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Abstract. Minimal invariant sets for nonexpansive mappings share some sin-

gular geometrical properties. Here we present some seemingly unknown ones.

1. Introduction

The basic technique for proving fixed point theorems for nonexpansive mappings
is based on an analysis of whether the geometrical properties of the Banach space
under consideration allow the existence of nontrivial minimal invariant sets. The
classical results of F.E. Browder [4], D.Gőhde [10] and W.A. Kirk [13] and many
further ones have been proved this way (see the books [1],[3],[9].). Since the work
of D. Alspach [2] it is known that there are convex, minimal invariant, weakly com-
pact sets of strictly positive diameter. Such sets display some ‘bizarre’ geometrical
properties (see [7],[8],[12]).

The aim of this paper is to add some seemingly new facts concerning these exotic
objects.

Let C be a nonempty, convex, closed and bounded subset of a Banach space X,
and let the mapping T : C → C be nonexpansive, in the sense that

‖Tx− Ty‖ ≤ ‖x− y‖ ,
for all x, y ∈ C.
The set C can contain many smaller nonempty, closed, convex, T−invariant subsets
D. Here D is T−invariant means T (D) ⊆ D. The family T of all such T -invariant
sets is partially ordered by inclusion. A set D in T is said to be minimal invariant if
it is minimal with respect to this ordering, that is it does not have any elements of T
as a proper subset. Obviously any set consisting of only one element x, necessarily
a fixed point of T, is minimal. Without further assumptions on C, the existence of
a minimal invariant subset for T is not assured. A natural condition to impose is
that C be weakly compact. Then, the existence of a minimal invariant subset follows
from a standard application of Zorn’s Lemma. This ensures existence, but does not
imply uniqueness. Indeed, we will see later that there can be more than one minimal
invariant set for T in C. Further, the family T furnished with the Hausdorff metric
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is a complete metric space, as is the closed subfamily T0 consisting of all minimal
invariant sets for T .

This allows us to use the following fact. If D ⊂ C is closed and convex, thus
weakly compact, then for any z ∈ C there exists at least one point x ∈ D such
that ‖z − x‖ = dist (z,D) . Moreover the set of all such points is closed and convex.
This defines the metric projection of z onto D, which we will denote by PD (z) .
Obviously

PD (z) = D ∩B [z, r] ,

where r = dist (z,D) and B [z, r] denotes the closed ball centered at z and of radius
r.

An answer to the question of whether there are weakly compact minimal invariant
sets other than singleton ones is provided by the example of Dale Alspach [2].

Example 1. Let X = L1[0, 1] and let C be the order segment given by

C = {f ∈ L1 : 0 ≤ f ≤ 1}.

The baker transformation

(Tf) (t) =

{
min {2f (2t) , 1} if 0 ≤ t ≤ 1

2
max {2f (2t− 1)− 1, 0} if 1

2 < t ≤ 1

isometrically transforms C into itself. Only the two constant functions, 0 and 1,
are fixed points of T. The whole set C =

⋃
a∈[0,1] Ca where

Ca =

{
f ∈ C :

∫ 1

0

f = a

}
are T−invariant convex, closed slices of C by parallel hyperplanes. Since C, is
an order segment and therefore weakly compact, so are all the slices Ca. In view
of these observations, each of the sets Ca, for 0 < a < 1, contains at least one
nontrivial, that is of strictly positive diameter, minimal invariant subset. Further,
since each Ca is T−invariant, these are the only minimal invariant sets for T . It is
also known that except for a = 0 or 1 each of the Ca are not themselves minimal
invariant and that the closed convex hull of an orbit need not be minimal invariant.

A variant of this example and the extension to a family of mappings can be found
in [17].

It is interesting to note that when C is weakly compact the existence of a mini-
mal invariant set is obtain through an application of the axiom of choice (Zorn’s
Lemma). So far no constructive examples of such sets are known. The only explicit
examples of minimal invariant sets that we know of are not weakly compact. This
is discussed further in the final section of the paper.

2. Known properties

Suppose D ⊂ C is nonempty closed convex and T−invariant. We always have
inf{‖x− Tx‖ : x ∈ D} = 0. Even more can be observed. Take any s ∈ [0, 1), and
for any given x ∈ D consider the equation

(2.1) y = (1− s)x+ sTy.



