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Abstract 

Minimal invariant sets for nonexpansive mappings share some singular geometrical 
properties. Here we present some seemingly unknown ones. 
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1 Introduction 
The basic technique for proving fixed point theorems for nonexpansive map- 
pings is based on an analysis of whether the geometrical properties of the 
Banach space under consideration allow the existence of nontrivial minimal 
invariant sets. The classical results of F.E. Browder [4], D.Gohde [lo] and 
W.A. Kirk [13] and many further ones have been proved this way (see the 
books [1],[3],[9].). Since the work of D. Alspach [2] it is known that there are 
convex, minimal invariant, weakly compact sets of strictly positive diameter. 
Such sets display some 'bizarre' geometrical properties (see [7] ,181 ,[12]). 
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The aim of this paper is to add some seemingly new facts concerning these 
exotic objects. 

Let C be a nonempty, convex, closed and bounded subset of a Banach space 
X ,  and let the mapping T : C -+ C be nonequansiue, in the sense that 

for all x, y E C. 

The set C can contain many smaller nonempty, closed, convex, T-invariant 
subsets D. Here D is T-invariant means T (D) C D. The family 7 of all such 
T-invariant sets is partially ordered by inclusion. A set D in 7 is said to be 
minimal invariant if it is minimal with respect to this ordering, that is it does 
not have any elements of 7 as a proper subset. Obviously any set consisting of 
only one element x, necessarily a fixed point of T, is minimal. Without further 
assumptions on C, the existence of a minimal invariant subset for T is not 
assured. A natural condition to impose is that C be weakly compact. Then, the 
existence of a minimal invariant subset follows from a standard application of 
Zorn's Lemma. This ensures existence, but does not imply uniqueness. Indeed, 
we will see later that there can be more than one minimal invariant set for T 
in C.  Further, the family 7 furnished with the Hausdorff metric is a complete 
metric space, as is the closed subfamily consisting of all minimal invariant 
sets for T.  

This allows us to use the following fact. If D C C is closed and convex, thus 
weakly compact, then for any z E C there exists at least one point x E D such 
that Ilz - 211 = dist (z, D) . Moreover the set of all such points is closed and 
convex. This defines the metric projection of z onto D, which we will denote 
by PD (z) . Obviously 

PD(z) = D n B [ z , r ] ,  

where r = dist (z, D) and B [z, r] denotes the closed ball centered at z and of 
radius r .  

An answer to the question of whether there are weakly compact minimal in- 
variant sets other than singleton ones is provided by the example of Dale 
Alspach [2]. 

Example 1. Let X = L1 [O, 11 and let C be the order segment given by 

The baker transformation 

min (2 f (2t) ,1) i f 0 l t l i  
(Tf)  (t) = 

max(2f (2t-  1 ) -  1 , O )  if 4 < t  5 1 

isometrically transforms C into itself. Only the two constant functions, 0 and 
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1, are fixed points of T. The whole set C = UaEIO,ll Ca where 

are T-invariant convex, closed slices of C by parallel hyperplanes. Since C, 
is an order segment and therefore weakly compact, so are all the slices C,. In 
view d these observations, each of the sets C,, for 0 < a < 1, contains a t  least 
one nontrivial, that is of strictly positive diameter, minimal invariant subset. 
Further, since each Ca is T-invariant, these are the only minimal invariant 
sets for T. It  is also known that except for a = 0 or 1 each of the Ca are not 
themselves minimal invariant and that the closed convex hull of an orbit need 
not be minimal invariant. 

A variant of this example and the extension to a family of mappings can be 
found in [17]. 

It is interesting to note that when C is weakly compact the existence of a 
minimal invariant set is obtain through an application of the axiom of choice 
(Zorn's Lemma). So far no constructive examples of such sets are known. 
The only explicit examples of minimal invariant sets that we know of are not 
weakly compact. This is discussed further in the final section of the paper. 

