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Abstract. We investigate the application of projection algorithms, more specif-
ically the Douglas-Rachford algorithm, to finding points of intersection of two
plane curves. We contrast the employment of typical Euclidean reflection with
that of Schwarzian reflection. Local convergence near an isolated intersection
point is established and the efficacy of the approaches relative to one another
and to more classical methods is explored. The extension to curves in higher
dimensional space is noted.

1. Introduction

One of the most significant applications of metric fixed point theory, and the
theory of nonexpansive mappings in particular, has been establishing convergence
of various projection algorithms for solving the convex feasibility problem:

Find a point satisfying two (or more) convex constraints; that is, in the
intersection of two (or more) closed convex subsets of a Hilbert space.

Of special interest to us is the algorithm first proposed in 1956 by Douglas and
Rachford [8], for which convergence in the convex case was investigated by Lions and
Mercier in 1979 [10] and established in general in [2]. It has long been observed (and
exploited) that, despite a lack of theoretical underpinning, the algorithm continues
to work well in many situations where at least one of the sets is no longer convex,
see for example [1]. We consider one problem which falls into this class.

We investigate the problem of computing a point in the intersection of two ana-
lytic plane curves specified implicitly by f((x, y)) = 0 and g((x, y)) = 0 for (x, y) ∈
R2 which we often identify with the complex plane C. We will also identify the
curves themselves with their respective graphs Gf := {(x, y) ∈ R2 : f((x, y)) = 0}
and Gg := {(x, y) ∈ R2 : g((x, y)) = 0}. Regarding the graphs as constraint sets
our problem becomes the non convex feasibility problem of finding a point (x, y) in
Gf ∩Gg. To avoid degeneracies we assume that (x, y) is an isolated point of Gf ∩Gg
at which the curves have contact of order zero (that is: ∇f((x, y)) and ∇g((x, y))
are both non-zero and not parallel).

In order to better exploit the analytic nature of the curves, we propose to solve
the feasibility problem using an adaptation of the Douglas-Rachford algorithm (also
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known as reflect-reflect-average) [8] in which Euclidean reflections are replaced by
Schwarzian reflections.

The Schwarzian reflection of a point z ∈ C in an analytic curve K [[11] pages

254 to 257] is RK = SK(z), where SK is the Schwarz function for K; an analytic
function such that SK(z) = z for all z ∈ K.

The Schwarz function for K : k(x, y) = 0 can often by found by substituting z+z
2

for x and z−z
2i for y in the specification of K and solving for z.

Example 1.1. The Schwarz function for the ellipse E : x2+
(y
b

)2
= 1 can be found

by solving (
z + z

2

)2

+

(
z − z

2ib

)2

= 1

for z, yielding

SE(z) =
1

1 − b2

[(
1 + b2

)
z − 2b

√
z2 − 1 + b2

]
.

So, the Schwarzian reflection in E is given by

RE(z) = SE(z) =
1

1 − b2

[(
1 + b2

)
z − 2b

√
z2 − 1 + b2

]
.

Similarly, it is readily verified that the Schwarzian reflection in the unit circle |z| = 1
is the same as the inversion z → z/|z|2. A comparison of Euclidean and Schwarzian
reflection in the case of the circle can be seen in figure 1. For the line  L : αx+βy = 0
Schwarzian reflection coincides with Euclidean reflection in  L; that is the linear
transformation with matrix

[R L] =
1

α2 + β2

(
β2 − α2 −2αβ
−2αβ α2 − β2

)
.(1.1)

Figure 1. Euclidean (left) and Schwarzian (right) reflection.

For more details on Schwarz functions the interested reader is referred to Davis
[6].
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The Douglas-Rachford algorithm using Schwarzian reflections for finding a point
in Gf ∩ Gg from a given initial point x0 is the iterative scheme

xn+1 = T (xn),(1.2)

where T = TGfGg is the Douglas-Rachford operator

TGfGg =
1

2

(
I + RGgRGf

)
.(1.3)

2. Local convergence of the modified Douglas-Rachford algorithm

For starting points x0 sufficiently near to p ∈ Gf ∩ Gg we apply the theorem
of Perron (see, [4] theorem 6.1 or [9] Corollary 4.7.2) to the system of difference
equations in (1.2) to show the sequence of Douglas-Rachford iterates converges at a
linear rate to p (that is, the iteration scheme (1.2) is exponentially asymptotically
stable at p).

