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GEOMETRICAL IMPLICATIONS OF UPPER
SEMI-CONTINUITY OF THE DUALITY
MAPPING ON A BANACH SPACE

J. R. GILES, D. A. GREGORY AND BRAILEY Simg

For the duality mapping on a Banach space the relation
between lower semi-continuity and upper semi-tontinuity
properties is explored, upper semi-continuity is characterized
in terms of slices of the ball and upper semi-continuity
properties are related to geometrical properties which imply
that the space is an Asplund space.

The duality mapping is a natural set-valued mapping from the
unit sphere of a normed linear space into subsets of its dual sphere,
and which for an inner product space is the mapping associating an
element of the unit sphere with the corresponding continuous linear
functional given by the inner product. It is an example of a sub-
differential mapping of a continuous convex function (in this case,
the norm), which is in turn a special kind of maximal monotone
mapping. Cudia [4, p. 298] showed that the duality mapping is
always upper semi-continuous when the space has the norm and the
dual space has the weak* topology, and Kenderov [10, p. 67] extended
this to maximal monotone mappings. Bonsall, Cain, and Schneider
[3] used the property to prove the connectedness of the numerical
range of an operator on a normed linear space.

Along with the activity which culminated in Stegall’s theorem
[15] characterizing an Asplund space as one whose dual has the
Radon-Nikodym property, there has been some interest in finding geo-
metrical conditions sufficient for a space to be Asplund. A Banach
space X is an Asplund space if every continuous convex function
defined on an open convex subset of X is strongly differentiable on
a dense G, subset of its domain. Ekeland and Lebourg [6, p. 204]
have shown that a Banach space is Asplund if there exists a strongly
differentiable real function on the space with bounded nonempty
support, in particular, if the space can be equivalently renormed to
have norm strongly differentiable on the unit sphere. Using Stegall’s
theorem, a result of Diestel and Faires [5, p. 625] gives that a
Banach space is Asplund if the space can be equivalently renormed
to be very smooth, that is, to be smooth and to have the single
valued duality mapping continuous when the space has the norm
and the dual space has the weak topology. Recently Smith and
Sullivan {13, Theorem 15] have exhibited a more general condition
which is sufficient for a Banach space to be Asplund. We show that
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this condition can be characterized by an upper semi-continuity pro-
perty of the duality mapping and we derive other such sufficient
conditions related to the upper semi-continuity of the duality mapping.

Consider a real normed linear space X with unit sphere S(X) =
{xeX: jz; =1}, and closed unit ball B(X) = {xeX:||z|| £1} and
dual space X*. The duality mapping for X is the set-valued map-
ping z — D(z) of S(X) into S(X*) where D(z) = {f € S(X™*): f(z)=1}.
For ze S(X), D(z) is convex and weak* compact. X is smooth at
ze S(X) if D(z) is a single point set. A selection f, e D(z) for each
ze S(X) is called a support mapping on X. If we extend D to X
by taking D(z) = D(z/ z-) for z + 0, and D(0) = B(X*), then D is
monotone, that is (f, — f,)(x — ¥)=20 for all z,y in X and f,, f, in
D(x), D(y) respectively.

We denote by ¢ the weak™, weak, or norm topology on X*. 'By
a c-neighborhood of D(z), we mean a set of the form D(z) + N where
N is a r-neighborhood of 0. The duality mapping D is said to be
upper semi-continuous (resp. lower gemi-continuous) (n — 1) at ze
S(X) if for every z-neighborhood U of D(zx) (resp. t-open set U with
Un D(x) #= ) there is in S(X) a norm neighborhood N of z such
that D(y)< Ulresp. D(y)N U+ 2) whenever ye N. For upper semi-
continuity, some authors prefer to let U be any r-open set containing
D(z). If D(z) is t-compact, for example if D(z) is a singleton or 7
is the weak® topology, then the two notions of upper semi-continuity
agree. ‘

1. The relation between lower and upper semi-continuity. [t
is of interest to note that for the duality mapping there is a special
relation between lower and upper semi-continuity. It is this relation
which prompts us to consider upper semi-continuity in our formulation
of more general duality mapping properties.

