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GEOMETRICAL IMPLICATIONS OF UPPER 
SEMI-CONTINUITY OF THE DUALITY 

MAPPING ON A BANACH SPACE 

J. R. GILES, D. A. GREGORY AND BRAILEY SIMS 

For the duality mapping on a Banaeh space the relation 
between lower semi-continuity and upper semi-continuity 
properties is explored, upper aemi-continuity is characterized 
in terms of slicee of the ball and npper semi-continuity 
properties are  related to geometrical propertiea ahieh imply 
that the space ie an Aaplnnd epaee. 

The duality mapping is a natural set-valued mapping from the  
unit sphere of a normed linear space into subsets of its dual sphere, 
and which for an inner product space is the mapping associating an 
element of the  unit sphere with the corresponding continuous linear 
functional given by the inner product. I t  is an example of a sub- 
differential mapping of a continuous convex function (in this case, 
the norm), which is in tu rn  a special kind of maximal monotone 
mapping. Cudia [?, p. 2981 showed that  the  duality mapping is 
always upper semi-continuous when the space has the norm and the 
dual space has the weak* topology, and Kenderov [lo, p. 671 extended 
this  to  maximal monotone mappings. Bonsall, Cain, and Schneider 
[3] used the property to  prove the  connectedness of the numerical 
range of an  operator on a normed linear space. 

Along with the activity which culminated in Stegall's theorem 
[15] characterizing an Asplund space as  one whose dual has the  
Radon-Nikodjrm property, there has been some interest in finding geo- 
metrical conditions sufficient for a space to be Asplund. A Banach 
space X is an -4splund space if every continuous convex function 
defined on a n  open convex subset of X is strongly differentiable on 
a dense G, subset of i t s  domain. Ekeland and Lebourg [6, p. 2041 
have shown tha t  a Banach space is Asplund if there exists a strongly 
differentiable real function on the  space with bounded nonempty 
support, in particular, if the space can be equivalently renormed to 
have norm strongly differentiable on the unit sphere. Using Stegall's 
theorem, a result of Diestel and Faires [ 5 ,  p. 6251 gives tha t  a 
Banach space is Asplund if the  space can be equivalently renormed 
to  be very smooth, t h a t  is, t o  be smooth and to have the  s i ~ g l e  
valued duality mapping continuous when the space has the norm 
and the dual space has the weak topology. Recently Smith and 
Sullivan 113, Theorem 151 have exhibited a more general condition 
which is sufficient for a Banach space to be Asplund. f e show tha t  
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this  condition can be characterized by an upper semi-continuity pro- 
perty of the duality mapping and we derive other such sufficient 
conditions related t o  the  upper semi-continuity of the duality mapping. 

Consider a real normed linear space X with unit sphere S(X) - 
 EX. , jz : :  = I}, and closed unit ball B ( X )  = { x E X :  jlz1 6 1) and 
dual space X*. The d u a l i t y  m a p p i n g  for X is the set-valued map- 
ping z -+ D(z) of S(X)  into S(X*) where D(x) r {f E S(X*):  f (x)=l}. 
For z E S(X), D(z) is convex and weak* compact. X is smooth a t  
z E S(X) if D(z) is a single point set. A selection fz t : ~  D(z) for  each 
x E S(X)  is called a s u p p o r t  m a p p i n g  on X. If we extend D to X 
by tairing D(z) = D(z/, z ) for 3; # 0, and D(0) = B(X*), then D is 
monotone, t h a t  is V; - f,)(x - y)>,O for all z ,  y in X and f,, f, in 
D(x), D(y) respectively. 

We denote by ; the weak*, weak, or norm topology on X*. By 
a ,-neighborhood of D(x), we mean a set of the form D(x) f N where 
,V is a :-neighborhood of 0. The duality mapping D is said to be 
u p p e r  semi -con t inuous  (resp. lower semi-cont inuous)  (n - r )  a t  z E 
S ( X )  if for  every :-neighborhood U of D(z) (resp. r-open set  U with 
Un D(x) + 2) there is in S(X) a norm neighborhood N of z such 
t h a t  D(g) c Uiresp. D(y) ,3 U+ 2) whenever y E N. For upper semi- 
continuity, some authors prefer to let U be any r-open set  containing 
D(z). If D(x) is r-compact, for example if D(z) is a singleton or r 
is the weak* topology, then the two notions of upper semi-continuity 
agree. 

