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Abstract

Let X be a Banach space satisfying Opial’s property, C a weakly
compact convex subset of X, and T & locally almost nonexpansive self-
mapping of C. We prove that / — T is demiclosed on C, and if T is
weakly asymptotically regular at z € C (i.e., TPz — T"*'z — 0 weakly),
then every weak cluster point of (T™z) is a fixed point of T. We also
prove a fixed point theorem for multivalued locally almost nonexpansive
mappings.

2000 Mathematics Subject Classification. Primary 47HO09, 47H10;
Secondary 46B20.’

Key words and phrases. Locally almost nonexpansive mapping, fixed
point, weakly asymptotically regular, uniformly convex Banach space,
Opial’s property.

1 Introductipn

Let X be-a Banach space and C a nonempty closed bounded convex subset of X. Recall that a
mapping T : C — X is nonezpansive if [|Tz — Ty|| < llz —y|| for all z,y € C. In 1965, F.E. Browder
{1], D. Géhde [6] and W.A. Kirk [7] independently proved that if X is uniformly convex, then gvery
nonexpansive self-mapping of C hes a fixed point. In 1968, F.E. Browder [2] introduced a wider class
of mappings called semicontractive. A mapping T : C — X is called semicontractive if there exists a
mapping V : C x C — X such that (a) Tz = V(z,z) for £ € C; (b) for each fixedy € C, V(-,y) isa
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nonexpansive map; and {c) given z € C and € > 0, there is a weak neighborhood N, of z in C such
that for z,y € N,, ||V(z,y) — V(z, 2)|| < &. Later in 1972, R.D. Nussbaum [9] proposed the class of
locally almost nonexpansive mappings. A mapping T : C — X is called locally almost nonezpansive
(LANE for short) if for all £ € C and ¢ > 0, there exists a weak neighborhood N; = N(z,¢) of z in
C such that

ITu—Ty|| < Jju—-vl+€, wuveEN;.

Nussbaum [9] observed that a semicontractive mapping is LANE. He also observed that if T} : C — X
is nonexpansive, T : C — X is completely continuous, and 73 : (T) + T2)(C) — X is nonexpansive,
then T3(T) + T3) is LANE.

One can use nets and sequences to characterize local almost nonexpansivity. The following lemma
is not hard to prove. (Throughout this paper, ‘~—’ stands for weak convergence and ‘— for strong

convergence. )

Lemma 1.1. Let X be a Banach space and C a closed convex subset of X. Then T:C — X is
LANE if and only if for all £ € C, and nets (Zo)aca 81d (Va)aca in C with 2, — z and y, — z, it
follows that
lim sup [|Tz4 ~ Ty, < limsup |24 — yall- (1.1)
x€A ax€A

If C is separable, then T is LANE if and only if for all £ € C and sequences (z,,) and (y,) in C both
weakly converging to z, it follows that

limsup |7z — Tyn|| < limsup ||z = yall. (1.2)
n—oo n— o0
In particular, if T is LANE and z, — z, then
limsup ||Tz, — Tz|| < limsup |z4 — z||. (1.3)
fn— o0 n—0o0

Remark 1.2. In both (1.1) and (1.2), ‘limsup’ can be replaced with ‘liminf’.
As an immediate consequence of Lemma 1.1 we have

Corollary 1.3. Let X and C be as in Lemma 1.1.

1. T is LANE if it is weak-to-norm continuous on C (i.e., £ € C, (Ta) C C, 2, — £ = T(z4) —
T(z)).

2. If X is finite-dimensional, then T is LANE if anly only if T is continuous on C.

Corollary 1.3 points out a big difference between the class of nonexpansive mappings and the
class of locally almost nonexpansive mappings. One thus concludes that many nice properties of
nonexpansive mappings are not shared by the LANE mappings. We here include one which is
pertinent to Theorem 3.1, one of the main results of this paper. It is easily seen that if T: C — C
is nonexpansive and p is a fixed point, then lim ||[T"z — p|| exists for every x € C. However, this is
not true for LANE mappings. For example, let X be the real line, C = [~1,1] and T : C — C be
given by T(z) = —zif -1 <z <~} or § <z <1, T(}) = § and T is linearly extended to the rest
of C. Then } is the only fixed point of T. Since 7(1) = (~1)", lim [T™(1) — 1| does not exist.
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Nussbaum [9] proved that if X is reflexive and T : C — X is LANE, then T is a 1-set contraction.
He further proved that if X is uniformly convex, then I — T (with I the identity) is demiclosed on
C and hence T has a fixed point provided T is a self-mapping of C.