The following relations can be deduced simply from the definitions
and actually hold for selections of set-valued mappings.

For a normed linear space X, given z € S(X), and the r-topology
on X*, the following implications hold.

(i) The duality mapping is upper semi-continuous (n — 7) at z
and D(z) is a single point set.

= (ii) Every support mapping is continuous (n — 7) at =z.

= (iii) There exists a support mapping which is continuous
(n — 7) at =x.

= (iv) The duality mapping is lower semi-continuous (n—7) at =z.

Using the monotonicity of D it can be shown that if D is lower
semi-continuous (n — w*) at z, then D(z) is a singleton [4, p. 300;
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10, p. 67], and so the conditions above are actually equivalent when
stzted for all ze S(X). The monotonicity of D can also be used to
cshow that the conditions are equivalent at z € S(X) if = is the norm
-or of course, the weak*) topology. This raises the following problem,

Problem 1. Does (iv) = (iii), or (iii) = (ii) when 7 is the weak
topology?

The following hereditary properties hold.

LevMa 1.1, For a normed linear space X given a subspace Y and
xeSIX)NY, if the duality mapping D for X iz lower or upper 8emi-
continuous (m — <) at x then so i8¢ D',, the duality mapping for Y.

We extend the result [3, p. 92] to show that the duality mapping
for ~ is not upper semi-continuous (n — w) on S(4).

ExavpLE 1.1. In ¢ consider z={\, \, --}€S(4) where \, =0
for all », and sequence {z,} where x, = {\,, -+, N, —Npssy —Npyz *o)e
Now z and =z, are smooth points of S{). Consider f, = {sgn\,,
sgn\,, ---}e D(z) and

Jeo={sgnX, ---, g0 A, —SgN A,.,, —SEN N, -} € D).

Consider Fem* where F(f,) =1 and F(¢é) =0. Now =z, is norm
convergent to z but F(/.) = —1 for all n, and so f, is not weakly
convergent to f,. Therefore the duality mapping for 4 is neither
lower nor upper semi-continuous {n — w) at smooth points of S {(4).

Using Lemma 1.1 it can be seen that at all x € S(4) where z has
an infinite number of nonzero terms, the duality mapping is not upper
semi-continuous (n — w). At all ze€8S(4) where x has only a finite
number of nonzero terms, for f = {¢, 14, -+ -} em, D(z) = {f € S(m):
M. = sgn i, for N, = 0} so then D(y) = D(z) for all yeS(/,) where

¥ — i <mini\,| and we have that there the duality mapping is
upper semi-continuous (n — n),

It follows from Lemma 1.1 that if 2 normed linear space X has
duality mapping upper semi-continuous (n — w) on S(X) then X does
not contain any subspace isometrically isomorphie to 4. In particular,
tre duality mappings for m and C[0, 1] are not upper semi-continuous

* — w) on their unit spheres.

5

2. The characterization of upper semi-continuity by slices.

A ¢ lce of the ball B(X) determined by f € S(X*) is a set S(B(X), f, 6)=
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{ze B(X): f(z)>1 — 6} for some 0 <3< 1. Similarly, S(B(X*), z, ¢) =
{(feB(X*): f(z)>1 -} for zeS(X) and 0 < » < 1. The latter is
a special case of an approximate subdifferential at z of a continuous
convex function, in this case the norm [1, p. 452]. We note the
following useful fact about slices.

LEMMA 2.1. For a normed linear space X, given f € S(X*) and
0<o<l, S(B(X**), f,0) i8 contained in the weak* closure of
PN
S(B(X), f, 0).