...MINIMAL INVARIANT SETS ... 3

Since as a function of y the right hand side is a strict contraction of D into D, (2.1)
has exactly one solution, say y = xs satisfying

xs = (1− s)x+ sTxs.

The mapping xs : [0, 1)→ D represents a continuous curve with
lims→1 ‖xs − Txs‖ = 0. All norm cluster points of this curve are fixed under T .
Thus, if T is fixed point free the curve does not have cluster points and gives an
embedding of the half open interval [0, 1) into D as a closed set. This will always be
the case if D is a nontrivial minimal invariant set for T . Sequences {yn} satisfying
lim ‖yn − Tyn‖ = 0 are said to be approximate fixed point sequences for T . Any
sequence of the form {xsn} with sn → 1 is such a sequence. A deeper result is the
following. If we put V = 1

2 (I + T ) then for any x0 ∈ D the sequence of iterates
{xn = V nx0} is an approximate fixed point sequence for V and T (see Ichikawa
[11] and Edelstein-O’Brien [6]).

The first author, in two papers [7] and [8], discussed several properties of minimal
invariant sets and families of them. Let K ⊂ C be closed convex and minimal
invariant for T . Then we have:

I: K = coT (K) .

II: For any z ∈ K, supx∈K ‖x− z‖ = diamK.

The first is obvious since the right hand side of I is T−invariant and K is mini-
mal. The second, saying that K is a diametral set, can be proved directly from
I (see [13]). Indeed suppose there exists a nondiametral point z ∈ K satisfying
supx∈K ‖x− z‖ = r < diam (K) . Then the proper subset Kr of K consisting of all
such points is nonempty closed and convex. Using the fact that in view of (I) each
point of K can be approximated by a convex combination of points in T (K) one
can easily observe that Kr is also T−invariant. This contradicts the minimality of
K.

III: For any approximate fixed point sequence {yn} and any z ∈ K,
lim ‖z − yn‖ = diam (K) .

To see this, observe that for the convex function r (z) = lim sup ‖z − yn‖, z ∈ K,
all the level sets Ka = {z : r (z) ≤ a} , are closed convex and T−invariant. The
minimality of K therefore implies that r (z) has to be constant on K. Suppose
that r (z) = const = r < d = diam (K) . Take any finite collection of points
{z1, z2,...,zp}, and consider the finite collection of balls B [zi, r] , i = 1, 2, .., p,where
r = 1

2 (r + d) . The sequence {yn} eventually enters each one of these balls. It

follows that the family of all balls centered at points of K and of radius 1
2 (r + d)

have the finite intersection property on K and thus by weak compactness a common
point, say z. Thus z is a nondiametral point and this contradicts II. Lastly since
all the subsequences of an approximate fixed point sequence are also approximate
fixed point sequences we can replace lim sup by lim.

Property III was independently discovered by the first author [7] and L. Karlovitz
[12] and has proved to be one of the most useful tools for establishing the existence
of fixed points for nonexpansive mappings, especially via ultraproduct method (see
for example [1],[3],[9]).

As a consequence of III we get;
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IV: For any z ∈ K and any x ∈ K we have lim ‖x− V nx‖ = diam(K),
V: For any z ∈ K and any x ∈ K the curve xs satisfies lims→1 ‖z − xs‖ =

diam(K).

In [7], a notion was introduced which has not been thoroughly investigated. Let
D be a closed convex set with diameter d > 0. Let us call a point z ∈ D almost
nondiametral if there exists ε > 0 such that all the path-connected components of
the set D \ B [z, d− ε] have diameters less then d. Even if D is diametral it can
contain almost nondiametral points.

Example 2. In the space c0 let the set D be the closed convex hull of the standard
basis vectors

D =

{
(xi) : xi ≥ 0, i = 1, 2, ...,

∞∑
i=1

xi ≤ 1

}
.

Then D is diametral with diam (D) = 1, but for sufficiently small ε > 0 the set
D \ B

[
0, 12 + ε

]
consists of infinitely many disjoint path connected components of

diameter 1
2 − ε. Thus, 0 is an almost nondiametral point.

Now V implies

VI: K does not contain almost nondiametral points.

Another consequence of III is that a minimal invariant set K can not be covered
by a finite collection of sets with diameters smaller then diam (K) . At least one of
the sets would have to contain an approximate fixed point sequence.