In the present paper we shall prove that if X satisfies Opial’'s property and T : C — X is LANE,
then I —-T is demiclosed on C and hence T admits a fixed point when 7" maps C into itself; moreover,
if T is weakly asymptotically regular at z € C (i.e., w — limy_oo(T™z — T™*!z) = 0}, then every
weak cluster point of (T™z) is a fixed point of T. We shall also prove a fixed point theorem for
multivalued LANE mappings.

2 Demiclosedness Principle

Let X be « Banach space, let C be a nonempty closed bounded convex subset of X, andlet f : C — X
be a mapping. Recall that f is said to satisfy the demiclosedness principle or be demiclosed on C if
for any sequence (z,,) in C, the conditions z,, — z and f(zn) — y imply that f(z) = y. It is known
(1) [10] that if X is a uniformly convex Banach space or satisfies Opial’s property and T: C — X is
nonexpansive, then / — T is demiclosed on C. Recall that X is said to satisfy Opial’s property [10]
if given any sequence (z,) in X with z,, — z,, we have

limsup ||Tn — Zoo|| < limsup [z, —yll Yy € X\ {z}.
N-—=00 A= 00

Banach spaces having Opial’s property include Hilbert spaces and the spaces ¥ (1 < p < co).
Further any separable Banach space can equivalently be renormed to have Opial's property |5].

Nussbaum [9], in a uniformly convex Banach space setting, extended the demiclosedness principle
from nonexpansive mappings to locally almost nonexpansive mappings. Below we make a similar
extension in the framework of Banach spaces with Opial’s property.

Theorem 2.1. Assume that X is a Banach space satisfying Opial’s property, that C is a nonempty
closed convex subset of X, and that T': C — X is LANE. Then ] — T is demiclosed on C and hence
(I — T)(E) is closed for every weakly compact subset E of C.

Proof. Assume () is a sequence in C such that z,, — z and (/ = T)z, = y. If (/ ~ T)z # y, then
z # Tz +y. Hence Opial's property for X and (1.3) of Lemma 1.1 imply that

limsup ||zn — 2| < limsupllz, — (Tz+ y)}f
N— 0O N—= 00

limsup ||Zn = Tz = (I = T)zy||
n-—oo

limsup || Tz, — Tz||
Rmd -]
< limsup|lzn - =|}-
N0
This is 8 contradiction. So we must have (I-T)z =y and I — T is demiclosed. Finally if £ is a

weakly comipact subset of C, then the closedness of (7 — T)(E} is an immediate consequence of the
demiclosedness of 7 — T and the weak compactness of C. ]
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Recall that the inward set to a closed convex set C at z € C is defined by
Ic(z):={z+My~-2): 220, yeC}.

Let To(z) = Ic(z), the closure of Ic(z). A map f: C — X is said to satisfy the weak inwardness
condition (or to be weakly inward) on C if f(z) € Tc(z) for all z € C. In case the interior of C is
nonempty, we say that f satisfies the Leray-Schauder condition if there exists a point z € int C such
that

f@#z+XMz—2) forald>1landz € 8C.

Note that in case int C # @, the weak inwardness condition implies the Leray-Schauder condition.

Corollary 2.2. Let X be a Banach space satisfying Opial's prope:rty C a weakly compact convex
subset of X, and T : C — X LANE. If T is weakly inward on C, or if, in case int C # @, T satisfies
the Leray-Schauder condition, then T has a fixed point.

Proof. Fix an 2o € C and define for each integer n > 1 amap T,,: C — X by
Taz=lzg+(1-1)T2, zeC
n n

Then [9, Lemma 1] imlpies that each T,, is a (1— 1) — y—contraction and hence in either the weakly
inward case or the Leray-Schauder case, 7;, has a fixed point z,, € C; see [3] [4]. It is easily seen
that .

(I = T)zall < 2diam(C) =0 (n — o).