Proof. Consider FeS(B(X**), f,0) and N a weak® neighborhood
of F in X**. Now N S(B(X**), f, 6) is a weak* neighborhood of
F. But since B/(\X) is weak® dense in B(X"*), this neighborhood con-
tains a member of é(\X), necessarily a member of éZB(X),f, 0).

It is convenient to have a characterization of upper semi-continuity
in terms of slices. These theorems generalize the Smulian charac-

terizations for weak and strong differentiability of the norm [i4,
p. 645].

THEOREM 2.1. For a Banach space X, the duality mapping is
upper gemi-continuous (n — 7) at £ S(X) if and only if for each
T-neighborhood N of 0 in X* D(z) — N contains a slice of B(X™)
determined by z.

Proof. Suppose that D(z) + N contains the slice S(B(X*), r, 5)
determined by z. Then for all y € B{z; 6) N S(X) we have lf, () —1; <o
for all f, e D(y); that is, D(y) < S(B(X*), z,6). Then the result is
immediate.

Conversely, there exists a ¢’ > 0 such that D(y)Z D(z) + N/2 when
yeB(x;6)Nn S(X). Choose 0 < 0 < é" such that ¢B(X*) & N72.
Consider f e S(B(X*), z, 6*/4). Now |f(z)~1]| < é*/4 so by the Bishop-
Phelps-Bollobas theorem [2, p. 181] there exists a y € S(X) and 71, €
D(y) such that !z —y}! <4 and [if, — fil <d. But then Dy &
D(z) + N/2 and so fef, + 0B(X*) < D(z) + N.

When X* has the norm topology, we have a dual result. We
denote by D, the duality mapping on X™.

THEOREM 2.2. For a Banach space X, the duality mapping D,
on X* 18 upper semi-continuous (n —n) at feS(X*) if and only
if for each morm meighborhood N of 0 in X**, D\(f) — N contains

S
a slice of B(X) determined by f.
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Proof. Given a weak * closed norm neighborhood N of 0 in X**,
suppose that S/(\B(X), f, S D(f) + N. Since D,(f) is weak * compact,
D,(f)+ N is also weak * closed, [9, p. 35], and so contains the weak * clo-
sure of §B(X), f, 98). From Lemma 2.1 we deduce that S(B(X**),f, a)<

D,(f) + N and so the result follows from Theorem 2.1. The converse
is immediate,

The following example with X~ = 4 renormed smoothly, shows
that such a result does not hold for upper semi-continuity (n — w)
even if X* is smooth at f.

ExavpLE 2.1. Consider m equivalently renormed with norm

SR = 1/2<sup',u = (5_] fojz) ) where F =g, i, ---}em.

Now I'-i is an equivalent second conjugate norm for m and + with
norm

Pl =sup{Eaaps TFI S 1), where f = (A, N\, --0je4

is smooth on S(~). Consider f ={1,0,0, ---}e/and=1{1,0,0, ---} ¢
¢, & m. Now llfi =sup{{p:|IFll 1) =1, but Z{f) =1and jZ{|=1
so [!fll =1. Therefore Ze D,(f). Consider the sequence {F,} in
m where F,={1,0,.--,0,1,,1,.--}. Now F,.(f} =1 and |!F,||—1
so (F,/JIF,!)f) —1. Consider F,={1,1,---}em and % €m* where
S (F) =1 and 5 (é) =0. Now & (F,) =1 so F,/iiF,l| does not
converge weakly to Z. However, since 4 is smooth at f we have
from Theorem 2.2 that for all z, € S(c,) where f(z,) — 1, z, is weakly
convergent to z.

From the characterization given in Theorem 2.2 we make the
following immediate deduction.

COROLLARY 2.1. For a Banach space X given zeS(X), if the
duality mapping D 18 upper semi-continuous (n — n) at x then the
duality mapping D, 18 upper semi-continuous (n — n) at e S(X**).