Recall that for any set A the number

α (A) = inf{ d : A can be covered by a finite number of sets with

diameters not exceding d}

is called the Kuratowski’s measure of noncompactness of A. Two basic properties of
the measure of noncompactness α will be needed in a sequel. For any two bounded
sets A1, A2 we have

α (A1 ∪A2) = max {α (A1) , α (A2)} and α (A1 +A2) ≤ α (A1) + α (A2) .

Using Kuratowski’s measure of noncompactness the last remark can be written as;

VII: If K is a minimal invariant set then α (K) = diam (K) .

Let us pass to properties which involve more than one invariant set. If D is invariant
so are all its r−neihbourghoods in C, B [D, r] = C ∩

⋃
{B [x, r] : x ∈ D} . Since

the intersections of invariant sets are invariant, by a minimality argument, we
immediately get;

VIII: If D is invariant and K is minimal invariant then dist (x,D) is constant
for all x ∈ K.

Consequently

IX: If K0,K1 are minimal invariant then for any x ∈ K0, y ∈ K1,

dist (x,K1) = dist (y,K2) = const = H (K0,K1) = dist (K0,K1) .
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Here, H is the usual Hausdorff distance between sets. We leave the justification of
the next observations to the reader.

X: If K0,K1 are minimal invariant then for any t ∈ [0, 1] there exists a min-
imal invariant set Kt such that H (K0,Kt) = tH (K0,K1) and H (Kt,K1) =
(1− t)H (K0,K1) .

Equivalently

XI: The family of all minimal closed convex T−invariant subsets of C is
metrically convex with respect to the Hausdorff metric.

Since the family of minimal sets furnished with the Hausdorff metric is a com-
plete space, in view of Menger’s theorem [16], the sets Kt of X can be selected
to form a continuous path joining K0 and K1 which is isometric to the interval
[0, H (K0,K1)] .

3. New Findings

The first observations we are going to present here are connected with property IX.
We will say that any two convex weakly compact sets satisfying the conclusion of
IX are metrically parallel. There are some general facts connected with this notion
which have an influence on the structure of the family T0 of all minimal invariant
sets for T . Let sets K0,K1 be metrically parallel with H (K0,K1) = d > 0. Let
P1 = PK1 : K0 → K1 be the metric projection. Consider the set

M = M (K0,K1) = (I − P1) (K0) = {x− y : x ∈ K0, y ∈ P1 (x) ⊂ K1} .

Obviously for any z ∈M we have ‖z‖ = d. A straightforward calculation based on
property IX shows that M is convex. It follows that 1

dM is a convex set contained
in the unit sphere S of X. Also it is clear that reversing the roles of K0 and K1

we get M (K1,K0) = −M = −M (K0,K1) . Consequently K0 ⊂ K1 + M and
K1 ⊂ K0 −M. This means that given two metrically parallel, weakly compact,
convex sets, each one is contained in a translate of the other by a convex subset of
the sphere dS, where d is the distance between them.

For some spaces the above leads to interesting consequences. If the space X is
strictly convex, then the metric projection is single valued and M consists of only
one point. Consequently, as was observed in [7], we have

XII: If X is a strictly convex space and K0,K1 are two minimal invariant
subsets of C then K1 is a translate of K0 and in particular diam (K0) =
diam (K1) .

Further if x0 ∈ K0, y0 = P1x0 and z = x0 − y0 then for any x ∈ K0 we have
x − P1x = z and, since ‖Tx− TP1x‖ ≤ ‖x− P1x‖ = ‖z‖ = d, we have TP1x =
P1Tx = Tx− z. Thus,

XIII: If X is strictly convex and K0,K1 are two minimal invariant sets for
T with K0 = K1 + z then the mappings T and P1 commute and for all
x ∈ K0 we have TP1x = P1Tx = Tx− z.
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We now present a previously unpublished result of the above type due to T. Dalby
and the second author showing that the last conclusion of XII holds for a much
wider class of spaces.

Let us recall that the space X is said to have the Kadec-Klee property (X is
a KK-space for short) if for any sequence (xn) in X with w − limxn = x and
lim ‖xn‖ = ‖x‖ we have limxn = x. In such spaces all convex, closed subsets lying
on the unit sphere are norm compact.