1. The relation between lower and upper semi-continuity. It 
is of interest to note t h a t  for  the duality mapping there is a special 
relation betxeen lower and upper semi-continuity. It is this relation 
which prompts us to consider upper semi-continuity in our formulation 
of more general duality mapping properties. 

The following relations can be deduced simply from the  definitions 
and actually hold for selections of set-valued mappings. 

For a normed linezr space X ,  given x E S(X),  and the r-topology 
on X*, the following implications hold. 

( i ) The duality mapping is upper semi-continuous (n - r) a t  z 
and D(z) is a single point set. 

-- ( i i )  Every support mapping is continuous (.n - T) a t  z. 
= (iii) There exists  a support mapping which is continuous 

in - :) a t  x .  

-- (iv) The duality mapping is lower semi-continuous (n-r )  a t  z. 
Using the  monotonicity of D i t  can be shown that  if D is lower 

semi-continuous (n - LC*) a t  z ,  then D(z) is  a singleton [4, p. 300; 



10, p. 671, and so the  conditions above a re  actually equivalent when 
~ t i t e d  for  all x E S ! X ) .  The monotonicity of D can also be used to  
show tha t  the  conditions a re  equivalent a t  x E S ( X )  if .; is the norm 
o r  of course, the weak*) topology. This raises the  following problem. 

Prob lem 1. Does tiv) -- (iii),  or  {iii) - (iij when r is the weak 
~opo!ogy? 

The fo!lowing hereditary properties hold. 

L A  1.1. Fo7.a ~ z o ~ ~ n e d L i n e a r s p a c e X g i u e ~ ~ a s u b s p a c e  Y a n d  
x E S ( X )  F) Y, if t h e  d z ta l i t g  m a p p i n g  D fo7- X i s  Lower or  u p p e r  s e m i -  - c o v ! i n u o u s  (n - rj at s t h e n  80 i a  D :., t h e  d u a l i t y  m a p p i n g  j'or Y. 

lVe extend the result [3 ,  p. 921 to show t h a t  t he  duality mapping 
for / is not upper semi-continuous !n - wj on S(/ ,) .  

EXAMPLE 1.1. In  li consider z - {L,, l , ,  . . a )  E S ( 4 )  where X, + 0 
for 211 n ,  and sequence (x,) where x ,  = {X,, . - - ,  l , ,  -XIT1, -X,,z . - . I .  
Sow z and x, a re  smooth points of S!/ ,) .  Consider f, - (sgnk, ,  
sgnl,, . - . )  E D(xj and 

jr, -- {sgn h,, - - , sgn h,, - sgn h ,_,, - sgn XI.r2r - . a )  E D(z,,) . 
S o ~ s i d e r  F E m* where Fij , )  = 1 and F!?,) = 0. Now x, is norm 
c o ~ v e r g e n t  to z but  FCr",,,) = -1 for all ?t ,  and so .fzf,, is not weakly 
convergent to  fz. Therefore the  duaiity mapping for 1, is neither 
! o y ~ e r  nor upper semi-continuous ( n  - x) a t  smooth points of S (4j. 

Using Lemma 1.1 i t  can be seen t h a t  a t  all x E S ( < )  where x has  

I 
a n  infinite number of nonzero terms,  the  duality mapping is not upper 
cemi-continuous (?t - w). A t  all z E S ( 4 )  where x has only a finite 
3uzSer  of nonzero terms,  for  f = {pi, pL, . - 1  E m, D(x) = { f  E S ( m ) :  

zz sgn h, for  X, i 0) so then D ( y j  2 D(z)  for  all y  E S ( 4 )  where 
E. - z i j  < min : 1, I and we have t h s t  there  the  duality mapping is 

up-xr semi-continuous (n - n). 