Since C is weakly compact, by Theorem 2.1, we see that every weak cluster point of (z,,) is a fixed
point of T. : ]

Remark 2.3. Nussbaum [9] proved that if X is a uniformly convex Banach space, if C is a
closed bounded convex subset of X, and if T : C — X is LANE, then T has a fixed point in C
provided T satisfies the Rothe boundary condition; namely, T(8C) C C. The above proof shows
that Nussbaum’s result is still valid if the Rothe boundary condition is relaxed to either the weak
inwardness condition, or in case int C # @, to the Leray-Schauder condition.

3 Weak Asymptotic Behavior

Let X be a Banach space and let C be a closed convex subset of X. Recall that a mapping T : C — C
is weakly asymptotically regular at £ € C if w — lim,,.. oo(T"z — T"*'z) = 0. Kuczumow [8] proved
that if X satisfies Opial's property and T : C — C is nonexpansive, then the weak asymptotic
regularity of T at z € C implies the weak convergence of the sequence (T™z) to a fixed point of T.
We can not fully recover this result for a locally almost nonexpansive mapping T. The difficulties lie
in that the local almost nonexpansiveness of T at z only works for a sequence (z,) which is weakly
convergent to = (see Lernma 1.1) and that for a fixed point p of T, the lim | 7"z — p|| may fail to
exist (see the example in Section one).
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Theorem 3.1. Let X be a Banach space satisfying Opial’s property, let C be a closed convex subset
of X, and let T : C — C be LANE. Then, if T is weakly asymptotically regular at x € C, we have
that wy,(z) C F(T), where wy(z) is the weak w—limit set of T st z; i.e,,

Ww(=)={zEX:z=w—A1im T'“zforsomen.w—ooo}.

=00

If we assume, in addition, that the lim,_. ||[T"z — p|| exists for all fixed points p of T, then (T™z)
weakly converges to a fixed point of T,

Proof. Let p be a point in wy(z). Then we have a subsequence (n;), n; — o, such that Tz — p.
By using the diagonal method and passing to a further subsequence if necessary we can assume for
each integer m > 0 that lim;_q, [[T™*™z — p|| =: by, exists. Note that by the weak asymptotic
regularity, we have for all m > 0, T%+™z — p as i — 0o. It follows that

-

bm+1

[

Jim 7z -

< limsup||T™*™t!z - Tp| by Opial's property
i—00

< Jim IT%*™z-p|| by Lemma 1.1

= bp.

Hence (bm) i5 8 decreasing sequence. Put b := limpm—, o0 b = inf{bm : m 2 0}. We now claim that
p is a fixed point of T.
If b = 0, using Lemma 1.1 we get

ITp=pll < limsup||Tp— T™*™+1z|| + limsup [T™*™*! — p||
f—ao . §— 00
< bvn+bru+l —0 (m-'oo)
Hence Tp = p. Assume next b > 0. Consider the countable set G := {T™*+™z:{ 2> 1,m > 0} U {p}.

Since the weak topology of X restricted to G satisfies the First Countable Axiom, we can find a
countable weak neighborhoods (N;) of p in G such that (2, Ni = {p}. Now for each k > 1 we select

& subsequence (mgk))‘_:l of (m‘(k—l)):1 satisfying for ¢ > 1,
el > n-,
“T"?)*’“’z —p" < by + l.

k
(&)
7‘“‘ +k_lJ,' € Nk-

This is possible because for each m > 0, T™*™z — p as i — 00 and by = lim;_. o [|[T™ 5z - p|| <
limy oo [T™ 12 — p|| = b—1. Let my = ng‘) + k- 1. Then we have for k > 1,
> ™z — p,

1
* fiT™*z—pll < bk-l'*';,

1
[T+ 'z —pll > be - £
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We therefore have if Tp # p,
b

IA

lim sup [T™**'z — p|

k—oo

limsup|[T™*'z - Tp|| by Opial’s property

k—oo

limsup [T™*z — pl| by Lemma 1.1
k—oo
b.

