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Abstract. In this paper we define the concept of a near-infinity concentrated

norm on a Banach space X with a boundedly complete Schauder basis. When

‖ · ‖ is such a norm, we prove that (X, ‖ · ‖) has the fixed point property
(FPP); that is, every nonexpansive self-mapping defined on a closed, bounded,

convex subset has a fixed point. In particular, P.K. Lin’s norm in `1 [14]

and the norm νp(·) (with p = (pn) and limn pn = 1) introduced in [3] are
examples of near-infinity concentrated norms. When νp(·) is equivalent to

the `1-norm, it was an open problem as to whether (`1, νp(·)) had the FPP.

We prove that the norm νp(·) always generates a nonreflexive Banach space
X = R ⊕p1 (R ⊕p2 (R ⊕p3 . . . )) satisfying the FPP, regardless of whether νp(·)
is equivalent to the `1-norm. We also obtain some stability results.

1. Introduction and Preliminaries

Let (X, ‖ · ‖) be a Banach space and C a subset of X. A mapping T : C → C is
said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for every x, y ∈ C. The Banach
space X endowed with the norm ‖ · ‖ has the fixed point property (FPP) if every
nonexpansive mapping defined from a closed bounded convex subset C of X into
itself has a fixed point. This property is not preserved by isomorphism, that is, it
strongly depends on the underlying norm [14] . There is a wide literature relating
geometric properties of reflexive Banach spaces with the fulfilment of the fixed point
property (see, for instance, the monographs [9], [13] and the references therein).

The Banach space `1 endowed with its standard norm ‖·‖1 is a classical example
of a nonreflexive Banach space that fails to have the FPP. It is possible to “perturb”
this (`1, ‖ · ‖1)-example to obtain other Banach spaces that fail to have the FPP.
One such class of Banach spaces are those that contain asymptotically isometric
copies of `1.

Recall that a Banach space (X, ‖ · ‖) contains an asymptotically isometric copy
(a.i.c.) of `1 if there are a sequence (xn) ⊂ X and a decreasing sequence (εn) ⊂ (0, 1)
with limn εn = 0 such that

∞∑
n=1

(1− εn)|tn| ≤

∥∥∥∥∥
∞∑
n=1

tnxn

∥∥∥∥∥ ≤
∞∑
n=1

|tn|
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for every (tn) ∈ `1. It was proved in [4] that if a Banach space contains an a.i.c. of
`1 then it fails to have the FPP. It turns out that there exist equivalent norms on
`1 which fail to contain an a.i.c. of `1. Let us state some examples:

• The so-called P.K. Lin norm, defined as

|||x|||L := sup
k≥1

γk

∞∑
n=k

|x(n)|; x =
∞∑
n=1

x(n)en

where (γk) is a nondecreasing sequence in (0, 1) with limk γk = 1. In [5] it
was proved that (`1, ||| · |||L) fails to contain an a.i.c. of `1. Later on, P.K.
Lin [14] proved that (`1, |||·|||L) has the FPP for γk := 8k

1+8k . This condition
was extended to every sequence (γk) with limk γk = 1 (see [7] and [11]).
P. K. Lin’s result opened new avenues of research in the fixed point theory
of nonexpansive mappings, since he settled negatively the long-standing
open question: “Does the fixed point property imply reflexivity?” Since
then, many other articles have appeared obtaining sufficient conditions that
imply the FPP for equivalent norms on `1 (see for instance [2, 6, 7, 8, 10,
11, 12, 15]).

• Fix a nonincreasing sequence p = (pn)n ⊂ (1,+∞) with limn pn = 1. In
the sequence space c00 of all real sequences with finitely many non-null
coordinates, we define the norm νp(x) = limn νn(p, x) where

ν1(p, x) := |x1|, νn+1(p, x) := (|x1|p1 + νn(Sp, Sx)p1)1/p1 ,

with x = (x1, x2, ...) and Sz := (z2, z3, ...) when z = (z1, z2, ...). The
completion of c00 with the νp(·) norm gives us a Banach space X with
a boundedly complete Schauder basis (en). Also, X is the set of all real
sequences x = (xn) for which νp(x) := supn νn(p, x) = limn νn(p, x) < ∞;
which we summarize by writing X = R ⊕p1 (R ⊕p2 (R ⊕p3 . . . )).

Let q = (qn) be the sequence satisfying 1
pn

+ 1
qn

= 1 for every n ∈ N.
Whenever the sequence (pn) converges to 1 quickly enough, the norm νp(·)
provides an equivalent norm in `1; that is, (X, νp(·)) and `1 are isomorphic
Banach spaces. In fact, it was proved in [3, Proposition 1] that νp(·) is
equivalent to the `1 norm if and only if there exists some δ > 0 so that
qn ≥ δ log n for all n ∈ N. It is also known that (`1, νp(·)) fails to contain
asymptotically isometric copies of `1 [3, Theorem 1]. However, unlike P.K.
Lin’s norm, it was unknown whether `1 with the norm νp(·) had the fixed
point property.