I t  follows from Lemma 1.1 t h a t  if a normed linear space X has 
d s ~ z i i t ~  mapping upper semi-continuous (n - w) on S ( X )  then X does 
?.ST contain any subspace isometricalIy isomorphic to /,. In  particular, 
:? r',;lality mappings for  m and C[O, 11 a re  not upper semi-continuous 

- C  - u.) on their  unit  spheres. 

2 .  The characterization of upper semi-continuity by slices. 
.4 8 '  ci of the  ball B ( X )  determined by f E S ( X * )  is a set  S(B(X) ,  ff z) r 
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{z E B(X):  f (z) > 1 - o") f o r  some 0 < o' < 1. Similarly, S(B(X*), x, E )  = 

( f  E B ( X * ) :  f ( x )  > 1  - x] for  z E S ( X )  and 0 < X < 1. The latter is 
a special case of an  approximate subdifferential a t  z of a continuous 
convex function, in this  case the  norm [ I ,  p. 4521. We note the 
following useful fact about slices. 

LEMMA 2.1. For a  normed l i n e a ~  space X ,  given f  E S i x * )  and 
0 < 6 < 1,  S ( B ( X 8 * ) ,  f ,  6 )  i s  contained in the weak' closure of 

s@(x), f ,  6 ) .  

Proof. Consider F E S ( B ( X 8  *), f ,  Z )  and N a weak* neighborhood 
of F  in X * * .  Now N I-; S ( B ! X d ) ,  f ,  6 )  is a weak* neighborhood of 

A 

F. But since B ( X )  is weak' dense in B ( X 8 * ) ,  this neighborhood con- 
A A 

tains a member of B ( X ) ,  necessarily a member of S ( B ( X ) ,  f ,  6 ) .  

I t  is convenient to have a characterization of upper semi-continuity 
in terms of slices. These theorems generalize the Smulian charac- 
terizations for weak and strong differentiability of the norm [11, 
p. 6451. 

THEOREM 2.1. For a  Banach space X, the duality mapping is 
upper semi-continuous (n - r) at z  E S ( X )  i f  and only i j  for each 
T-neighborhood 1V of 0 i n  x*, D(zj - N contains a slice of B!S*)  
determined by x. 

P ~ o o f .  Suppose tha t  D ( z )  t iV contains the slice S ( B ( X 8 ) ,  x, G )  
determined by x. Then for all y  E B(x; 8 )  n S ( X )  we have 1 f,(x) - 1  j < o' 
for  all f, E D(y);  t h a t  is, D(y)  E S ( B ( X * ) ,  z ,  6 ) .  Then the result is 
immediate. 

Conversely, there exists a i' > 0 such that  D ( y ) E D ( z )  t N;'2 u-hen 
y E B ( x ;  6 ' )  n S ( X ) .  Choose 0 < o" < 8' such thz t  d B ( X * )  2 5 2. 
Consider f  E S ( B ( X 8 ) ,  z ,  214). Now 1 f  ( z )  - 11 < 6'/4 so by the Bishop- 
Phelps-Bollobis theorem [ 2 ,  p. 1811 there exists a y  E S ( X )  and ?;, E 

D(y)  such t h a t  / : z - y l ' < o '  and , f , -  f ! l < 6 .  But then D(y! 
D(z )  i- N / 2  and so f  E f ,  A GB(X*) L D(x) f N. 

When X' has the  norm topology, we have a dual result. R-e 
denote by D, the  duality mapping on X:". 

THEOREM 2.2. For a  Banach space X ,  the duality mapping D, 
on X *  i s  upper semi-continuous (n - n) at f  E S ( X * ?  i f  and only 
i f  for each norm neighborhood N of 0 in X'*, D , ( f )  N contains 

A 

a  slice of B ( X )  determined by f .  
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P ~ o o  f. Given a weak * closed norm neighborhood N of 0 in X*  *, 
A 

suppose tha t  S(B(X), f ,  6) S D , ( n  + N. Since D,Cf) is weak * compact, 
D , ( n  I -N is also weak * closed, 19, p. 351, and so contains the weak * clo- 

sure of $B(x), f, 13). From Lemma 2.1 we deduce tha t  S(B(X**), f,  B)E 
D , ( n  + N and so the result follows from Theorem 2.1. The converse 
is immediate. 

