to see that if @ vanishes only at  zero, then m+ E A; whenever @ E A2(0). 

Let X be a Banach sequence space (or Kothe sequence space), an element x E X is 
said to  be absolutely continuous if 

The set of all absolutely continuous elements in X is denoted by X, and it is a subspace 
of X. X is called absolutely continuous if X, = X. 

We say that a Banach sequence lattice X has the Fatou property if for any x E X and 
a sequence {x,) in X such that 0 5 xn 5 x and xn f x, there holds llxnll f llxll (for 
the theory of Kothe sequence spaces we refer to  [Kan-Aki 721). A Banach space X is 
said t o  have the Opial property (see [0 671) if for every weakly null sequence {x,) and 
every x # 0 in X there holds 

liminf llxnll < liminf llxn + 211 
n+m n+m 

The Opial property is important because Banach spaces with this property have the 
weak fixed point property (see [G-La 721). 

Opial has proved in [0 671 that the Lebesgue sequence spaces lp ( I  < p < m )  have 
this condition but Lp[0,2.rr] (p # 2, 1 < p < m )  do not have it. Franchetti [Fr 811 has 
shown that any infinite-dimensional Banach space admits an equivalent norm under 
which it has the Opial property. A Banach space X is said to  be the uniform Opial 
property (see [Pr 921) if for every E > 0 there exists T > 0 such that for any weakly null 
sequence {x,) in S ( X )  and x E X with llxll 2 E there holds 



Let p be the ball-measure (that is the Hausdorff measure) of noncon~pactness in X, 
that is 

@(A) = infie > 0 :  A can be covered by a finite 

family of sets of diameter < E) 

for any A c X. A Banach space X is said to have property (L) if lim,,l- A(€) = 1, 
where 

A(€) = inf{l - inf{llx)): x E A)), 

and the first infimum is taken over all closed sets A in t,he unit ball B ( X )  of X with 
B(A) 2 E. 

The function A is called the modulus of noncompact convezity (see [Go-Se 841). I t  has 
been proved in [Pr 921 t,hat property (L) is useful t,o study the fixed point property 
and that  a Banach space X has property (L) if and only if it is reflexive and has the 
uniform Opial property. We start with the following auxiliary lemma. 

Lemma 7.1 Assume that m E A;. Then for every L > 0 and E > 0 there ezists 
6 = S(L, E) > 0 such that for all z, y in X, witl~ na(x) < L o.nd m(y) < 6, there holds 

Im(x + Y) - m(y)l < E. 

Proof. Let L > 0 and E > 0 be given. By m E A;, we conclude that there is K O  2 2 
such that 

m(2x) < Kom(x) + ~ / 8  

for all x E X, with m(x) < L. Set p = c/2KoL. Using again m E A;, one can find 
K I  > 2 such that 

for all x E X, with m(x)  < L. Set 6 = E / ~ P K ~  and assume that m(x) < L and 
7n(y) < 6 Then 

In a similar way we can show t,hat na(x) - E < 7 7 4 2  + y). Hence Im(x + y) - na(x)I < E 

whenever m(x)  < L and m(y) < 6, which finishes the proof. 

Corollary 7.2 If m E A;, then for any x E X,, llxll = 1 2f and only if m(x)  = 1. 

Proof. We only need to show that llxll = 1 implies m(x) = 1 because the opposite 
implication is obvious. Assume t,hat 7ra E A;. We can easily get from Lemma 7.1 that 
the function f defined on R by f (A) = nz(Ax) is continuous. Namely, it easily follows 
by m E A; that f is finitely valued, which yields that f is continuous. Take any E > 0 
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and Xo E R \ {0), and apply Lemma 7.1 which L = m(Xoz) and 6 = 6(L, E). We have 
/m(z + y) - m(z)l < E whenever 77z(x) 5 L and m(y) 5 6. Hence 

Im(Az) - nz(Xox)I = Jm((X - Xo)z + Xoz) - m(Xoz)J < E 

whenever IX - Xol < 6. So, we easily get that m(z) = 1 whenever llzll = 1. rn 

Lemma 7.3 If m E Az, then for any sequence (x,) i n  X, the condition llxnll 4 0 
holds if and only if m(x,) + 0. 