2 Known properties 

Suppose D c C is nonempty closed convex and T-invariant. We always have 
inf{llx - Txll : x E D)  = 0. Even more can be observed. Take any s E [0, 1)' 
and for any given x E D consider the equation 

Since as a function of y the right hand side is a strict contraction of D into 
D, (2.1) has exactly one solution, say y = x, satisfying 

The mapping x, : [O, 1) + D represents a continuous curve with 
lim,,l 11x, - Tx,ll = 0. All norm cluster points of this curve are fixed under 
T .  Thus, if T is fixed point free the curve does not have cluster points and 
gives an embedding of the half open interval [O,1) into D as a closed set. 
This will always be the case if D is a nontrivial minimal invariant set for T .  
Sequences {yn) satisfying lim I(yn - Tynll = 0 are said to be approximate fied 
point sequences for T .  Any sequence of the form {xsn) with sn + 1 is such 
a sequence. A deeper result is the following. If we put V = $ (I + T) then 
for any xo E D the sequence of iterates {x, = Vnxo) is an approximate fixed 
point sequence for V and T (see Ichikawa [ll] and Edelstein-O'Brien [6]). 
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The first author, in two papers [7] and [8], discussed several properties of 
minimal invariant sets and families of them. Let K c C be closed convex and 
minimal invariant for T.  Then we have: 

I: K = r n ( K ) .  

11: For any z E K ,  SUPxEK llx - zI( = d i m  K. 

The first is obvious since the right hand side of I is T-invariant and K is 
minimal. The second, saying that K is a diametral set, can be proved directly 
from I (see [13]). Indeed suppose there exists a nondiametral point z E K 
satisfying sup,,, Ilx - zll = r < diam (K) . Then the proper subset KT of K 
consisting of all such points is nonempty closed and convex. Using the fact that 
in view of (I) each point of K can be approximated by a convex combination 
of points in T (K)  one can easily observe that KT is also T-invariant. This 
contradicts the minimality of K .  

111: For any approximate jixed point sequence {y,) and any z E K ,  
lim 1 1  z - y, 1 1  = d i m  (K) . 

To see this, observe that for the convex function r (z) = limsup llz - y,II, z E 
K ,  all the level sets K, = {z : r (z) 5 a) , are closed convex and T-invariant. 
The minimality of K therefore implies that r (z) has to be constant on K.  
Suppose that r (z) = const = r < d = diam (K)  . Take any finite collection 
of points {zl , zz,,,,,zp), and consider the finite collection of balls B [zi, r'] , i = 
1,2, .., p,where P = (r + d) . The sequence {y,) eventually enters each one of 
these balls. It follows that the family of all balls centered at  points of K and of 
radius (r + d) have the finite intersection property on K and thus by weak 
compactness a common point, say F. Thus 7 is a nondiametral point and this 
contradicts 11. Lastly since all the subsequences of an approximate fixed point 
sequence are also approximate fixed point sequences we can replace limsup 
by lim. 

Property I11 was independently discovered by the first author [7] and L. 
Karlovitz [12] and has proved to be one of the most useful tools for estab- 
lishing the existence of fixed points for nonexpansive mappings, especially via 
ultraproduct method (see for example [I.], [3] ,[9]). 

As a consequence of I11 we get; 

IV: For any z E K and any x E K we have lim Ilx - Vnxll = diam(K), 
V: For any z E K and any x E K the curve x, satisfies lim,,l llz - x,ll = 

diam(K). 

In [7], a notion was introduced which has not been thoroughly investigated. 
Let D be a closed convex set with diameter d > 0. Let us call a point z E D 
almost nondiametral if there exists E > 0 such that all the path-connected 
components of the set D \ B [z, d - E] have diameters less then d. Even if D 
is diametral it can contain almost nondiametral points. 
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Example 2. In the space co let the set D be the closed convex hull of the 
standard basis vectors 

Then D is diametral with diam (D) = 1, but for sufficiently small E > 0 the set 
D \  B [0, $ + E ]  consists of infinitely many disjoint path connected components 

of diameter $ - E .  Thus, 0 is an almost nondiametral point. 

Now V implies 

VI: K does not contain almost nondzametral points. 

Another consequence of 111 is that a minimal invariant set K can not be 
covered by a finite collection of sets with diameters smaller then diam (K)  . 
At least one of the sets would have to contain an approximate fixed point 
sequence. 