IN A

IA

This is a contradiction. So we must have Tp = p and wy(z) C F(T). To finish the proof, assume in
addition that lim,— e [|T™Z — y|| exists for all fixed points y of T. If p,q € wy(z), then Tz — p
and T™iz — g for some n; — 0o and m; — oo. Since p,q € F(T), it follows that if p # ¢,

Jim IT"~pll = lim [Tz —pll
— 00 —an
< lim |[T™z -4l by Opial’s property
1 OO
= lim [[T™z - gl
oo
< lim |[T™z~p| by Opial's property
j—o
= [lim [Tz - pll,
which is a contradiction. [ |

4 Multivalued Extension

This section is devoted to a multivalued extension of the concept of locally almost nonexpansive
mappings. For a nonempty closed convex subset C of a Banach space X, we denote by K(C) (resp.
KC(C)) the family of nonempty compact (resp. compact convex) subsets of C. Let H be the
Hausdorf distance induced by the norm of X; thus we have for A, B € K(C),

H(A, B) = max {sup d(a, B),sup d(b, A)} )
aEA beB
where d(z, K) := inf{||z — y|| : ¥ € K} is the distance from a point z € X to a subset K C X.

Definition 4.1. A multivalued map T : C — K(X) is said to be locally almost nonezpansive (LANE
for short) if for every x € C and € > 0, there exists a weak neighborhood N in C of x such that

HTu,Tv) < |ju—-v]+¢& u,vEN;.

Note that a LANE multivalued map T is continuous with respect to the Hausdorfl distance and
hence it is both upper and lower semicontinuous.

Recall that the Hausdorff measure of a bounded subset B of a Banach space X is defined by
‘B(B):=inf{r >0: B can be covered by a finite family
of balls each with radius less than r}.

A multivalued map T : C — K(X) is called a 1-8—contraction if B(T(B)) < B(B} for all bounded
subsets B of C. Here T(B) = U{Tz:z € B}.
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Lemma 4.2. Let C be a weakly compact convex subset of a Banach space X andlet T: C — K(X)
be LANE. Then T is a 1-f—contraction.

Proof. We need to prove
B(T(B)) < B(B) VBCC.

For any € > 0, by weak compactness, C can be covered by finitely many subsets of C, N}, Na, -+, N,
such that
H(Tu,Tv) <llu—vll+¢e, uveN,1<i<m.

Repeat the argument of Deimling [4, p. 113] to get S(T(N;)) < B(N;)+efor 1 <i<m. Now for a
subset B of C, we have B = U, BN N;, and so

A(T(B)) = max B(T(BNN)) < [Jex B(BNN)+e< B(B)+e.

But, £ > 0 is arbitrary, we get 8(T(B)) < B(B). s

Theorem 4.3. Let X be a Banach space satisfying Opial’s property, let C be a weakly compact
convex subset of X, and let T : C — KC(X) be LANE. Assume that

TznTc(z)#8 forallz€C,

or in case int C # @, that the Leray-Schauder condition holds; that is, there is some z € int C for
which
z+Mz—2z)¢Tz forall A>1andz€dC.

Then T has a fixed point.
Proof. Take & fixed zo € C and define for each integer n > 1 a mapping T,, : C — KC(X) by
T,.z=lzo+(l—-l-)T::. z€C.
n n

Then by Lemma 4.2, T,, is a (1 — *) — B—contraction. It is easily seen that T;, satisfies the same
boundary condition as T does. Hence by Theorems 11.5 and 11.6 of Deimling [4], T;, has a fixed
point z,, € C; i.e., z, € C is a solution to the inclusion

1 1
Iy € ;20+(1—;)T$" (4.1)

Since C is weakly compact, we can assume that (z,,) is weakly convergent. Let z = w—limz,. Take
Yn € TZn such that ||zp — yn|| = d(Tn, TZs) € 1diam(C) by (4.1). We also have z, € Tz for which
[lyn = zm|| = d(w, Tz). By the compactness of Tz, we can assume that z, — Z € Tz. Now since T
is LANE, given any € > 0, we have a weak neighborhood N, of z such that

H(Tu,Tv) <|lu—v||+e, wu,v€N;.
As z,, — z, we have for all’large n,

El

H(Tz,,T2) € |lzn — z|| + &
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It follows that

I

limsup ||zn — Z|| lim sup |lym — za|l
N— 00 n—oo

lim sup d(sm, T'z)

N—e OO

lim sup H(Tz,, T2)

n— o0

IA Il

IN

lim sup [|zq ~ z|| + €.
n—a

Since ¢ > 0 is arbitrary, we get imsup,_ o, [[2n ~ Z|| < limsup,,_., [|zn — z||. Opial’s property of
X then yields that 2 = z € T2. |
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