The following example with X *  = /, renormed smoothly, shows 
tha t  such a result does not hold for upper semi-continuity (n  - w) 
even if X" is smooth a t  f. 

EXAMPLE 2.1. Consider m equivalently renormed with norm 
, 7 r. 

F = l , 2 ( s u p ' , u . l ; ( ~ ~ ) " )  where F -  (p,,p,, . - - } ~ m .  
2'- 

Now ! - I is an equivalent second conjugate norm for m and /, with 
norm 

:'jll = sup (C h,/r,: ; I F ( :  =< 1) , where f = {L, h?, . e.1 E 4 

is smooth on S(/,). Consider f - (1, 0, 0, . - }  E /, and ? = (1, 0, 0, - - }  E 
ĉ , G .m. NOW 1 1  f :; = sup {Ip,I: ]IF/\ 5 1) I; 1,  but 5 i f )  = 1 and ;13// =1 
so 1 ;  f = 1. Therefore 2 E Dl( f) .  Consider the sequence {F,} in 
7n where F , r { 1 , 0 ,  . - - , 0 , 1 , , 1 , - - - I .  Now F,(fi=l and 1\F,1!--+1 
so ( F  j )  -1. Consider F,= {I, 1, . . - }  ~m and E m* where 
2-(F0) = 1 and S(&) = 0. Now F(F,) = 1 so F,/i] Fm ii does not 
converge weakly to ?. However, since /, is smooth a t  f we have 
from Theorem 2.2 t h a t  for all z, E S(c,) where f (z,) - 1, z, is weakly 
convergent to x. 

From the  characterization given in Theorem 2.2 we make the  
following immediate deduction. 

COROLLARY 2.1. F o r  a Banach space X given x E S(X), if the 
duality mapping D i s  upper semi-continuous (n - n)  at x then the 
duality mapping D, ie upper semi-continuo~ls (n - n)  a t  2 E S(X**). 

3. Geometrical implications of upper semi-continuity. We 
pursue the  geometrical implications of upper semi-continuity of the  
duality mapping through the  following significant characterization 
of upper semi-continuity (n  - w). 

THEOREM 3.1. F o r  a Banach space X given z E S(X),  the duali ty 
A 

ntapping i s  upper semi-continuous (n - u.) a t  z if and only if D(z) 
i s  weak ' de7tse in  D2(5). 



1M J. R. GILES, D. A. GREGORY Xh'D BRAILFk- SISlS 

Proof. Suppose tha t  the  duality mapping is upper semi-continuous 
(n  - w) a t  x. Consider N* a weak * c!osed neighborhood of 0 in 
X"* - .-. r-  and N the corresponding - weak neighborhood of 0 in X * .  Since 

D(z)  is weak * compact, D [ X ~ ' + -  N* is weak * closed and so contains 
DG) t fi.*' From Theorem 2.1 we have that  z  determines a slice 

r- S ! B ( X * ) ,  - z ,  8 )  E D(z)  + h; and so by Lemma 2.1, S(B(X*") ,  2, 8 )  = 
,-, -* 

- 
u. 

D(z)  i N * .  - In particular, D,( i )  2 D(x)  - N* for all such ,V* and 
A -. 

so D,(2) = D(z).  Conversely, suppose that  &) is weak * dense in 
D ) .  Consider N a weak neighborhood of 0 in X * .  Now N is the 
restriction to X* of a weak * neighborhood N* of 0 in X*** .  Since 
the duality mapping is upper semi-continuous (n - w*) on X * * ,  there 
exists a o' > 0 such that  

D,(P) Z D,(x) NLi2 for a11 y E Bjz; 8 )  n S ( X )  
A 

so D,I$) 2 D(x) f N* and D(u) 2 D(x)  + N for all y E B(x; o') 0 S f X ) .  

Gpper semi-continuity (n  - w) is a strong condition. For example, 
it can be shovin t ha t  if X is the continuous functions on a compact 
Hausdorff space T, then the duality map arising from the supremum 
norm is upper semi-continuous (n  - w) on all of S ( X )  only if T is 
finite. 