Recall that for any set A the number 

a (A) = inf{d : A can be covered by a finite number of sets with 
diameters not exceding d) 

is called the Kuratowslci's measure of noncompactness of A. Two basic prop- 
erties of the measure of noncompactness a will be needed in a sequel. For any 
two bounded sets Al,  Az we have 

a (A1 u Az) = max {a (Al) , a (Az)) and a (A1 + Az) I a (Al) + a (Az).  

Using Kuratowski's measure of noncompactness the last remark can be written 

as; 
VII: If K is a minimal invariant set then a (K) = diam (K)  . 

Let us pass to properties which involve more than one invariant set. If D is in- 
variant so are all its r-neihbourghoods in C, B [D, r] = CnU {B [x, r] : x E D) . 
Since the intersections of invariant sets are invariant, by a minimality argu- 
ment, we immediately get; 

VIII: If D is invariant and K is minimal invariant then dist (x, D)  is con- 
stant for all x E K .  

Consequently 

IX: If KO, K1 are minimal invariant then for any x E KO, y E K1, 

dist (x, K1) = dist (y, Kz) = const = H (KO, K1) = dist (KO, K1) . 

Here, H is the usual Hausdorff distance between sets. We leave the justification 
of the next observations to the reader. 
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X: If KO, K1 are mznimal invariant then for any t E [ O , 1 ]  there exists 
a minimal invariant set Kt such that H (KO, Kt) = tH (KO, Kl)  and 

(Kt1 K1) = - t ,  K1) . 
Equivalently 

XI: The family of all minimal closed convex T-invariant subsets of C is 
metrically convex with respect to the Hausdorff metric. 

Since the family of minimal sets furnished with the Hausdorff metric is a 
complete space, in view of Menger's theorem [16], the sets Kt of X can be 
selected to form a continuous path joining KO and K1 which is isometric to 
the interval [0, H (KO, K1)] . 

3 New Findings 

The first observations we are going to present here are connected with prop- 
erty IX. We will say that any two convex weakly compact sets satisfying the 
conclusion of I X  are metrically parallel. There are some general facts con- 
nected with this notion which have an influence on the structure of the family 

of all minimal invariant sets for T .  Let sets KO, K1 be metrically parallel 
with H (KO, K1) = d > 0. Let PI = PK1 : KO -+ K1 be the metric projection. 
Consider the set 

Obviously for any z E M we have 1 1 ~ 1 1  = d. A straightforward calculation 
based on property I X  shows that M is convex. It follows that i M  is a convex 
set contained in the unit sphere S of X. Also it is clear that reversing the 
roles of KO and K1 we get M (Kl, KO) = - M = - M (KO, K1) . Consequently 
KO C K1 + M and K1 C KO - M. This means that given two metrically 
parallel, weakly compact, convex sets, each one is contained in a translate of 
the other by a convex subset of the sphere dS, where d is the distance between 
them. 

For some spaces the above leads to interesting consequences. If the space X 
is strictly convex, then the metric projection is single valued and M consists 
of only one point. Consequently, as was observed in [7], we have 

XII: If X is a strictly convex space and KO, K1 are two minimal invariant 
subsets of C then K1 is a translate of KO and in particular diam (KO) = 
diam (K1) . 

Further if xo E KO, yo = Plxo and z = xo - yo then for any x E KO we 
have x - Plx = z and, since (ITx - TPlx(J 5 1 1 %  - Plxll = llzll = d l  we have 
TP1x = P1Tx = TX -z .  Thus, 

XIII: If X is strictly convex and KO, K1 are two minimal invariant sets for 
T with KO = K1 + z then the mappings T and PI commute and for all 
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x E KO we have TPlx = PITx = T x  - z.  

We now present a previously unpublished result of the above type due to T. 
Dalby and the second author showing that the last conclusion of XI1 holds 
for a much wider class of spaces. 

Let us recall that the space X is said to have the Kadec-Klee property ( X  is 
a KK-space for short) if for any sequence (x,) in X with w - lirn xn = x and 
lirn llxnll = IIx 1 1  we have lirn xn = x. In such spaces all convex, closed subsets 
lying on the unit sphere are norm compact. 