Let X be a KK-space and let K0,K1 be two minimal invariant sets for T : C → C
with dist (K0,K1) = d > 0. Take x ∈ K0 and y ∈ P1x ⊂ K1. Let V be the averaged
map V = 1

2 (I + T ) . In view of

d ≤ ‖V nx− V ny‖ ≤ ‖x− y‖ = d

we notice that V ny ∈ P1V
nx. As we already mentioned both the sequences (V nx)

and (V ny) are approximate fixed point sequences for T . Extracting subsequences
so that w − limV nkx = x0, and w − limV nky = y0 we have that

w − lim (V nkx− V nky) = x0 − y0.
But x0 − y0 and all the elements of the sequence (V nkx − V nky) are members of
M (K0,K1) which is norm compact. Thus the weak limit is actually a strong limit.

On the other hand in view of III we have

lim ‖V nkx− x0‖ = diamK0 and lim ‖V nky − y0‖ = diamK1

implying

|diam(K0)− diam(K1)| =

∣∣∣∣limk ‖V nkx− x‖ − lim
k
‖V nky − y‖

∣∣∣∣
≤ lim ‖(V nkx− V nky)− x0 − y0‖ = 0.

This establishes;

XIV: If X is a KK-space then all the minimal invariant sets for T : C → C
have the same diameter.

Some further observations are the following. For any two bounded sets A0, A1 we
have the obvious inequalities

|diam (A0)− diam (A1)| ≤ 2H (A0, A1) ,

|α (A0)− α (A1)| ≤ 2H (A0, A1) .

For a given space X let l (X) be the supremum of the diameters of all convex subsets
of the unit sphere S. Similarly, let k (X) be the supremum of the Kuratowski
measures of noncompactness of all such sets. Obviously k (X) ≤ l (X) ≤ 2. If
K0,K1 are two metrically parallel convex sets then K0 ⊂ K1+M and K1 ⊂ K0−M .
Since diam (M) ≤ l (X)H (K0,K1) and α (M) ≤ k (X)H (K0,K1) we easily get

|diam (K0)− diam (K1)| ≤ l (X)H (K0,K1) ,

|α (K0)− α (K1)| ≤ k (X)H (K0,K1) .

But for minimal invariant sets K0,K1 we have diam (Ki) = α (Ki). Therefore

XV: If K0,K1 are minimal invariant then

(3.1) |diam (K0)− diam (K1)| ≤ k (X)H (K0,K1) .
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If X is strictly convex then l (X) = 0 while if X is a KK-space then k (X) = 0.
The above shows that if k (X) < 2, then the diameter function on sets in T0 has
a smaller Lipschitz constant than in general. It also gives an alternative proof of
XIV and even more; it evaluates the span between smallest and largest diameters
of minimal invariant sets. For spaces with k (X) < 1 we have

(3.2) sup diam (K)− inf diam (K) ≤ k (X) diam (C) < diam (C) .

Here the supremum and infimum are taken over all K ∈ T0.
We now develop some additional properties of metrically parallel sets. Let K0,K1

be convex, weakly compact, metrically parallel sets with H (K0,K1) = d > 0.
Without loss of generality assume that 0 ∈ K0. Then K1 lies on the boundary of

the convex body, K0 +dB, more precisely K1 ⊂ K0 +dS. Let K̃1 ⊂ K0 +dS be the
maximal convex face containing K1. Then there exists a linear functional f ∈ X∗,
with ‖f‖ = 1 which supports K0 + dB at K̃1,. Thus, f (x) = k for all x ∈ K̃1,
where without loss of generality we may assume that k ≥ 0, and then f (x) ≤ k for
all x ∈ K0 + dB.

Since 0 ∈ K0 then dB ⊂ K0 + dB and because the two sets K0 and K1 are
metrically parallel there is a point y ∈ K1 with ‖y‖ = d. Obviously we have
k = f (y) ≤ ‖y‖ = d. Strict inequality can not hold. Otherwise, since ‖f‖ = 1, if
k < d then there would be point z ∈ dB with f (z) > k. Thus k = d > 0.

Finally, we show that the functional f is constant on K0. Since 0 ∈ K0, f takes the
value 0 in K0. Suppose for some x ∈ K0 we have f (x) < 0. then for any y ∈ K1

‖y − x‖ ≥ f (y − x) = d− f (x) > d,

a contradiction. On the other hand if for x ∈ K0,we have f (x) = a > 0 then
choosing z ∈ dB such that f (z) ≥ d− a

2 we get f (x+ z) ≥ a+d− a
2 > d and again

we arrive at a contradiction.