Proof. It is easy to see that (Is,// -, 0 if and only if ~ ( X X , )  + 0 for each X > 0. By 
711. E A2 it follows from Lemma 7.1 that the property holds for sufficiently small positive 
L (say L 5 Lo). Assume that m(z,) 4 0. There is m E N such that m(z,) 5 Lo for 
all n. 2 7n. So, for any E E (0 , l )  there is hrE > 0 such that 

for n sufficiently large. Let no E N be so large that m(x,) 5 1/(2hrE) for n > no. Hence 
?n(z,/~) 5 KEm(:cn) + 5 1 for n > no sufficiently large. This yields llznll 5 E for n 
sufficiently large. The opposite implication follows from the inequality m(z) 5 llxll for 
x with /Jz(l 5 1. rn 

Lemma 7.4 If  m E A;, then for any E > 0 there exists 6 = 6(e) > 0 such that 
llzll 2 1 + 6 whenever 7n(z) 2 1 + E. 

Proof. Suppose that there exist €0 > 0 and a sequence {z,) in X, such that llxnl/ 1 1 
and m(z,) > 1 + €0. Since m E A;, for any E > 0 there exists 6 > 0 such that 

whenever 7n(z) 5 1 and m.(y) 5 6 (see Lemma 7.1). We may assume without loss of 
generality that 1 - l/IIznl/ < 6. Hence, applying the fact that m(x,/lJz,(l) = 1 for any 
n E N (see the proof of Lemma 7.1), we get 

That is Jnz(x,) - l /  < E. This contradiction shows that Lemma 7.4 is true. 

Theorem 7.5 Suppose that a Kothe sequence space X has the Fatou property. Then 
X is absolutely continuous whenever it has the uniform Opial property. 

Proof. Assume that X is not order continuous. Take E = 112 and an arbitrary 7- > 0. 
Let B = 1/(1 +7-/2), whence 6' > 1/(1 +T). By Riesz's lemma (see [Ta-Lay 801, p. 64), 
for any B E (0 , l )  there is zo E S(X) such that J(zo - 211 > B for any z E X,. Let zo 
corresponds to  B = 1/(1 + 7-12). By the Fatou property of X ,  

Let nl = 0. There is n2 E N such that 



Since Cyzl xo(i)ei E X,, it. follows that 

SO, there is ns  E N, ns > nz, such that 

One can find by induction a sequence ( n j ) Z l  in N such that 7 ~ 1  = 0, 7al < n2 < . . . , 
and 

Define 

It is obvious that x*(xj) = 0, j = 1 ,2 , .  . . , for any singular functional x* E X*.  If 
z* E X* is order continuous, there is y = (y( i))zl  E X' (the Kothe dual of X, see 
[Kan-Aki 721) such t,hat 

00 

x*(z) = x y ( i ) ~ ( i )  (VZ = (z(i))E1 E X).  
i=l 

Since Czl y(i)zo(i) is convergent it follows that 

as j --t m. Therefore, zj - 0 weakly as j -+ m. Moreover 

Define yj = xj/JJzjII. Then llyjII = 1 for all j E N and 

Since 110 < 1 + 7, there is jo E N such that 

J JXO - yjJJ < 1 + 7 (Vj > jjo). (7.2) 

Since x i  --t 0 weakly, inequalities (7.1) yield that yj  - 0 weakly. Hence and by (7.2) it 
follows that X does not have the uniform Opial property . This finishes the proof. 

Theorem 7.6 A s s u m e  that  a modzilar m E A; and m i s  countably orthogonally ad- 
ditive and that  t h e  modular sequence space Xm i s  a Banach space. T h e n  Xm has the  
u n i f o r m  Opial property. 
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Proof. Let E > 0 be given. There is ~1 > 0 such that (see Lemma 7.3) m.(x) 2 ~1 

whenever llxll > E. Since m E A;, by Lemma 7.1, there is 6 E ( 0 , ~ 1 / 4 )  such that 

whenever m(x) 5 I and 7n.(y) 5 6. By countable orthogonal additivity of I T ? . ,  there is 
io E N such that 

/ m \ 

Let {x,} be a weakly null sequence in S ( X ) .  It  is obvious that x, + 0 coordinate-wise. 
Hence, there is no E N such that 

Therefore 

for 76 2 no. By Lemma 7.4, there is EZ > 0 that depends only on ~1 and such that 
/(x, + xi1 > 1 + EZ whenever n 2 no. This means that Xm has the uniform Opial 
property. 