3. Geometrical implications of upper semi-<ontinuity. We
pursue the geometrical implications of upper semi-continuity of the
duality mapping through the following significant characterization
of upper semi-continuity (n — w).

THEOREM 3.1. For a Banach space X given z € S(X), the dualzt'y

mapping 18 upper semi-continuous (n — w) at z if and only if D(:c)
is weak * denge in D,(Z).
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Proof. Suppose that the duality mapping is upper semi-continuous
(n — w) at z. Consider N* a weak * closed neighborhood of 0 in
X"" and N the correspondmg weak neighborhood of 0 in X*. Since

D(x) is weak * compact, D(_z) ~ N* is weak * closed and so contains
A .
D(z) + N. From Theorem 2.1 we have that z determines a slice
S(B(X »z,0) = D(z) + N and so by L Lemma 2.1, S(B(X***), 1,8) &
D(a:) +N*. In partlcular, D,(z) "D(z) + N‘ for all such N* and
so D,(7) = D(x) Conversely, suppose that D(:c) is weak * dense in
D,(z). Consider N a weak neighborhood of 0 in X*. Now N is the
restriction to X* of a2 weak * neighborhood N* of 0 in X***. Since

the duality mapping is upper semi-continuous (n — w*) on X**, there
exists a 6 > 0 such that

D(§) = D(z) + N*/2 for all yeB(z;0) N SX)
so D) = D(a:) N* and D(y) = D(x) + N for all ye B(z; o) N S(X).

Upper semi-continuity (n—w) is a strong condition. For example,
it can be shown that if X is the continuous functions on a compact
Hausdorff space T, then the duality map arising from the supremum

norm is upper semi-continuous (n — w) on all of S(X) only if T is
finite.

CoROLLARY 3.1. A Bamach space X with duality mapping upper
semi-continuous (n — w) at r&S(X), has diam D.(Z) = diam D(x).

Proof. For #, 7 € DyZ) consider a sequence {F,} in S(X**) such
that (¥ — &XF,) = | “ & — 2! —1/n. Since D/Ea:) is WeakA‘ dense
in D,(%) there exists f, € D(z) and g, € D(z) such that | &% (F,) — f.(F)I <
1/n and ! (F,) — §.(F,)| < 1/n. But then

HF — ZD)FD) < (e = g ) FI T+ 2n

and therefore | F — = I£!|f.—g."+3'n for all n, and so diam D(I)=
diam D(z).

We note that upper semi-continuity of the duality mapping at
a point and compactness of the image set of the point is a property
with important implications,

THEOREM 3.2. For a Banach space X given x € S(X), the following
statements are equivalent.

(1) the duality mapping i8 upper semi-continuoug (n — 7) at
r and D(z) i3 T-compact.

(i1) for every met {f.} in S(X*) such that f,(x) — 1, there exists
a subnet T-convergent to some f,< D(z).
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(ii1) The weak * and T topologics agree on S(X*) at points of
D(z).

Proof. (i) = (i) Suppose that there exists a net {f.} in S(X*)
such that f,(z) —1 but no subnet is r-convergent to any member of
D(z). Then: since D(x) is t-compact there exists a r-open set G such
that D(z) & G and eventually, f, € C(G), the complement of G. Again
since D(z) is 7t-compact there exists a r-neighborhood N of 0 such
that Diz) + NZ G, so f,€C(D(z) ~ N) eventually, [9, p. 35]. But
f. 1s eventually in any given slice of B(X*) determined by z. So
we see from Theorem 2.1 that the duality mapping is not upper
semi-continuous (n — 7) at =z.

(ii) = (ii1) Given f, € D(z) suppose that the net {f,} in S(X*) is
weak * convergent to f, but is not r-convergent to f,. Then there
exists a t-neighborhood G of f, and a subnet {f.,} such that f,; < C(G)
for all g. But f.:(z) —1 and {f..} has no subnet r-convergent to f..