Let X be a KK-space and let KO, K1 be two minimal invariant sets for T : 
C -+ C with dist (KO, K1) = d > 0. Take x E KO and y E Plx c K1. Let V 
be the averaged map V = ( I  + T )  . In view of 

we notice that Vny E PIVnx. As we already mentioned both the sequences 
(Vnx) and (Vny) are approximate fixed point sequences for T .  Extracting 
subsequences so that w - lirn Vnkx = xo, and w - lirn Vnky = yo we have that 

w - lirn (Vnkx - Vnky)  = xo - yo. 

But xo - yo and all the elements of the sequence (Vnkx - Vnk y )  are members of 
M (KO,  K l )  which is norm compact. Thus the weak limit is actually a strong 
limit. 

On the other hand in view of 111 we have 

lirn ((Vnkx - so)(  = diam KO and lirn IIVnky - yOII = diam K1 

implying 

Idiam(Ko) - diarn(K1)I = /lip IIVnkx - X I (  - l i p  llVnky - Y I I (  

< lim (J (Vnkx  - Vnky)  - xo - Y O J (  = 0. 

This establishes; 

XW: If X Xs a KK-space then  all the minimal invariant sets for T  : C + C 
have the same diameter. 

Some further observations are the following. For any two bounded sets Ao, Al 
we have the obvious inequalities 

Jdiam (Ao) - diam (Al )  ( < 2H (Ao, AI )  , 

For a given space X let 1 ( X )  be the supremum of t,he diameters of all convex 
subsets of the unit sphere S. Similarly, let k ( X )  be the supremum of the 
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Kuratowski measures of noncompactness of all such sets. Obviously k (X) 5 
1 (X)  5 2. If KO, Kl are two metrically parallel convex sets then KO c Kl + 
M and K1 C KO - M. Since diam (M) I 1 (X) H (KO, Kl)  and a (M) I 
k (X) H (KO, K1) we easily get 

ldiam (KO) - diam (Kl)(  I 1 (X) H (KO, Kl)  , 

la (KO) - (K1)l I k (XI H (KO, K1). 
But for minimal invariant sets KO, K1 we have diam (K,) = a (Ki). Therefore 

XV: If KO, K1 are minimal invariant then 

Idiam (KO) - d i m  (K1)( I k (X) H (KO, Kl) . (2) 

If X is strictly convex then 1 (X) = 0 while if X is a KK-space then k (X) = 0. 
The above shows that if k (X) < 2, then the diameter function on sets in 70 
has a smaller Lipschitz constant than in general. It also gives an alternative 
proof of XIV and even more; it evaluates the span between smallest and 
largest diameters of minimal invariant sets. For spaces with k (X) < 1 we 
have 

sup diam (K)  - inf diam (K) 5 k (X) diam (C) < d i m  (C) . (3) 

Here the supremum and infimum are taken over all K E 70. 

We now develop some additional properties of metrically parallel sets. Let 
KO, K1 be convex, weakly compact, metrically parallel sets with H (KO, K1) = 
d > 0. Without loss of generality assume that 0 E KO. Then Kl lies on the 
boundary of the convex body, KO + dB, more precisely K1 c KO + dS. Let - 
K1 C KO + dS  be the maximal convex face containing Kl . Then there exists a 
linear functional f E X*, with ( 1  f 1 )  = 1 which supports KO + dB at c,. Thus, 
f (x) = k for all x E z, where without loss of generality we may assume that 
k > 0, and then f (x) I k for all x E KO + dB. 

Since 0 E KO then dB c KO + dB and because the two sets KO and K1 are 
metrically parallel there is a point y E K1 with llyll = d. Obviously we have 
k = f (y) 5 11 y(I = d. Strict inequality can not hold. Otherwise, since 11 f 1 1  = 1, 
if k < d then there would be point z E dB with f (z) > k. Thus k = d > 0. 