COROLLARY 3.1. A Banach space X with duality mapping upper 
semi-continuous (n - w) at z  E S ( X ) ,  has diam D,(Z) = diam D(z) .  

Proof. For 2 7 ,  T E D,(i) consider a sequence {F,) in S ( X *  *) such 
A 

that  (x - F )  - - 1 Since D(z)  is weak dense 
in D,fZ) there exists f* E D(z)  and g ,  E D(z)  such tha t  I.F(F,) -?,(F,)I < 
l ' n  and I F ( F , )  - g^,(F,) j < 1/n.  But then 

and therefore ' 5- ' g  J j  I /  f ,  - g ,  ' 1  -3,'n for all n, and so diam D,(E)S 
diam D(x). 

We note that  upper semi-continuity of the dnality mapping a t  
a point and compactness of the  image set of the point is a property 
with important implications. 

THEOREM 3.2. For a  Banach space X given z E S ( X j ,  the f o l l o x i w  
atatcmnts  are equivalent. 

( i ) the duali ty mapping is  upper semi-continuous (n - r) a t  
z and D(z )  ia r-compact. 

f i i )  for every net { f , )  in S ( X * )  such that f,(z) 3 1,  there exists 
a subnet 7-convergent to some f ,  D(x).  
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(iii) T h e  w e a k  * a n d  r topologies agree o n  S(X") at  poiizts of 
D (z). 

P r o o f .  (i) -- (ii) Suppose t h a t  there exists  a net {fa} in S ( X * )  
such t h a t  fa(z) --. 1 b u t  no subnet is  r-convergent t o  any member of 
D(z). Then. since D(z) is  r-compact there exists a r-open set  G such 
t h a t  D(z)  L G and eventually, fa  E C(G), t he  complement of G. Again 
since D(z)  is  r-compact there exists  a r-neighborhood N of 0 such 
t h a t  D:z) s N E G, so fa  E C(D(z) ,V) eventually, [9, p. 351. But 
f, is  eventua!ly in any  given dice of B(X*)  determined by x. So 
we see f rom Theorem 2.1 t h a t  t he  duality rriapping is not upper 
semi-continuous (n - :) a t  z. 

i ii j = (iii) Given f, E D(z) suppose t h a t  t he  net  (j:} in S!S*) is  
weak * convergent t o  f, b u t  is not r-convergent to f,. Then there  
exists  a --neighborhood G of f, and a subnet  { f c , }  such tha t  fa$ E C(G) 
for  all p. But -f,,?(z) - 1 and { f,:) has no subnet r - con~ergen t  t o  f Z .  

( i i i )  -- ( i ) I t  follows t h a t  t he  weak * and 7-topologies agree 
on DIzj and so D(z)  is  r-compact. Suppose t h a t  the  duality mapping 
is not upper semi-continuous (n - 7) a t  z. Then there exists a sequence 
Ir,) in S(X) such t h a t  x, --. 1: and a :-neighborhood ,V of 0 and a 
seauence { f,) where f, E D(x,) such t h a t  f, E C(D(x) - iV) for all n. 
But since B(X*)  is weak * compact there exists  a subnet {fnn} which 
is weak * convergent to some f E B(X*)  and f E D(z) since f (z j  - 1; 5 
, - f )  + , f - x ) .  However, f n n  is not r-convergent to f. 

We note t h a t  f rom the  BishopPhelps theorem i t  follows t h a t  
... 

,111 is  equivaient t o  t he  weak * and r-topologies agreeing on D(S(X)) 
a t  points of D(z). 

In the i r  paper [13] Smith and Sullivan examined an interesting 
geometrical property svhich is  a generalization of the  notion of 
Yery smoothness. They said t h a t  a normed linear space is " ~ e a k l y  
Zzhn-Banach smooth" a t  x E SrX)  if D,(2) = ~ ( z ) .  From Theorems 
3.1 and 3.2 rre have the  following characterizations of this property. 

COROLLARY 3.2. FOT a B a n a c h  space X g i v e n  zc ,S (X) ,  t he  
-'o[iou.ing s ta tement8  a r e  equ iva len t .  

( , I ,  . .. D J ~ ) = D ( z ) .  