In this section we write m in place of I+ in Orlicz spaces. 

Corollary 7.7 Orlicz sequence spaces e' equipped with the Luxemburg n o r m  have the 
un i form Opial property if and only if @ A2(0). 

Proof. Suf ic iency .  Orlicz spaces e' are Banach spaces and they are modular spaces 
(to),, , where 

m 

for x = (x(i)) E lo. If E A2(0), then rn' is countably orthogonally additive and 
me E A;. Therefore, by Theorem 7.6, e' have the uniform Opial property. 

Necessiey. If 6 Az(0), then e' contains an order isometric copy of Cm (see [Ka 82a]), 
so e' is not absolutely continuous. Since e' has the Fatou property (see [IJu 5 5 ] ) ,  by 
Theorem 7.5, e' does not have the uniform Opial property. W 

Corollary 7.8 Orlicz sequence spaces 1' equipped with the Luxemburg n o r m  hatre the 
Opial properey if and only if @ E Az(0). 



Proof. If E Az(0), then by Corollary 7.7, 1' has the uniforln Opial property, and 
hence has t,he Opial property as well. 

Assuming that Cb @ Az(0), one can find a sequence {z,,} in S(1') such that z,lz, for 
m f n and 

03 

x = ) ~ 1 : ~ ~  E ~(1 ' )  (see [Ka 82al) 

Then we easily get t,hat x, + 0 weakly. However, llxl + xnll = 1 for any n > 2. 
Consequently 1' fails to have the Opial property. W 

Corollary 7.9 The Nakano sequence spaces e(px) with 1 < pi < co for all i E N have 
the unzfom Opial property zf and only if lim sup,,, p; < CO. 

Proof. The Nakano space [(PC) is a Banach space and it is generated by the modular 

defined on e0 (see [Na 501 and [Mu 831). If 

liln supp, < co 
1'03 

then m E A; and m is countably ort,hogonally additive. Therefore, by Theorem 7.6, 
e(p1) has the uniform Opial property. 

lim sup pi = co 
2-m 

then the Musielak-Orlicz function = (@)El, where Qi(u) = IulP1, does not satisfy the 
cS2-condition (for the definition of @ E 62 see [Ka 82a] and [F-H 991). Therefore (see Ka I 82a], [F-H 991 and [H 981) e(p3) contains an order isometric copy of em, whence e(p. is 
not absolutely continuous. Moreover, e(pi) has the Fatou property whence, by Theorem 
7.5, it follows that e(p*) does not have the uniform Opial property, which finishes the 
proof. 

For some other properties of e(pz) we refer to [H-Wu-Y 941. 

In the following we will consider the uniform Opial property for Orlicz spaces equipped 
with the Amemzya norm 

1 II~IIP = /:i i ( l  + m r ( k x ) ) .  
I 

We write e: in place of (e', 1 1  . II$).  Denote by K ( x )  the set of all k > 0 such that 
I I Z I I ~  = i ( l  + m+(kx)).  It  is known (see [Ch 961, [Ra-Re 911 and [Wu-Sun 911) that 
K ( x )  = [k:, k;**], where k: = inf{k > 0:  m@(pokx) 2 1) and k:* = sup{k > 0:  m@(po 
kx) < 1) whenever K ( x )  # 0 (that is kz < CO),  where p denotes the right hand side 1 
derivative of G- on R+ = [0, CO) and p o kx denotes the composition of p and kx. It  is 
also well known that K ( x )  # 0 for all x E e: whenever ( @ ( u ) / w )  + co as u + co (see 
[Ch 961 and [Cu-H-N-P 991). 

The following lenlnla from [Cu-H-N-P 991 will be useful to get criteria for the uniform [ 
Opial property of e:. 
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Lemma 7.10 If z E e' and K ( z )  = 8, then  A := lim,,,(~(u.)/u.) < co and 

Theorem 7.11 T h e  0rlic.z spa.ce tz ha,s the  ~ m i f o n n  Opial property if a.nd on ly  if 
m E n z ( o ) .  

Proof. Since tz is not absolutely continuous whenever 6 A 2 ( 0 ) ,  by Theorem 7.5,  
the necessity is obvious. 