Finally, we show that the functional f is constant on KO. Since 0 E KO, f 
takes the value 0 in KO. Suppose for some x E KO we have f (x) < 0. then for 
any Y E Ki  

I I Y  - xll 2 f (Y - x) = d - f (x) > dl 

a contradiction. On the other hand if for x E Ko,we have f (x) = a > 0 then 
c h o o s i n g z ~ d B s u c h t h a t  f (z) > d - i w e g e t  f ( x + z )  > a + d - %  > d a d  
again we arrive a t  a contradiction. 

Thus for metrically parallel sets we have; 
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XVI: If KO, K1 are weakly compact, convex metrically parallel sets then they 
lie in parallel hyperplanes that is, there exists a continuous linear func- 
tional which takes constant values o n  each set. 

An interesting consequence for minimal invariant sets is, 

XVII: Let KO, K1 be minimal invariant sets for T : C + C. Suppose Kt : 
[0,1] + Tfj is  a continuous path satisfying property X and finally let 
f E X* be such that f (KO) = { a )  and f (KI) = { b )  then f (At) = 
((1 - t )  a + t b ) .  

The verification is left to the reader. This shows that the situation observed 
in Alspach's example is typical of the general case. 

We now discuss properties connected to the 'size' of minimal invariant sets. 
Let T : C + C be a nonexpansive mapping with F i x T  = 0. It is expected that 
some geometrical or topological properties of the set C will limit the size of 
minimal T-invariant subsets of C. The first observation follows immediately 
from the fact that diam (K) = a (K) , 

XVIII: If K i s  a convex minimal T-invariant  subset of C then diam (K) < 
a (C) .  

Following reasoning similar to that for property VI we can get a better eval- 
uation. Take any closed convex subset D c C. Let d ( D )  be the, possibly 
uncountable, collection of all pathwise connected components of C \  D. Define 

Obviously 77 (C) < a (C) .The example preceding property VI shows that 
strict inequality may hold. Now we get; 

XIX: If K i s  a minimal invariant subset of C then diam (K) 5 77 (C) . 
To see this take any x E K and consider the curve x ,  contained in K ,  defined 
by the equation (2.1) . For any D the curve either enters one of the components 
in d ( D )  and stays there as s + 1, or visits D infinitely many times. The 
conclusion then follows easily from 111. 
The technique proposed here for measuring the size of K has not been greatly 
exploited. More examples are needed especially because Example 2.1 cited in 
connection with property VI seems inadequate, since it is known (B. Maurey 
1151) that all nonexpansive self mappings of nonempty weakly compact covex 
subsets of co have fixed points. Nevertheless we hope that property XIX will 
lead the reader toward a new line of investigation. 

A more subtle way of measuring the size of minimal invariant sets was pro- 
posed in 181. For a closed bounded convex set C, with diam (C) > 0, and a 
nonexpansive mapping T : C 4 C, define the number 

g (C, T )  = inf {d im  (K) : K c C is a minimal invariant set for T )  . 
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Further, let 

g (C) = sup {g  (C, T )  : T is nonexpansive, T : C -+ C) . 

Obviously g (C, T )  = 0 if T has a fixed point and g (C, T)  = diam (C) if C 
itself is a minimal invariant set for T. Also g (C) = 0 if all nonexpansive self 
mappings of C have fixed points and g (C) = diam (C) if C is a minimal 
invariant set for at least one nonexpansive mapping T : C -+ C. 

Not much is known about these parameters. The main open questions con- 
cerning weakly compact convex sets C are: Does g (C, T)  = 0 imply that 
the nonexpansive map T has a fixed point in C? Is the condition g (C) = 0 
equivalent to every nonexpansive self mapping of C having a fixed point? 

The answer to both of these questions is of course affirmative if the space is 
strictly convex or has the KK property. 

In view of our observations, the situation g (C, T )  = 0 but T is fixed point 
free co~ild only occur in a space X with many large flats on its unit sphere. 