( ii j T h e  d ~ a l i t y  m a p p i n g  i s  u p p e r  s e m i - c o ~ ~ t i n u o u s  in - w) a t  
r -:nd D(z) is ujeakly  compact .  

, i i i j  T h e  w e a k  * a n d  w e a k  topologies ag7ee o n  S(X') a t  points  
,- = D!=). 

. . 
Since <(r) h a s  norm and weak topologies agreeing on S!<) u-e 

.-i-pn . I from Theorem 3.2 t h a t  c,(T) has  duali ty mapping upper semi- 
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continuous (n - n) on S(cl) and D ( z )  norm compact for all x E s ( ~ ~ ) ,  
A 

(see [ 3 ,  p. 91]), and also D,(i?) = D(x)  for all z S(cJ by Corollary 
3.2. 

We note tha t  Corollary 3.2 (i) -- (ii) generalizes the result [a,  
p. 721 tha t  for a Banach space X, X*' is smooth a t  2 € S ( X t * j  if and 
only if every support mapping on X is continuous (n - w) a t  x. 

The following theorem improves the argument of Smith and 
Sullivan [13, Theorem 151 along Iines suggested by Sullivan, to give 
a more general result. 

THEOREM 3.3. For a Banach space X i f  X can be equivalently 
1.ennrmed so that there exists a 0 < k < 1 such that ,  for each x c S ( X )  
aud f ,  E D(x)  and j, + z -  E D,(i) where z -  E X - ,  we have ' I  J -  I '  2 k, 
then  X is  a n  Asplund space. 

Proof. Using Stegall's theorem and his characterization of spaces 
with the Radon-Nikodym property [ I s ] ,  i t  is sufficient to prove t h a t  
the property in question is hereditary and gives dens Xu = dens X. 

Consider z E S ( Y )  where Y is a closed subspace of X.  I t  is clezr 
that  every f ,  E D(x)  in Y* is the  restriction of some f ,  E D(x)  in X*.  
We recall t h a t  Y*' is isometrically isomorphic to a subspace of X**.  
So f, - y -  E D,(jl) in Y*** is the restriction to Y** of some ?,'I. x- E 

D,i i )  in X*". Because of the uniqueness of such representations 
in a third conjugate we have tha t  y- is the  restriction of some x -  
to 1'. Since then ' y - I '  5 x 1 we deduce that  the property is here- 
ditary. Suppose tha t  X* has a proper 1-norming subspace H. Then 
by Riesz' lemma and the  BishopPhelps theorem there exists an 
x E S ( X )  and f ,  E D ( z )  such that  dCf,, H )  > k .  By the  Hahn-Banach 
theorem there exists an F E H -  n S ( X f * )  such that  F( f , )  > k.  Define 
,c on X @ H -  by R(ŷ  A- h- )  = f , (y) .  Then l S ( ; 4 )  7- h - ) I =  
' f , (y) '  5 " g ;  S '1c + h -  : , since H is a 1-norming subspace of X*. 
So 3- is a norm one extension of f ,  to 2@ H- and can be given a 
fur ther  extension f, $ z-  E D,(i?). But (f, + x - ) ( F )  = Y ( F )  = 0, so 
' z -  2 i x - ( F )  I = J F( f . ) ,  > k which contradicts our hypothesis about 

' - i .  We conclude tha t  dens X* = dens X .  
From this theorem and Corollaries 3.1 and 3.2 we make the  

following deduction. The theorem of Smith and Sullivan is equiva- 
lent to (i). 

C~ROLLARY 3.3. For a Banach space X ,  i f  X can be equiz:alentl,g 
7.c71orme.d so that the duali ty mapping ia upper semi-continuous 
n - w) on S ( X )  and 

( i ) D ( z )  i s  weakly compact for all z E S ( X ) ,  w 
( i i )  There exists a 0 < k < 1 such that diam D(z)  5 k for all 
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- - \  

: : >  
. - .. . X is a n  h p l u n d  space. 

From Theorem 3.2 (i) -- (iii) we see that  Corollary 3.3(ij can be 
- ..- . . . -7, the following equivalent form. 