(i) = (1) It follows that the weak * and z-topologies agree
on D{z) and so D(z) is r-compact. Suppose that the duality mapping
18 not upper semi-continuous (n ~— ) at z. Then there exists a sequence
fz,} in S(X) such that z, —x and a t-neighborhood N of 0 and a
sequence {f,} where f, € D(z,) such that f,eC{D{z) +~ N) for all n.
But since B(X*) is weak * compact there exists a subnet {f, } which
is weak * convergent to some f € B(X*) and f € D(z) since ' f(z) — 1| <
f = fu )@ +if.(x—=z.),. However, f, is not r-convergent to f.

We note that from the Bishop-Phelps theorem it follows that
(iir is equivalent to the weak * and r-topologies agreeing on D{(S(X))
at points of D{z).

In their paper [13] Smith and Sullivan examined an interesting
geometrical property which is a generalization of the notion of
very smoothness. They said that a normed linear space X is “weakly
Hann-Banach smooth” at zc S(X) if D,(&) = D/(x). From Theorems
2.1 and 3.2 we have the following characterizations of this property.

COROLLARY 3.2. For a Banach space X given z<S(X), the
Jollowing statements are equivalent.

(i) D) = D).

(1) The duality mapping 18 upper semi-continuous (n — w) at
- and D{x) is weakly compact.

‘1) The weak * and weak topologies agree on S(X*) at points
-7 Diz).

Since 4(I") has norm and weak * topologies agreeing on S(/) we
~e2uce from Theorem 3.2 that ¢,(I") has duality mapping upper semi-
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continuous (n — n) on S{c,) and D(z) norm compact for all x e 8S(c,),
(see [3, p. 91]), and also D,(Z) = D(x) for all zeS(e) by Corollary
3.2,
We note that Corollary 3.2 (i) = (ii) generalizes the result (8,
p. 72] that for a Banach space X, X** is smooth at £ € S(X**) if and
only if every support mapping on X is continuous (n — w) at z.
The following theorem improves the argument of Smith and

Sullivan [13, Theorem 15] along lines suggested by Sullivan, to give
a more general result.

THEOREM 3.3. For a Banach space X if X can be equivalently
renormed 8o that tfzere exists a 0 < k < 1 such that, for each z ¢ S(X)
and f,e D(z) and f, + z- € D(Z) where z-€ X-, we have !'x*! <k,
then X 18 an Asplund space.

Proof. Using Stegall’s theorem and his characterization of spaces
with the Radon-Nikodym property [15], it is sufficient to prove that
the property in question is hereditary and gives dens X* = dens X.

Consider ze S(Y) where Y is a closed subspace of X. It is clear
that every f, € D(z) in Y* is the restriction of some f, ¢ D(z) in X*.
We recall that Y** is isometrically isomorphic to a subspace of X**.
So /.~y € D,(Z) in Y*** is the restriction to ¥** of some f,‘+ z* €
D,x) in X***. Because of the uniqueness of such representations
in a third conjugate we have that y- is the restriction of some z-
to Y. Since then !!y-!! £ "z-!| we deduce that the property is here-
ditary, Suppose that X* has a proper l1-norming subspace H. Then
by Riesz’ lemma and the Bishop-Phelps theorem there exists an
r€S(X) and f,< D(z) such that d(f,, H) > k. By the Hahn-Banach
theorem there exists an F e H- N S(X**) such that F(f,) > k. Define
A on X@H by F (@ + k) =f.y). Then | F () + b)) =
! Myl £'19 + kY, since H is a l-norming subspace of X*.
So .5 is a norm one extension of f, to X& H* and can be given a
further extension f, + z* € D,(). But (f, + z*)(F) = F(F) =0, so
Yz- Z |z-(F)| = | F(f.)| > k which contradicts our hypothesis about
"g-'Y, We conclude that dens X* = dens X.