S u f i c i e n c y .  Take any e > 0 and z E tz with llzll$ 2 E .  Let ( z n )  be a weakly 
null sequence in S ( e z ) .  By E A 2 ( 0 )  there is 6 E ( 0 , ~ )  independent of z such that 
rn* ( 5 )  > 6. Take j E N such that 

W iE'rom zn - 0 it follows that z n ( i )  + 0 for any i E N. SO, there exists n o  E N such 
that 

Hence 

whenever n > no .  We will consider now two cases for n > no .  

m 

I .  K(?  z ( i ) e .  + z l L ( i ) e i )  # 0. Then there exists kn > 0 such that 
i=l t = j + l  

Combining this with (7.3) ,  we get 



Moreover, from the inequalities 

it follows that 

We may assume without loss of generality that k, > $. Hence, inequalities (7.4) 
and (7.5) yield 

00 

11. K(E x( i )e i  + x,(i)ei) = 0. Then 
i=l i=j+l 

3 A 00 

2 x i )  + x xn(i)e; 
lli=I 119 lli=j+l I I  

Therefore, by inequality (7.3) we get 

So, in any case, 112, + x11; > 1 + for n > no, which finishes the proof. 

Corollary 7.12 Orlicz spaces 19 generated by Orlicz functions CD satisfying 

have 7~ormal structure i f  and only if CD E A 2 ( 0 ) .  

Proof. If CD E A 2 ( 0 ) ,  then 1; has uniform normal structure, and so it has normal 
structure as well. 

Assume that CD @ A z ( 0 ) .  Then there exist x E S(1:) and a sequence {s,)  in (1;)+ such 
that x,lx, for 777 # 71, x n l x ,  {x,) has a majorant in (l;)+ and Ia (kosn)  5 2-, for 
any n, where ko > 1 satisfies &(1 + m ( k o x ) )  = 111:11; = 1,  and IIxnll; -+ 1 as n -+ M. 

Then x ,  + 0 weakly. Moreover, 

1 1 1 
- ( I  + nl (ko(z  + x,)) = - ( I  + m(kox) )  + -m(koxn)  5 1 + 2Tn. 
ko ko ko 

Therefore, lim llxn + z,llg = ,$i~ IIxnll; = 1. That is, 1: does not have the Opial 
n-m 

property. rn 
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8. Garcia - Falset coefficient 

First we need to introduce some notation and definitions. Garcia-Falset [Ga 941 defined 
the coefficient 

R ( X )  = sup liminf \Is,, - xI  : x E B ( X ) ,  {x,)  c B ( X ) ,  x , , z 0 )  { TL->, 

and proved in [Ga 971 that any Banach space X with R ( X )  < 2 has the weak fixed 
point property. 

A Kothe sequence space X is said to have the semi-Fatou property ( X  E S F P )  if for 
every sequence (2,) in X and x E X such that 0 5 x,, f x ,  we have llxnll + 11x11. 

Theorem 8.1 (see [H-M 931) If X i s  a Kothe sequence space with the semi-Fatou 
property and with the n o r m  not being absolutely continuous, then X contains almost 
isometric copy of 1,. That  is, for any E > 0 the exists a closed subspace Y of X and 
an  isomorphism P of 1, onto Y which i s  a ( 1  + &)-isometry.  

Corollary 8.2 If a Kothe sequence space with the semi-Fatou property i s  not  absolutely 
c o n t i n ~ ~ o u s ,  then  R ( X )  = 2. 

Proof. It is easy to see that R(1,) = 2. Moreover, by Theorem 8.1, R ( X )  = R(1,). 

Corollary 8.3 I f  does not  satisfy the A2-condit ion at zero, then  R(1*) = ~ ( 1 : )  = 2.  

Proof. Each of the norms 1 )  / /  and ( 1  11' have the semi-Fatou property (in fact they even 
have the Fatou property). Moreover, if 6 A 2 ( 0 ) ,  then 1* and 1; are not absolutely 
continuous (see [Ch 961). So, by Corollary 8.2, we get the desired conclusion. 

Theorem 8.4 (see [Cu-H-Li 001) For any  Orlicz function a, the equality 

m 

c, : x = x x ( i ) e i  E S(1*) for some m E N 
i=l 

holds, where c, is  positive number satisfying I * ( x / & )  = 112. 