Thus for metrically parallel sets we have;

XVI: If K0,K1 are weakly compact, convex metrically parallel sets then they
lie in parallel hyperplanes that is, there exists a continuous linear functional
which takes constant values on each set.

An interesting consequence for minimal invariant sets is,

XVII: Let K0,K1 be minimal invariant sets for T : C → C. Suppose Kt :
[0, 1]→ T0 is a continuous path satisfying property X and finally let f ∈ X∗
be such that f (K0) = {a} and f (K1) = {b} then f (At) = {(1− t) a+ tb}.

The verification is left to the reader. This shows that the situation observed in
Alspach’s example is typical of the general case.

We now discuss properties connected to the ‘size’ of minimal invariant sets. Let
T : C → C be a nonexpansive mapping with FixT = ∅. It is expected that some
geometrical or topological properties of the set C will limit the size of minimal
T−invariant subsets of C. The first observation follows immediately from the fact
that diam (K) = α (K) ,

XVIII: If K is a convex minimal T−invariant subset of C then diam (K) ≤
α (C) .
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Following reasoning similar to that for property VI we can get a better evaluation.
Take any closed convex subset D ⊂ C. Let A(D) be the, possibly uncountable,
collection of all pathwise connected components of C \D. Define

η (C) = inf
D⊂C

max

{
α (D) , sup

A∈A(D)

α (A)

}
.

Obviously η (C) ≤ α (C) .The example preceding property VI shows that strict
inequality may hold. Now we get;

XIX: If K is a minimal invariant subset of C then diam (K) ≤ η (C) .

To see this take any x ∈ K and consider the curve xs contained in K, defined by
the equation (2.1) . For any D the curve either enters one of the components in
A(D) and stays there as s → 1, or visits D infinitely many times. The conclusion
then follows easily from III.

The technique proposed here for measuring the size of K has not been greatly
exploited. More examples are needed especially because Example 2.1 cited in con-
nection with property VI seems inadequate, since it is known (B. Maurey [15])
that all nonexpansive self mappings of nonempty weakly compact covex subsets of
c0 have fixed points. Nevertheless we hope that property XIX will lead the reader
toward a new line of investigation.

A more subtle way of measuring the size of minimal invariant sets was proposed in
[8]. For a closed bounded convex set C, with diam (C) > 0, and a nonexpansive
mapping T : C → C, define the number

g (C, T ) = inf {diam (K) : K ⊂ C is a minimal invariant set for T} .

Further, let

g (C) = sup {g (C, T ) : T is nonexpansive, T : C → C} .

Obviously g (C, T ) = 0 if T has a fixed point and g (C, T ) = diam (C) if C itself
is a minimal invariant set for T . Also g (C) = 0 if all nonexpansive self mappings
of C have fixed points and g (C) = diam (C) if C is a minimal invariant set for at
least one nonexpansive mapping T : C → C.

Not much is known about these parameters. The main open questions concerning
weakly compact convex sets C are: Does g (C, T ) = 0 imply that the nonexpansive
map T has a fixed point in C? Is the condition g (C) = 0 equivalent to every
nonexpansive self mapping of C having a fixed point?

The answer to both of these questions is of course affirmative if the space is strictly
convex or has the KK property.

In view of our observations, the situation g (C, T ) = 0 but T is fixed point free
could only occur in a space X with many large flats on its unit sphere.

Suppose T : C → C has g (C, T ) = 0 with FixT = ∅. Then there exits a sequence
of minimal T−invariant sets (Ki) with lim diam (Ki) = 0. Any sequence (xi) with
xi ∈ Ki is an approximate fixed point sequence for T and does not have cluster
points. Fix any minimal invariant K ⊂ C. Passing to subsequences we can assume
that limi→∞H (K,Ki) = r > 0 and limi,j→∞

i 6=j
H (Ki,Kj) = d > 0. Now consider
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the sequence of sets

Ui =
1

H (K,Ki)
M (K,Ki) .

Obviously, the sets Ui, i = 1, 2, ... are convex subsets of S. Also for each i = 1, 2, ...
select xi ∈ Ki and form the sets

Vi =
1

H (K, {xi})
(K − xi) .

Each Vi being a normalized translate of K shares the properties of a minimal
invariant set. Indeed, they are minimal invariant sets for a nonexpansive mapping
defined on a homothet of C.