To ensure the conditions of Perron’s theorem are satisfied we need to show:

(i) the Douglas-Rachford operator (1.3) is almost linear about p. That is, for
x near p

TGfGg(x) = p + LGfGg(x− p) + ∆,(2.1)

where LGfGg : R2 → R2 is a linear operator and ∥∆∥ = o(∥x− p∥).

and

(ii) both eigenvalues of LGfGg have modulus less than 1.

Proof of (i)
To prove (i) it suffices to show for an analytic curve K that near a point p in K the
Schwarz function

SK(x) = SHK(p)(x) + ∆,(2.2)

where HK(p) is the tangent (supporting hyperplane) to K at p and ∆ = ∆(K, p, x)
has ∥∆∥ = o(∥x− p∥). As then, for x in a neighbourhood of p we have

TGfGg(x) =
1

2

[
x+RGg

(
RGf

(x)
)]

=
1

2

[
x+RGg

(
RHGf (p)

(x) + ∆′
)]

=
1

2

[
x+RHGg (p)

(
RHGf (p)

(x) + ∆′
)

+ ∆′′
]

=
1

2

[
x+ p+RHGg (p)−p

((
p+RHGf (p)−p

(x− p) + ∆′
)
− p

)
+ ∆′′

]
=

1

2

[
x+ p+RHGg (p)−p

(
RHGf

(p)−p(x− p)
)

+RHGg (p)−p
(
∆′

)
+ ∆′′

]
,

since RHGg (p)−p is linear

=
1

2

[
x+ p+RHGg (p)−p

(
RHGf (p)−p

(x− p)
)]

+
1

2

(
RHGg (p)−p(∆

′) + ∆′′
)

So, as required

TGfGg(p) = p + LGfGg(x− p) + ∆∗
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Figure 2. Construction of a Schwarz function and Schwarzian reflection

where LGfGg := T
(HGg (p)−p)

(
HGf (p)−p

) and, since RHGg (p)−p is a bounded linear

operator, ∆∗ = 1
2

(
RHGg (p)−p(∆

′) + ∆′′
)

has ∥∆∗∥ = o(∥x− p∥).

To establish (2.2) we argue as follows.
Since SK(z) is analytic it may be expressed as a Taylor series about p ∈ K, so

SK(z) = SK(p) + S′
K(p)(z − p) + ∆ = p + e−2ϕi(z − p) + ∆,

where |∆| = O(|z − p|2) and ϕ is the angle between HK(p), the tangent to K at p,
and the real axis. To see this, refer to figure 2, from which we infer |S′

K(p)| = 1 and
arg (S′

K(p)) = −2φ, also see [11], page 255.
Thus

RK(z) = p + e2ϕi(z − p) + ∆ = (z − p)e−ϕieϕi + p + ∆

which we recognise as

RK(z) = RHK(p)(z) + ∆ (see [11], exercise 30(i), page 265).

We now turn to the proof of (ii); LGfGg is the Douglas-Rachford operator for two
non parallel lines; the translated tangents HGf

(p) − p and HGg(p) − p, meeting at
the origin. We will take these to be  L1 : αx + βy = 0 and  L2 : Ax + By = 0 so by
(1.3)

T L1  L2
=

1

2

(
I + R L2

R L1

)
which, via (1.1), has matrix

[T L1  L2
] =

ψ

∆

(
ψ ω
−ω ψ

)
,
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where ψ = αA+ βB, ω = αB − βA and ∆ = (α2 + β2)(A2 +B2). The eigenvalues

of [T L1  L2
] are ψ

∆ (ψ ± iω) both of which have modulus squared equal to

ψ2

∆2

(
ψ2 + ω2

)
=

(αA+ βB)2
(
(αA+ βB)2 + (αB − βA)2

)
(α2 + β2)2 (A2 +B2)2

=
(αA+ βB)2

(α2 + β2) (A2 +B2)

< 1

as required.
Thus, the Douglas-Rachford algorithm using Schwarzian reflections applied near

a simple intersection of two plane analytic curves yields a sequence of iterates that
exponentially spirals to the intersection point.

The astute reader will see that if we employ Euclidean reflections in the Douglas-
Rachford algorithm our techniques and results still apply and, provided we move
to a multi-set version of the Douglas-Rachford algorithm (see for example [5]),
readily extend to a family of curves in higher dimensional space, where each curve
is specified as an intersection of hyper-surfaces. In this case local convergence is
assured by arguments similar to those found in [3]. The reversion to Euclidean
reflections is necessary as Schwarzian reflection for curves in a space of dimension
greater than two is no longer defined.