From this theorem and Corollaries 3.1 and 3.2 we make the
following deduction. The theorem of Smith and Sullivan is equiva-
lent to (). ’

COROLLARY 3.3. For a Banach space X, if X can be equivalently
renormed 8o that the duality mapping 18 upper semi-continuous
n—w) on S(X) and

(i) D(z) is weakly compact for all ze S(X), or

{(ii) There exists a 0 < k < 1 such that diam D(z) < k for all
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i
(/l

X,
X 18 an Asplund space.

From Theorem 3.2 (i) = (iii) we see that Corollary 3.3(i) can be
<.v2n the following equivalent form.

COROLLARY 3.4. For a Banach space X, if X can be equivalently
= ~ormed 80 that the weak * and weak topologies agree on D(S(X))
v X 18 an Asplund space.

Professor Robert Phelps has pointed out that this result can be
croved directly without using the higher dual technigue of Theorem
2.2, Jtis easy to prove that the given topological condition is here-

szry. For separable X, B(X*) is separable and metrisable in the

s " topology so D(S(X)) is weak * separable and by the topological
:-=2ition is weakly separable. By the Bishop-Phelps theorem its
. -<zr span is norm dense and so X* is norm separable,.

Corollary 3.4 improves Corollary 8 of [12, p. 741] in which the
zorzement of the weak™ and norm topologies on S{X*) is seen to imply

--z7 X is an Asplund space.

“We notice, however, that the duality mapping being upper semi-
s oiinuous (m — 1) on S(X) does not necessarily imply that the weak *
=~ 1 T-topologies agree on D(S(X)),

ZxampLE 3.1. Given two normed linear spaces (X, |-/ ), 1 =1, 2
%~ z solid norm .} on R we can define a norm on X by ijizl|j=

.. 'y where z = (z,, :rz)eX It follows that for ze S(X),
—- L= 'A\‘“.f:: '\':fz) (\‘u \'z) € D(( xl i1y 1 zzi?z))y fte D{_I‘), 7v = 1: 2}, 1f eaCh
7 1z duality mappings is extended as in the introduction. It can

iiv verified that the duality mapping for X is upper semi-
us 'n —n) at ze S(X) if the duality mappings for X, are
2mi-continuous (n — m) at z/izl, z, = 0. In particular, if
v - exe X, =R and X, =¢, and give R® the » norm we obtain
.= . Tre Guality mapping is then upper semi-continuous (n —n)
- S RZ e, But D1, 0) = {1, fi: feB(s)} and D((1, 0)) is not

- s~ A

-~ -~cmpact ior even weakly compact) since it is affinely homeo-
~ .rizic to Big).

Iinme2 X is a l-norming subspace of X**, from the proof of
T-.-rz=~ 3.3 it is clear that a Banach space X whose dual satisfies

-- . :.=dition given in Theorem 3.3, or those of Corollary 3.3(1), (ii)
7 Jorollary 3.4, is reflexive.

Z-*ym 2. If a Banach space X admits an equivalent norm for
- - .= =-c duslity mapping is upper semi-continuous (n — w), must
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X be an Asplund space?

Although a Banach space which admits a strongly differentiable
equivalent norm must be Asplund [6], the converse is an open problem.
A weaker form of this would be the converse of Problem 2.

Problem 3. If X is an Asplund space, must X admit an equivalent
norm for which the duality mapping is upper semi-continuous (n — w)?

Kenderov has recently shown [11] that every monotone mapping
from an Asplund space to subsets of its dual is single valued and
upper semi-continuous (n — n) on a dense G, subset of the interior
of its domain. .

J. Borwein has shown us that Theorems 2.1 and 3.2 can be
extended to subdifferential mappings of proper lower semi-continuous
convex functions,

S. Gjinushi, has announced a slightly weaker form of Corollary
3.4 (C. R. Paris 286 (1978), Theorem 4.6). We thank the referee
for this reference and for his suggestions.
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