Putting a = d
r we then have

XX: If T : C → C has g (C, T ) = 0 and Fix(T ) = ∅, then for any K ∈ T0,
there exist sequences of sets(Ui) and (Vi) such that, for i = 1, 2, ..., the
Vi are homothets of K contained in the unit ball, while the Ui are convex
subsets of the unit sphere, and the following equalities hold;

lim
i→∞

H (Ui, Vi) = 0,

lim
i→∞

H ({0} , Vi) = lim
i→∞

dist(0, Vi) = 1 = dist (0, Ui) = H ({0} , Ui) ,

lim
i,j→∞
i 6=j

H(Ui, Uj) = lim
i,j→∞
i 6=j

H (Vi, Vj) = a > 0.

One can use (3.1) and (3.2) to observe additionally that;

lim
i→∞

diam (Ui) = lim
i→∞

diam (Vi) ≥
diam (K)

r
.

These exemplify the geometrically aberrant nature of the spaces under considera-
tion, but unfortunately do not provide answers to the questions raised.

Further facts connected with the metrical parallelness of pairs of minimal invariant
sets and the metric convexity of the family T0 are left as exercises to the reader.

Convexity properties of the unit ball are often measured by an appropriate moduli
of convexity. Following this line let us propose a new modulus as follows.

In the unit ball B of X consider the family D of all convex diametral sets D. Let
m = sup {diamD : D ∈ D} . Define the modulus of nondiametrality as a function
σ : [0,m)→ [0, 1) by;

σX (ε) = inf {1− dist (0, D) : D ∈ D,diam (D) ≥ ε} .

Thus σ is an nondecreasing function and following a pattern used very often in the
theory of nonexpansive mappings, in view of XX we can write

XXI: IF σX (ε) > 0 for all ε > 0, then for each convex, weakly compact set
C ⊂ X and each nonexpansive mapping T : C → C with g (C, T ) = 0 there
exists a fixed point of T .

Furthermore,

XXII: If σX (ε) > 0 for all ε > 0, then each nonempty weakly compact, con-
vex set C with g (C) = 0 has the fixed point property for nonexpansive
mappings.
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These last two observations represent little more than a reformulation of the prob-
lem, as practically nothing is known about the function σ. Further investigation is
called for.

4. Some Final Examples

So far our discussion has concerned objects, minimal invariant sets, whose existence
is either proved in a nonconstructive way, or simply assumed. We conclude this
note with some examples that help put our findings into context.

For the spaces c0 and c denote the natural norms by ‖‖∞ and for l1 by ‖‖1 . For
any sequence x let x+, x− stand for the positive and negative parts of the sequence.
Finally, for n = 1, 2, ..., let en be the standard basis vectors in l1.

Recall that c0 and c are both preduals that give rise to the same dual norm ‖‖1 in
l1, but induce different w∗−topologies.

It is known (see e.g.[9]) that when l1 is taken as the dual of c0 all ‖‖1−nonexpansive
self mappings of nonempty w∗ compact convex subsets have fixed points. That is,
l1 = c∗0 has the w∗−fpp.

Changing to an equivalent norm in c0 does not change the w∗− topology in l1, but
induces a new equivalent dual norm with respect to which the class of nonexpansive
mappings in l1 may be different. In 1980 T.C. Lim [14] observed that this can lead
to a loss of the w∗−fpp.

Example 3. Furnish c0 with the equivalent norm: ‖x‖ = ‖x−‖∞ + ‖x+‖∞ . The
dual norm in l1 is ‖f‖∗ = max {‖f−‖1 , ‖f+‖1} . The positive part of the unit

ball, B+ =
{
f ∈ l1 : fi ≥ 0, ‖f‖∗ ≤ 1

}
is w∗−compact convex set and the mapping

defined by

Tf =

(
1−

∞∑
i=1

fi, f1, f2, ...

)
is a ‖‖∗− nonexpansive fixed point free mapping of B+ into B+. For each point
f ∈ B+ we see that, w∗ − limn→∞ Tnf = 0. Thus 0 belongs to any T−invariant
w∗−closed subset of B+. Furthermore,

co {Tn (0) : n = 1, 2, ...} = co {en : n = 1, 2, ...} = B+,

showing that B+ is itself a minimal invariant set for T .