3. Alternate approaches to the problem

One “classical” approach to finding an intersection of two implicitly specified
plane analytic curves; f(x, y) = 0 and g(x, y) = 0 would be to compute a zero of

(3.1) F : R2 → R2 : (x, y) 7→ (f(x, y), g(x, y)) ,

using, for instance, Newton’s method.
An alternative approach is to seek solutions of

G(f(x, y), g(x, y)) = 0,

where G : R2 → R is any function vanishing only at (0, 0). We will use G(u, v) :=
u2 + v2. Then the problem becomes to locate the global minimum of G(x, y) =
f(x, y)2 + g(x, y)2 (where the function is 0 in the feasible case) For this formulation
the method of gradient descent is available, with a line search being implemented
at each iteration. Alternatively one could use Newton’s method to find where
∇G(x, y) = 0.

4. Experimental results

In this section we compare computational results for three test scenarios: two
intersecting circles, an ellipse and line, and finding a zero of a function y = ϕ(x)
which we think of as finding an intersection of the curves f(x, y) := y − ϕ(x) = 0
and g(x, y) := y = 0. In each case we seek to solve the problem using the methods
listed in figure 3 for a selection of initial points P = (p, q) chosen to best illustrate
different behaviours.
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Method Name Description
DR Euclidean Douglas-Rachford with Euclidean: TGfGg

=
1
2

(
I +RGgRGf

)
where RGf

= 2PGf
− I with

PGf
the Euclidean projection onto Gf and similarly

for Gg
DR Schwarzian Douglas-Rachford using Schwarzian reflection:

TGfGg
= 1

2

(
I +RGgRGf

)
where RGf

is the Schwarzian
reflection in Gf and similarly for Gg

Newton on F Newton’s Method applied to find a zero of F :=
(x, y) → (f(x, y), g(x, y))

Newton on ∇G Newton’s Method applied to find a zero of ∇G,
G(x, y) = f(x, y)2 + g(x, y)2

Gradient Descent Gradient Descent with step size determined by a line
search, applied to minimize G(x, y) = f(x, y)2 +
g(x, y)2

Figure 3. Iterative Methods used on test scenarios.

Colour versions of the diagrams appearing below plus additional details
concerning the calculations may be accessed at: https://carma.newcastle.edu.

au/DRmethods/Schwarzian/.

4.1. Two circles. We consider the circles specified by f(x, y) := x2+y2−1 = 0 and
g(x, y) := (x− 2)2 + y2 − 9/4 = 0. The intersection points are (11/16,±3

√
15/16).

In order to see the relative performance of each Douglas-Rachford scheme
(Schwarzian versus Euclidean reflections) we plot a fine grid of starting points,
each coloured according to the ratio of the number of iterates required by the two
schemes to fall within a specified threshold distance from a feasible point. The result
is seen in figure 4 where a threshold distance of 1/400 (half a pixel width) was used
and computations were performed to double precision (64 bits, or approximately 15
decimal digits).

Figure 4. Relative performance of the Euclidean and Schwarzian
Douglas-Rachford for two circles.

Relative performance of the two schemes are represented on a grey scale with
white indicating points where the ratio of “Schwarzian” iterations to “Euclidean”
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iterations needed is close to 0 and black where the reciprocal ratio is close to 0. We
see that for many points (mid-grey) there is little difference between the performance
of the two schemes, nevertheless a rich and interesting pattern is revealed.

Motivated by figure 4 we chose as starting points: P1 = (0.31, 0.725), P2 =
(0.41565, 0.62135), P3 = (−1.81, 0.066) and P4 = (−4.0556, 0.4471). Each pair
(P1, P2), (P3, P4) includes a point for which the Euclidean scheme performs better,
and a point for which the Schwarzian scheme performs better.

Note that the first iteration of Newtons method applied to F : (x, y) 7→
(f(x, y), g(x, y)) moves any initial point P onto the line x = 11/16, and each sub-
sequent iteration remains on the line.

The results for the starting points P1 and P2 are shown in figure 5 and figure 6
respectively. These points are both close to one of the feasible points, and also close
to each other.

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9

DR Euclidean 3 4 6 8 9 11 13 14
DR Schwarzian 1 1 3 5 6 8 10 11
Newton on F 2 3 3 4 4 4 4 4
Newton on ∇G 2 3 3 4 4 4 4 5
Gradient Descent 2 3 4 5 6 6 7 8

Figure 5. Performance starting from P1.