Suppose T : C -+ C has g (C, T)  = 0 with FixT = 0. Then there exits 
a sequence of minimal T-invariant sets (Ki) with limdiam (Ki) = 0. Any 
sequence (xi) with xi E Ki is an approximate fixed point sequence for T 
and does not have cluster points. Fix any minimal invariant K C C. Pass- 
ing to subsequences we can assume that limi+, H (K, Ki) = r > 0 and 
lim,,j,, H (Ki, Ki) = d > 0. Now consider the sequence of sets 

i#i 

1 
U. - " H (K, Ki) M (K, Ki) . 

Obviously, the sets Ui, i = 1,2, .. . are convex subsets of S. Also for each i = 

1,2, ... select xi E Ki and form the sets 

Each V,  being a normalized translate of K shares the properties of a mini- 
mal invariant set. Indeed, they are minimal invariant sets for a nonexpansive 
mapping defined on a homothet of C. 

Putting a = we then have 

X X :  If T : C -+ C has g (C, T)  = 0 and Fix(T) = 0, then for any K E lo, 
there exzst sequences of sets(U,) and (V,) such that, for z = 1,2, ..., the 
V ,  are homothets of K contained i n  the unit ball, while the Ui are convex 
subsets of the unit  sphere, and the following equalities hold; 

lim H (Ui,V,)=O, 
i+m 

lim H ((0) , V,)  = lim dist(0, V,)  = 1 = dist (0, U,) = H ((01, ui) , 
i+m a+m 
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lim H(Ui, Uj) = ,lim H (V,, 4) = a > 0. 
i,j-00 *,J-W 

i#j i#j 

One can use (3.1) and (3.2) to observe additionally that; 

d i m  (K) 
lim diam (Ui) = lim diam (V,) 2 
i-00 a-00 r 

These. exemplify the geometrically aberrant nature of the spaces under con- 
sideration, but unfortunately do not provide answers to the questions raised. 

Further facts connected with the metrical parallelness of pairs of minimal 
invariant sets and the metric convexity of the family are left as exercises to 
the reader. 

Convexity properties of the unit ball are often measured by an appropriate 
moduli of convexity. Following this line let us propose a new modulus as fol- 
lows. 

In the unit ball B of X consider the family D of all convex diametral sets D. 
Let m = sup {diam D : D E D) . Define the modulus of nondiametrality as a 
function a : [O, m) -t [O,1) by; 

ax (e) = inf (1 - dist (0, D) : D E D, diam (D) 2 e) . 

Thus a is an nondecreasing function and following a pattern used very often 
in the theory of nonexpansive mappings, in view of XX we can write 

XXI: I F  ax (e) > 0 for all e > 0, then for each convex, weakly compact set 
C c X and each nonexpansive mapping T : C -t C with g (C, T)  = 0 
there exists a jked  point of T.  

Furthermore, 

XXII: If ax (e) > 0 for all e > 0, then  each nonempty weakly compact, 
convex set C with g (C) = 0 has the &ed point property for nonexpansive 
mappings. 

These last two observations represent little more than a reformulation of the 
problem, as practically nothing is known about the function a. Further inves- 
tigation is called for. 

4 Some Final Examples 

So far our discussion has concerned objects, minimal invariant sets, whose 
existence is either proved in a nonconstructive way, or simply assumed. We 
conclude this note with some examples that help put our findings into context. 

For the spaces co and c denote the natural norms by I (  11, and for l1 by 1 1  1 1 ,  . 
For any sequence x let x+, x- stand for the positive and negative parts of the 
sequence. Finally, for n = 1,2, . .. , let en be the standard basis vectors in 11. 
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Recall that co and c are both preduals that give rise to the same dual norm 
( ( I ( ,  in 11, but induce different w*-topologies. 

I t  is known (see e.g.[9]) that when l1 is taken as the dual of co ad I /  1 1 ,  -nonexpansivc 
self mappings of nonempty w* compact convex subsets have fixed points. That 
is, l 1  = cg has the w*-fpp. 

Changing to an equivalent norm in co does not change the w*- topology in 
11, but induces a new equivalent dual norm with respect to which the class of 
nonexpansive mappings in l 1  may be different. In 1980 T.C. Lim [14] observed 
that this can lead to a loss of the w*-fpp. 