This is one of the only known instances where a minimal invariant set for a non-
expansive mapping can be explicitly identified. However, it is in the w∗−setting.
In l1 weak compactness coincides with norm compactness and so B+ is not weakly
compact. One can also verify that T is not nonexpansive with respect to the natural
norm ‖‖1 . We only have

‖Tf − Tg‖1 ≤ 2 ‖f − g‖1 .

The next example is essentially due to C. Lennard [see 5]. This time we consider
l1 with the natural norm ‖‖1 but as the dual of c. So we retain the natural class of
‖‖1−nonexpansive mappings but change the class of w∗−compact sets. Again, we
see that this can lead to a failure of the w∗−fpp
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Example 4. For conveniece, we take the dual action of (fn) ∈ l1 on (xn) ∈ c to be

(fn)(xn) = f1x1 + f2 limxn + f3x2 + ...).

Consider the sequence x = (−1, 1, 1, ...) ∈ c as a continuous linear functional over
l1. Then

kerx =

{
f ∈ l1 : f1 =

∞∑
i=2

fi

}
is a w∗−closed hyperplane and consequently the set

C =

{
f : fi ≥ 0, f1 =

∞∑
i=2

fi ≤ 1,

}
being the intersection of kerx and w∗−closed halfspaces is itself convex and w∗−closed.
Obviously C ⊂ 2B+. So C is w∗−compact. Choose δ ∈ (0, 1] and a sequence
(εk) ⊂ [0, 1) such that

∑∞
k=1 εk <∞ (consequently

∏∞
k=1 (1− εk) > 0) and define

a mapping by

T (f) =

(
δ (1− f1) +

∞∑
k=1

(1− εk) fk+1, δ (1− f1) , (1− ε1) f2, (1− ε2) f3, ...

)
.

There is some technicality involved in proving that T is a self mapping of C and
that it is ‖·‖1−nonexpansive. The summability condition imposed on the sequence
(εn) implies that T is fixed point free.

A few further remarks about the above construction were made by M. A. Smyth
[18]. In particular it was observed that if all εk > 0 and δ < 1, then T is contractive,
in the sense that

f 6= g ⇒ ‖Tf − Tg‖ < ‖f − g‖ .
It was observed in [8] and it easily follows from the metric parallelness that con-
tractive mappings have only one minimal invariant set.

We do not know if C is the minimal invariant set for T in these cases. However,
when εk = 0, for k = 1, 2, ..., we observe that this is not the case. There is a smaller
w∗−closed convex T− invariant set; namely,

C ′ = {f ∈ C : f1 = 1}

and a slightly more subtle variant of the argument used in example 3 shows that C ′

is in fact the unique minimal invariant set for the nonexpansive map T : C → C.

We present our last example thanks to the courtesy of S. Prus who kindly commu-
nicated to us his unpublished result.

Let C ⊂ L1 be the order interval used in Alspach’s example and let T be the
Alspach map. Moreover let X be the c0 product of infinitely many copies of L1,

X =

{
f = (fk) : fk ∈ L1, lim

k→∞
‖fk‖ = 0

}
furnished with the norm

‖f‖X = max {‖fk‖ : k = 1, 2, ...} .
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Example 5. For n = 1, 2, ..., define, sn ∈ c0 by sn = (1, 1, ...1, 1
n , 0, 0, ...) with 1

n in
n−th place. Let A = co {sn} . Then 0 /∈ A and A does not contain any sequence

with entries of only 0 or 1. Now define the set C̃ ⊂ X, by

C̃ =

{
f ∈ X : fn ∈ C,

(∫
fn

)
∈ A

}
and a mapping T̃ : C̃ → C̃ by

T̃ f = T̃ (fn) = (Tfn) .

The set C̃ is closed convex but not weakly compact. The mapping T̃ is nonexpan-

sive, and fixed point free. But each of the sets Dm ⊂ C̃ given by

Dm =

{
(fn) ∈ C :

(∫
fn

)
= sm

}
,

for ,m = 1, 2, ... are in view of Alspach’s example, weakly compact and T−invariant.
Thus, each Dm contains a minimal invariant subset Km with

diam (Km) ≤ diam (Dm) ≤ 2/m.

Thus, there are closed, bounded convex sets and fixed point free nonexpansive
mappings with g (C, T ) = 0. But, we know of no example where C is a weakly
compact convex set.
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