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9

DR Euclidean 1 1 1 1 3 5 6 8
DR Schwarzian 2 4 6 7 9 11 12 14
Newton on F 2 3 3 3 4 4 4 4
Newton on ∇G 2 3 3 4 4 4 4 4
Gradient Descent 3 4 6 8 9 10 12 14

Figure 6. Performance starting from P2.

Starting from P1 we see that for thresholds up to 10−6 the Schwarzian Douglas-
Rachford scheme is roughly twice as fast as the Euclidean Douglas-Rachford scheme,
although for smaller thresholds the distinction is less stark. In contrast, starting
from P2 the Euclidean Douglas-Rachford is at least twice as fast as the Schwarzian
Doughlas-Rachford scheme for thresholds up to 10−8, and often faster. We also note
that in both these cases Newton’s method is superior to both Douglas-Rachford
schemes, while gradient descent is comparable.

With P3 as starting point Schwarzian Douglas-Rachford drastically outperforms
the Euclidean scheme, see figure 7.

The failure of the Euclidean Douglas-Rachford scheme can be seen in figure 8
where the iterates appear to converge to a period 4 point. Observe that a simple
calculation for the Euclidean Douglas-Rachford operator T = TGfGg

and P = (p, 0),

where 0 < p < 3/2, shows that T 4(P ) = P .
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10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9

DR Euclidean Fails to converge in 10000 iterations

DR Schwarzian 9 10 12 14 15 17 19 20
Newton on F 9 10 10 10 10 11 11 11
Newton on ∇G Fails to converge in 10000 iterations

Gradient Descent 4 6 8 10 12 14 16 17

Figure 7. Performance for starting point P3.

Figure 8. Douglas-Rachford with starting point x0 = P3. Eu-
clidean version (solid line) converges to a period 4 point while
Schwarzian version (dashed line) converges to a feasible point.

10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9

DR Euclidean 3 3 3 4 6 7 9 11
DR Schwarzian 8 9 11 13 14 16 18 19
Newton on F 8 9 9 9 9 10 10 10
Newton on ∇G 8 8 9 9 9 10 10 10
Gradient Descent 4 5 7 8 10 12 13 15

Figure 9. Performance for starting point P4.

Figure 9 shows the results starting from P4. Here Euclidean Douglas-Rachford
significantly outperforms the Schwarzian version at all thresholds. We also note
that the two schemes converge to different feasible points, see figure 10.

Figure 10. Douglas-Rachford with starting point x0 = P4. Eu-
clidean version (solid line) converges to one feasible point while
Schwarzian version (dashed line) converges to the other feasible
point.
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Figure 11. Periodic points and their attractive basins for Douglas-
Rachford with an ellipse and line with Euclidean Reflection (top) and
Schwarzian Reflection (bottom); images have been rotated through
90 degrees.

4.2. Ellipse line. We consider the ellipse f(x, y) := x2 + (y/8)2 − 1 = 0 and line
g(x, y) := y − 6x = 0. Starting from anywhere near the ellipse the behaviour of
the Schwarzian formulation of Douglas-Rachford appears quite similar to that of
the Euclidean formulation. As discussed in [3], for Douglas-Rachford using Eu-
clidean reflection, periodic points appear surrounded by basins of attraction or
repulsion. This prevents convergence to the feasible points for many starting points
and slows the convergence for many others. We observe the same phenomenon when
Schwarzian reflection is employed, where, at least for this particular ellipse and line,
the exact same periodic points are observed. This is shown in figure 11. Note that
the subsequences have been started from different points in order to illustrate the
different sizes of the local basins.

Behaviour of the different methods is tabulated in figure 12.
Locally the behaviour of the two formulations of Douglas-Rachford are nearly

identical, however, for more remote starting points, while continuing to converge,
the two Douglas-Rachford schemes behave differently and, as in the two circle case
may converge to different feasible points.

Remark 4.1. To better assess the effect of compounding numerical error on Douglas-
Rachford using Euclidean reflection, where each iteration involves the numerical
solution of a Lagrange multiplier problem to find the Euclidean (nearest point) pro-
jection PGf

, we experimented with a further variant. For z ∈ C we computedQGf
(z),
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10−1 10−2 10−3 10−4 10−5 10−6 10−8

DR Euclidean 61 129 197 265 334 402 538
DR Schwarzian 61 129 197 265 334 401 537
Newton on F 2 3 3 4 4 4 4
Newton on ∇G 3 4 4 5 5 5 5
Gradient Descent 2 4 4 6 8 10 12

Figure 12. Performance with f(x, y) = x2 + (y/8)2 − 1, g(x, y) =
y − 6x, and starting point (1.5, 4.5).

the nearest intersection of Gf with the line segment from z to its Schwarzian reflec-
tion RGf

(z) and used this as a substitute for PGf
(z), thereby avoiding the need for

a computationally expensive numerical minimisation. Douglas-Rachford was then
implemented using 2QGf

− I as a replacement for reflection in Gf . Started suffi-
ciently near a feasible or periodic point this yielded nearly identical results to the
Euclidean version even after hundreds of iterations. This lack of deviation speaks
to the low numerical sensitivity of the Douglas-Rachford method.