Example 3. Furnish co with the equivalent norm: (1x11 = l(x-(/, + I(xf (1,. 
The dual norm in l1 is I (  f (I* = max{l( f-((,  , ( 1  f f  (1,) . The positive part of the 
unit ball, B+ = {f E l1 : fi  2 0 , J (  f / I *  5 1) is w*-compact convex set and the 
mapping defined by 

is a ) ) ) I *  - nonexpansive fixed point free mapping of Bf into Bf.  For each 
point f E B+ we see that, w* - limn,,Tnf = 0. Thus 0 belongs to any 
T-invariant w*-closed subset of Bf .  Furthermore w {Tn (0) : n = 1,2, ...) = 
a {en : n = 1,2 ,  ...) = Bf, showing that B+ is itself a minimal invariant set 
for T. 

This is one of the only known instances where a ~ninimal invariant set for 
a nonexpansive mapping can be explicitly identified. However, it is in the 
w*-setting. In l 1  weak compactness coincides with norm compactness and so 
Bf is not weakly compact. One can also verify that T is not nonexpansive 
with respect to the natural norm [ ( I ( ,  . We only have 

llTf - Tg111 5 2 I l f  - 9111 . 

The next example is essentially due to C. Lennard [see 51. This time we con- 
sider l1 with the natural norm ( /  / (  but as the dual of c. So we retain the natural 
class of ( I ( ( ,  -nonexpansive mappings but change the class of w*-compact sets. 
Again, we see that this can lead to a failure of the ~u*-fpp 

Example 4. For conveniece, we take the dual action of (f,) E l 1  on (x,) E c 
to be 

(fn)(xn) = fix1 + filimx, + f 3 ~ 2  + ...). 
Consider the sequence x = (- 1,1,1, ...) E c as a continuous linear functional 
over l l .  Then 
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is a w*-closed hyperplane and consequently the set 

being the intersection of ker x and w*-closed halfspaces is itself convex and 
w*-closed. Obviously C  C 2Bf. So C  is w*-compact. Choose S E (O,1] and a 
sequence ( ~ k )  c [0, 1) such that C;P=, ~k < oa (consequently nE1 (1 - ~ k )  > 0) 
and define a mapping by 

00 

8 (1 - fl) f C (1 - Ek) fk+ir 6 (1 - f i)  , (1 - E l )  f2, (1 - E2) f3, ... 
k=l 

There is some technicality involved in proving that T  is a self mapping of C  
and that it is II.I(, -nonexpansive. The surnrnability condition imposed on the 
sequence (E,) implies that T  is fixed point free. 

A few further remarks about the above construction were made by M. A. 
Smyth [:!.8]. In particular it was observed that if all EI, > 0 and S < 1, then T  
is contractive, in the sense that 

f # 9 =+ llTf - Tg11 < llf - 911 

It was observed in [8] and it easily follows from the metric parallelness that 
contractive mappings have only one minimal invariant set. 

We do not know if C is the minimal invariant set for T  in these cases. However, 
when E~ = 0, for Ic = 1,2, ..., we observe that this is not the case. There is a 
smaller w*-closed convex T-  invariant set; namely, 

and a slightly more subtle variant of the argument used in example 3 shows 
that C' is in fact the unique minimal invariant set for the nonexpansive map 
T : C - + C .  

We present our last example thanks to the courtesy of S. Prus who kindly 
communicated to us his unpublished result. 

Let C c L1 be the order interval used in Alspach's example and let T  be the 
Alspach map. Moreover let X be the co product of infinitely many copies of 
- 

furnished with the norm 
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1 Example 5. For n = 1 ,2 ,  ..., define, s, E co by s, = (1,1,  ... 1, ;, 0,O, ...) with 
in n-th place. Let A = {s,} . Then 0 $ A and A does not contain any 

sequence with entries of only 0 or 1. Now define the set Z" c X, by 

and a mapping : Z" + Z" by 

The set Z" is closed convex but not weakly compact. The mapping T is non- 
expansive, and fixed point free. But each of the sets Dm c Z" given by 

for , m = 1 , 2 ,  . . . are in view of Alspach's example, weakly compact and 
T-invariant. Thus each Dm contains a minimal invariant subset Km with 
diam (K,) 5 diam (Dm) 5 2.  
Thus there are closed, bounded convex sets and fixed point free nonexpansive 
mappings with g (C, T)  = 0. But, we know of no example where C is a weakly 
compact convex set. 
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