Remark 8.5 Note that R ( X )  = R 1 ( X )  for any Kothe sequence space with the semi- 
Fatou property and an absolutely continuous norm. 

Corollary 8.6 For any  Lebesgue sequence space lp ( 1  < p < m), we have R ( l p )  = 2l /p .  

Proof. For any x E S ( l p )  we have c,  = 2'/p, which follows by the equalities 

To formulate the next corollary we need an equivalent definition of the Riesz angle for 
a Banach lattice X .  It is defined by 



Corollary 8.7 For any Orlicz function a, the equality R (h+)  = a ( h + )  holds. 

Proof. By the equality R(h.+) = d that was obtained in the proof of Theorem 8.4, we 
can easily get the inequality R(h+)  5 cu(h+). On the other hand, for any E > 0 there 
exist x E S ( h + )  and y E S ( h + )  such that 1x1 A lyl = 0 and 

For the sake of convenience, we may assume that x V y = ( x ( l ) ,  y ( 1 ) ,  x ( 2 ) ,  y (2 ) ,  . . .). 
By the fact that h+ has an absolutely continuous norm, there exists io E N such that 

(io+n)th - 
Defining xo = ( x ( l ) , x ( 2 ) ; . .  , x ( io) ,O,O; . . )  and y, = (O;. .  , O , / y l ( l ) , l y ( ( 2 ) ; . .  , 

w 
( y  I ( io) ,  0 ,  0 ,  . . . ) for all n E N,  we get yn - 0 and 

Hence R ( X )  > a ( X )  - E .  By the arbitrariness of a > 0 ,  we get R(h+)  > a ( h + )  and 
consequently R(h+)  = a ( h + ) .  

Corollary 8.8 For any Orlicz sequence space l a ,  R(l+) < 2 if and only if E Ado) 
and Q E A z ( 0 ) .  

Corollary 8.9 For any Orlicz function a, R(h+)  < 2 i f  and only if Q E A z ( 0 ) .  

Proof. By Corollary 8.2 and Theorem 3.11 in [Ch 961, which says that if Q ~r A 2 ( 0 ) ,  
then h+ has the w - FPP, both Corollaries 8.8 and 8.9 follow. 

Notes. It  is known that property (/?) which has been introduced by Rolewicz [Ro 871 is 
stronger than NUC and it implies normal structure of the dual space (see [Kut-Ma-Pr 
921). Property ( P )  has been considered in Orlicz-Bochner spaces, Musielak-Orlicz se- 
quence spaces of Bochner type, Orlicz-Lorentz spaces and ~alder6n-~ozanovskii spaces 
in [KO-a], [Kc-b] and [Kc-c]. Properties UKK and NUC in Kothe-Bochner spaces have 
been considered in [KO-dl. 

9. Cesaro Sequence Spaces 

For 1 5 p < CXJ the Cesaro sequence space cesp is defined by 

(see [Lee 841 and [Sh 701). 

Lemma 9.1 (see [Cu-H OOb]) For any E > 0 and L > 0, there exists 6 > 0 such that 
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Proof. It, follows by the uniform continuity of t.he function f (u) = UP on any compact. 
interval 10, I ] .  rn 

Theorem 9.2 For the Cesa.ro sequence spa.ce cesp (1 < p < co) we hawe R(cesp) = 

2l/p. 

Proof. We can apply R.emark 8.5. Let E > 0 be given. For any 

there exists no E N such that, 

I1 5 ( i ) P < m i n ( ~ , 6 ) ,  where a = C l x ( i ) l  
k=i,, +l i= 1 

and 6 > 0 is the number corresponding t.o our E > 0 and L = 1 in Lemma 9.1. Hence 
for any m > no there holds 

1 
That is, liminf ( J x ,  - xJJ > (2 - E)P. On the other hand, for any m > no, 

n+m 

1 

5 (2 + E);. By the arbitrariness of E > 0 and by Remark 8.5, 
n+m 

we get R(cesp) = 2 P .  rn 

Corollary 9.3 Cesaro sequence spaces cesp (1 < p < co), ha.we the fixed point property. 