4.3. Finding a zero of y = ϕ(x). Thinking of this as finding an intersection of
the curve f(x, y) := y− ϕ(x) = 0 with g(x, y) := y = 0 leads, via (3.1), to finding a
zero of

F : R2 → R2 : (x, y) 7→ (f(x, y), g(x, y)) := (y − ϕ(x), y) .

The Jacobian is

J(F ) =
∂(f, g)

∂(x, y)
=

(
−ϕ′(x) 1

0 1

)
.

So, applying Newton’s method with any initial point (x0, y0) leads to the iterative
scheme,

xn+1 = xn − ϕ(xn)/ϕ′(xn). yn+1 = 0,

which, not surprisingly, we recognise as Newton-Raphson applied directly to y =
ϕ(x).

Thus, for ϕ(x) = x/
√

|x| with any starting point other than (0, 0) this approach
leads to cyclic iterates of period 2, and so fails to converge to the zero. By contrast,
Douglas-Rachford applied to the two curve reformulation (see discussion below) is
seen to rapidly spiral to (0, 0) and to drastically outperform the method of gradient

descent applied to the function G(x, y) =
(
y − x/

√
|x|

)2
+ y2 . The results with

initial point (1,0) are tabulated in figure 13.
Starting from (1, 0) gradient descent does not converge to within 10−3 after 20,000

iterations. This may be understood from the shape of the surface z = G(x, y),
illustrated in figure 14. Convergence down the sides of the trough is quite rapid,
but once near the sharply creased bottom the iterates bounce from side to side
making only slow progress toward the minimum.

A more large scale view, starting from the point (250, 500), is provided in fig-
ure 15. Here the Schwarzian formulation of Douglas-Rachford requires 293 iterations
to come within 10−1 of the feasible point while the Euclidean formulation needs 715
iterations.
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10−1 10−2 10−3 10−4 10−5 10−6 10−8

DR Euclidean 4 4 5 5 6 6 6
DR Schwarzian 4 5 5 6 6 7 7
Newton on F cycles
Newton on ∇G fails
Gradient Descent 4 415

Figure 13. Locating the zero of y = x/
√

|x| by the methods dis-
cussed starting from (1, 0).

Figure 14. The surface z = G(x, y) =
(
y − x/

√
|x|

)2
+ y2.

Figure 15. Douglas-Rachford applied to the curve y − x/
√

|x| =
0 and line y = 0 using Schwarzian reflection (left) and Euclidean
reflection (right).

Note: To compute Schwarzian reflection in the curve C := {(x, y) : y = x/
√

|x|}
we write C = C+ ∪ C−, where

C+ = {(x, y) : x ≥ 0, y =
√
x} and C− = {(x, y) : x ≤ 0, y = −

√
−x}..
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Then, if d(z, C+) ≥ d(z, C−) we take RC(z) = RC+(z) = 1 − z +
√

1 − 4z, otherwise

we take RC(z) = RC−(z) = 1 + z −
√

1 + 4z.

5. Conclusion

While the local similarity of Douglas-Rachford using a Schwarzian reflection and
a Euclidean reflection near a feasible point is to be expected, the extent of the sim-
ilarity is fascinating to observe. Equally fascinating are the large scale differences.
Clearly the intersection of complex analysis with iterative methods is a fruitful one.
Douglas-Rachford based on Schwarzian reflections often equals or outperforms the
same method using Euclidean reflections for the class of problems considered here,
and both methods sometimes outperform gradient descent algorithms. In well con-
ditioned problems the quadratic rate of convergence exhibited by Newton’s method
easily outstrips the linear rate anticipated for projection methods [7]. However,
in situations where Newton’s method cycles or diverges Douglas-Rachford often
continues to work well; this demonstrates the robustness of the algorithms, and
Douglas-Rachford using Schwarzian reflection is seemingly the more robust.

The authors wish to acknowledge the late Jonathan Borwein whose work on
projection methods provided inspiration for many of the ideas in this note.
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