In what follows, we enlarge the class of norms on `1 satisfying the FPP and we
include, as a particular case, the norm νp(·) defined in [3]. We will extend our result
to a more general framework. For instance, we will prove the fulfilment of the FPP
for (X, νp(·)) even when this norm fails to be an `1-norm.

Furthermore, we obtain stability of the fixed point property for certain norms
along rays emanating from near-infinity concentrated norms.

2. Near-infinity concentrated norms and the FPP

Throughout this paper, let X denote a Banach space with a Schauder basis

{en}n. Given x =
∞∑
n=1

x(n)en ∈ X, we denote by supp(x) = {n ∈ N : x(n) 6= 0},

Qk(x) =
∞∑
n=k

x(n)en and Pk(x) =
k−1∑
n=1

x(n)en (P1 = 0). The basis is said to be

premonotone for the norm ‖ · ‖ when ‖Qk‖ ≤ 1 for every k ∈ N.
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Given k ∈ N and x ∈ X, we write k ≤ x whenever k ≤ min{supp(x)} and k < x
whenever k < min{supp(x)}. We say that (yn) is a block basic sequence for {en}n
if it is bounded and there exist positive integers p1 ≤ q1 < p2 ≤ q2 < ... such that
yn belongs to the span of {epn , · · · , eqn} for every n ∈ N.

The Schauder basis is said to be boundedly complete if sup
n

∥∥∥∥∥
n∑
i=1

tiei

∥∥∥∥∥ < +∞ im-

plies that
∞∑
i=1

tiei ∈ X. When the Schauder basis (en) is boundedly complete, the

Banach space X is isomorphic to a dual space Z∗, where Z is the closed subspace
spanned by the biorthogonal functionals (e∗n) in X∗. In this case, we can consider
in X the weak∗ topology σ(X,Z), for which the convergence coincides with the
coordinate-to-coordinate convergence for norm-bounded sequences. Moreover, the
closed unit ball is σ(X,Z)-sequentially compact and therefore every bounded se-
quence in X has a subsequence which converges coordinatewise (see for instance
Theorem 3.2.10 in [1]). In what follows the weak∗ topology always refers to the
σ(X,Z) topology for Banach spaces with boundedly complete Schauder basis. In
the case where X = `1 endowed with the standard Schauder basis, this w∗-topology
coincides with the σ(`1, c0) topology.

Definition 2.1. [2] A norm ||| · ||| on a Banach space X with a Schauder basis
{en} is said to be a sequentially separating norm if for every ε > 0 there exists
some k ∈ N such that

|||x|||+ lim sup
n
|||xn||| ≤ (1 + ε) lim sup

n
|||x+ xn|||

whenever k ≤ x and (xn)n is a block basic sequence of {en}n in X.

Definition 2.2. Let X be a Banach space with a Schauder basis {en}n and let
||| · ||| be a norm on X. This norm is called near-infinity concentrated (n.i.c.) if it
has the following properties:

(1) It is a sequentially separating norm.

(2) It is premonotone.

(3) There exist R0 > 5 and M ∈ [0, 1) such that for every k ∈ N, there exists a
function Fk : (0,+∞)→ [0,+∞) satisfying the following conditions:

(a) limλ→0+
Fk(λ)
λ
≤ M

R0
.

(b) For every bounded pointwise-null sequence (xn) with lim infn |||xn||| ≥
1, for all λ ∈ (0,+∞), and for every z ∈ X with Qk(z) = 0 and
|||z||| ≤ R0,

lim sup
n
|||xn + λz||| ≤ lim sup

n
|||xn|||+ Fk(λ) |||z||| .

Remark 2.3. Observe that Property (3) can be re-written as: There exists K ≥ 0
such that for every k ∈ N, there exists a function Fk : (0,+∞)→ [0,+∞) satisfying

(a)’ and (b); where condition (a)’ is: limλ→0+
Fk(λ)
λ
≤ K <

1
5

.

Given K, we may take M := 1− 1−5K
K+1 = 6K

K+1 and R0 := 5 + 1−5K
K+1 = 6

K+1 .