Proof. For 1 < p < co, cesp is a reflexive space and since R(cesp) = 2l/p < 2, cesp 
has the weakly fixed point property. Therefore, cesp has the fixed point property. rn 



10. WCSC, uniform Opial property, L-NUC and UNS for 
cesp 

Our main aim in this section is t o  calculate the weakly convergence sequence coefficient 
for CesAro sequence space cesp and to prove that for any p E ( l , w ) ,  cesp is k-NUC 
for any integer k > 2 and has the uniform Opial property and property (L). The 
weakly convcrgcnce sequence coefficient, which is connected with normal structure, is 
an important geometric constant. It  was introduced by Bynum [By 801. 

For a sequence {x,) C X ,  we consider 

A({x,)) = lirn {sup{llxi - x j ( J :  i ,  j 2 n , i  # j ) )  
n-+m 

Al({xn)) = lim {inf{llxi - xjI) : a ,  j > n, i # j ) ) .  
n i m  

The weakly convergence sequence coefficient of X ,  denoted by WCS(X) ,  is defined as 
follows: 

WCS(X)  = sup{k > 0:  for each weakly convergent sequence {x,), there is 

y E co({z,)) such that k . lim sup Ilx, - y 11 5 A({z,))), 
n-m 

see [B 911. 

The number M ( X )  = l /WCS(X)  for a reflexive Banach space is called the Maluta 
coefficient and it is known that M(X)  = 1 for every non-reflexive Banach space X 
(see [Ma 841). It is also well known that a Banacll space X with WCS(X) > 1 has 
weak normal structure (see [Cu-H-Li]). A sequence {x,) is said to be an asyn~ptotic 
equidistant sequence if A({x,)) = Al({x,)) (see [Z 921). The formula 

WCS(X) = inf {A({z,}) : {x,) C S(X)  and x, 2 0) 

= inf {A({z,)) : {x,) an asymptotic equidistant 

sequcncc in S(X)  and xn 2 0) 

was obtained in [Z 921. 

A Banach space X is said to have weak ~~wifoform, nonnal structz~re if WCS(X)  > 1. 
Recall that the functions a and j3 are the Kuratowski measure of noncornpactness and 
the it Hausdorff measure of noncompactness in X ,  respectively. We can associate these 
functions with the not,ions of the set-contraction and the ball-contraction (see [De 851). 
These notions are very useful in the study of nonlinear operator problems (see [De 851). 

The packing rate of a Banach space X is denoted by y(X) and it is defined by the 
formula 

y(X) = 6(X)/a(X),  

where 6(X) and a ( X )  are defined as the supremum and the infimum, respectively, of 
the set 

Recall that A c X is said to be a-manimal if a ( B )  = a(A) for any infinite subset 
of A. For those definitions and for results concerning the existence of a-minimal and 
p-minin~al sets we refer to  [Ay-D-Lo 971, Chapter X. 

Theorem 10.1 If 1 < p < ce, then the space cesp is k-NUC for any integer k > 2. 
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Proof. Let E > 0 be given. For every sequence {x,) C B ( X )  with sep({xn)) > 5, we 
put x: = (0,0,.  . . , 0 ,  xn(m), x,(m, + I ) ,  . . . ). For each i E N, the sequence { ~ , ( i ) } ~ ~  
is bounded. Therefore, using the diagonal method one can find a subsequence {x,,) 
of (2,) such that the sequence {z,,(i)) converges for each i E N. Therefore, for any 
m E N there exists km such that ~ep({x;}~>~,,,) > E.  Hence for each nt E N there 
exists 71, E N such that 

(10.1) 

Write Ip(z) = x,, (A x:=, l x ( i ) ~ ) ~  and put = (t)'. Then 36 > 0 such 

that 

IIdx + Y) - Ip(x)I < E l  (10.2) 

whenever Ip(x) 5 1 and Ip(y) 5 6 (see Lemma 9.1). 

There exists m l  E N such that I p ( x y )  5 6 Next, there exists mz > ml such that 
I p ( x T )  < 6. In such a way, there exists m.2 < mg < . . . < ntk-1 such that Ip(x?) I 6 
for all j = 1,2, .  . . , k - 1. Define rn,k = mk-1 + 1. By condition (10.1), there exists 
nk E N such that Ip(xzF) 2 ( E / ~ ) P .  Put ni = i for 1 I i 5 k - 1. Then in virtue of 
(10.1), (10.2) and convexity of the function f (u) = (u(p, we get 

xnz (i) + . . . + xn, (i) 
k 



Therefore, cesp is (k - NUC) for ally integer k 2 2. W 

Theorem 10.2 For a n y  1 < p < cu, the  space cesp has the u.ni foon Opial property. 