COROLLARY 3.4. F o r  a Banach space X,  if X can be equivalentlg 
--.  ,:,jrmed 80 that the weak * and ~ e a k  topologies agree on D(S(X)) 
- - . .; X is  a n  Asplund space. 

Professor Robert Phelps has pointed out tha t  this result can be 
;rc-.-ed directly without using the higher dual technique of Theorem 
. I t  is easy to prove t h a t  the given topological condition is here- 
. For separable X,  B(X*) is separable and metrisable in the  
..: r5b * topology SO D(S(X)) is weak ' separable and by the topological . . 
: : :::lion is weakly separable. By the  Bishop-Phelps theorem its 
. - e z r  span is norm dense and so X *  is norm separable. 

Corollary 3.4 improves Corollary 8 of [12, p. 7411 in which the 
:;r.r?rnent of the  weak* and norm topologies on S!X*) is seen to imply 
- - - -  . ;. S is an Asplund space. 

'A-e notice, however, tha t  the duality mapping being upper semi- 
: r.rinuous (n  - r )  on S(X) does not necessarily imply tha t  the  weak * 
s-- 1 r-:apologies agree on D(S(X)). 

- 
;SAMPLE 3.1. Given two normed linear spaces (X,, 1 ; .  : i f ) ,  i = 1, 2 

, - -  - .. : - solid norm : I .  , i  on R2, we can define a norm on X by j ; /zj j i= 
I ,, 1 1  - ., r: , , , :  where z = (z,, x,) EX. I t  follows tha t  for z E S(X),  

- - . - - '. .:.'-:, LJ,): (k,, k , ) ~ D ( ( / j x , ; j , ,  ~:z,I~,)) ,  f , ~ D ( z , ) ,  i = 1, 21, if each . . . - - -  - .-7 ? ~ z ! i t y  mappings is extended as  in the introduction. I t  can 
. - - $  - ,  .. : : . verified that  the  duality mapping for X is upper semi- 

_ . . -  . I  . > _  . . . . - -  - 5  , n - n) a t  x c S ( X )  if the duality mappings for  Xi a re  
- -  - - . . .-. . sex:-continuous (n - n )  a t  x, / \ iz,~\ , ,  xi + 0. In particular, if 

.. . 
-r .z'ie S: = R and X, = c, and give F the  L', norm we obtain 

. - - . . T!.e duality mapping is then upper semi-continuous (n - n) .. _ 
- F. . . - . . c .  But D((1, 0)) = {(I, i j :  j E B(L',)) and D((1, 0)) is  not 

: - :z : i :xpact jor even weakly compact) since i t  is affinely homeo- 
-. . :; 2 : ~  I@ B:~L"). 

- .  
::c,:? -f is a l-norming subspace of X**, from the  proof of - . :- - r e =  3.3 it is clear tha t  a Banach space X whose dual satisfies 

: r -  :. .-..ii:ion given in Theorem 3.3, or those of Corollary 3.3(i), (iij 
- .. 

r - . r - . z ry  3.4, is reflexive. 

- . .  
: -. r c m  2 .  If a Banach space X admits an equivalent norm for 

: - :: r:n dzality mapping is upper semi-continuous (n - wjt  must 
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X be an  Asplund space? 
Although a Banach space which admits  a strongly differentiable 

equivalent norm must  be Asplund [ 6 ] ,  t he  converse is an open problem. 
A weaker form of this  would be the  converse of Problem 2. 

Problem 3. If X is an Asplund space, must X admit an equivalent 
norm for which the  duality mapping is upper semi-continuous ( n  - w)? 

Kenderov has recently shown [Ill t h a t  every monotone mapping 
f rom an Asplund space to subsets of i t s  dual is single valued and 
upper semi-continuous (n - n) on a dense G, subset of the  interior 
of i ts  domain. 

J. Born-ein has shown us  tha t  Theorems 2.1 and 3.2 can be 
extended to subdifferential mappings of proper lower semi-continuous 
convex functions. 

S. Gjinushi, has announced a slightly weaker form of Corollary 
3.4 (C. R. Paris  286 (1978), Theorem 4.6). We thank t h e  referee 
for this  reference and for his suggestions. 
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