Proof. For any E > 0 we can find a positive number EO E (0, E )  such that 

Let x E X and Ilxll 2 E. There exists nl E N such that 

Hence we have 

ith 
where ei = (0, . . . , 1 ,0,0,  . . . ). Furthermore, we have 

whence 
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For any wcakly null sequence {x,} c S ( X ) ,  in virtue of x,(i) -. 0 for i = 1 ,2 , .  . . , 
there exists Ira0 E A' such that 

when 772 > mo. Therefore, 

nl 
when 772 > 7n0. Moreover for a := C (z(i)(  there holds 

i = l  

Therefore, combining this with the previous inequality, we get 

EO EO 2 l + E 0 - - = 1 + - .  
2 2 

This means that cesp has thc uniform Opial property. 

By the reflexivity of ces, for 1 < p < cu, we get the following. 

Corollary 10.3 For 1 < p < cm the space cesp has property (L) and the fixed point 
property. 

Now, we will calculate the weakly convergence sequence coefficient of ces,. 

1 

Theorem 10.4 For 1 < p < cu, WGS(cesp) = 26 

Proof. Take any E > 0 and an asymptotic equidistant sequence {xn) C S(X)  with 
U' xn - 0 and put ul = X I .  There exists il E N such that 



Since z ,  + 0 coordinate-wise, there exists nz E N such that 

whenever n > nz. 

Take v2 = z,,. Then there is i2 > il such that 

Since z,(i) + 0 coordinatcwise, there exists ng E N such that 

whenever n > ny. 

Continuing this process in such a way by induction, we get a subsequence {v,} of {z,} 
such that 

Put. 

for n = 2 , 3 , .  . . . Then 

Moreover, for any n,m E N with n # m, we have 

This means that A({z,)) = A({v,)) 2 A({z,)) - 4s. Put  u, = zn/llznll for n = 
2 , 3 , .  . . . Then 
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A({xn)) L 1 - EA({u,)) - 4 ~ .  

On the other hand 

11% - flmll 5 1 1 %  - ~ m l l  + 4E 5 l(un - + 4E 

for every m, n t N, m # n. Therefore 

A({un)) 2 A({xn}) - 4 ~ .  (10.7) 

By the arbitrariness of E > 0, we have from (10.5), (10.6) and (10.7) that 

WCS(cesp) = inf A({un)) : un = { . . 2 un(i)ei t s(cespl, 
a=%,-1+1 

0 = i 0 < i l < i 2 <  ... , u n z  

Using Lemma 2 in [Z 921, we have 

WCS(cesp) = inf A({..)) : un = un(i)ei t S(cesp), 0 = io < il < - - , { 
i=in-1+1 

W 
un - 0 and {un} is asymptotic equidistant 

Take m E N large enough such that 

where b := ~ k ~ ~ - ~ + ~  lun(i)l. We have for 1 ,  < m 

> 1 - E + 1 = 2 - E ,  that is, Al((u1)) 2 (2 - E)$  

Note that 



Therefore 

1 1  

for any n,m E N, m # n. This yields A({un)) 5 11 + (1 + EP)P]P and, by the 
1 

arbitrariness of E > 0, we obtain WCS(cesp) = 2;. 

Corollary 10.5 For 1 < p < co, cesp has the weak uniform normal structure and 
normal structure. 

Corollary 10.6 For any 1 < p < co, we have y(cesp) = 2(p-l)/p 

Proof. By [Ay-D 931, if X is reflexive Banach space with the uniform Opial property, 
then y ( X )  = 2/WCS(X).  Since, by Theorem 10.1, cesp is N U C  for 1 < p < co and 
property N U C  implies reflexivity, Theorem 10.2 yields y(cesp) = 2/2l/p = 2(p-')p. . 
Note. Banach-Saks and weak Banach-Saks properties in Cesaro sequence spaces has 
been characterized in [Cu-H 99b]. 

I 
t 
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