Note that if ||| · ||| is an equivalent norm on `1 satisfying

ak‖Qk(x)‖1 ≤ |||Qk(x)||| ≤ bk‖Qk(x)‖1 , for all x ∈ `1 ,
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for every k ∈ N, with 0 < ak ≤ bk and limk bk/ak = 1, then it is clear that ||| · ||| is
a sequentially separating norm. Nevertheless, there exist some equivalent norms on
`1 which do not satisify this condition but they are still sequentially separating [2,
Example 3.2]. Furthermore, there exist Banach spaces with sequentially separating
norms that are not isomorphic to `1, although the existence of such a norm implies
that the Banach space X is “similar” to `1, in the sense that it has the Schur
property, and so is hereditarily `1 [2, Corollary 7.4]. Recall that a Banach space X
is hereditarily `1 if each infinite dimensional closed subspace of X contains a further
subspace isomorphic to `1. This implies, in particular, that if a Banach space with
an unconditional Schauder basis has a sequentially separating norm, then the basis
is boundedly complete, since otherwise X would contain an isomorphic copy of c0
(see for instance [1, Theorem 3.3.2]).

Also note that in Definition 2.2, Property (3)(b), if (xn) is an arbitrary sequence
of “bump functions sliding towards infinity”, each with their ||| · |||-norm asymp-
totically no less than 1, then

lim supn |||xn + λz||| − lim supn |||xn|||
λ

is smaller than one would expect from just the triangle inequality: for all z = Pk(z)
with |||z||| ≤ R0, for all λ positive and very small, the “upper asymptotic value”
of the norm of xn is changed less than expected when we perturb each, xn by λz,
since Fk(λ)R0/λ is approximately bounded by M < 1. In this sense, ||| · ||| is “near-
infinity concentrated”. Moreover, this third property prevents X from containing
an asymptotically isometric copy of `1, which we will now prove.

Lemma 2.4. Let X be a Banach space with a boundedly complete Schauder basis.
If ||| · ||| is an equivalent norm in X satisfying property (3) in Definition 2.2, then
(X, ||| · |||) fails to have an a.i.c. of `1.

Proof. Assume to the contrary that there exists a basic sequence (xn) in X gen-
erating an a.i.c. of `1, that is, there is a decreasing sequence (εn) ⊂ (0, 1) with
limn εn = 0 such that

∞∑
n=1

(1− εn)|tn| ≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞∑
n=1

tnxn

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤

∞∑
n=1

|tn| .

By extracting a subsequence, we can assume that (xn) is w∗-convergent and, by
replacing (xn) by ((x2n − x2n−1)/2)), that it is w∗-convergent to the null vector.
Finally, using the sliding hump method and the fact that asymptotically isometric
copies are stable by adding norm-null sequences, we can assume that the sequence
(xn) generating the a.i.c. of `1 is a disjointly supported w∗-null sequence.

Take R0 > 5 and M ∈ [0, 1) as in (3) of Definition 2.2. By omitting the first few
terms of the sequence (xn)n, we can also assume that ε1 < (R0 −M)/R0.

From the previous inequalities |||xn||| ≤ 1 for every n ∈ N and limn |||xn||| = 1.
Let k := 1 + max{supp(x1)}. Since ||| · ||| satisfies property (3) of a near-infinity
concentrated norm, there exists a function Fk(λ) such that limλ→0+ Fk(λ)/λ ≤ M

R0
,

and for every λ > 0

lim sup
n
|||xn + λR0x1||| ≤ lim sup

n
|||xn|||+ Fk(λ)R0|||x1||| ≤ 1 + Fk(λ)R0.

On the other hand, for every n ≥ 2,

1− εn + λR0(1− ε1) ≤ |||xn + λR0x1|||.
Letting n tend to infinity, we see that

1 + λR0(1− ε1) ≤ 1 + Fk(λ)R0
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and so λ(1 − ε1) ≤ Fk(λ) for every λ > 0. Letting λ → 0, we get that (1 −
ε1) ≤ limλ→0+

Fk(λ)
λ ≤ M

R0
, which implies that R0 (1 − ε1) ≤ M , and this is a

contradiction. �

Before stating our main result, we recall some standard arguments used to prove
the FPP (see for instance [14] or [11]):

Let C be a closed bounded convex subset of a Banach space (X, ‖ · ‖) and
T : C → C be a nonexpansive mapping. Using Banach’s Contraction Mapping
Theorem, we can always find a sequence (xn) ⊂ C such that limn ‖xn − Txn‖ = 0.
Such sequences are called approximate fixed point sequences (a.f.p.s.). In fact, if
(xn) is an a.f.p.s. and r > 0, the set

{x ∈ C : lim sup
n
‖xn − x‖ ≤ r}

is either empty, or a non-empty closed convex T -invariant subset of C, in which we
can find new approximate fixed point sequences.

In a dual Banach space X with separable predual Y , every a.f.p.s. has a subse-
quence which is w∗-convergent. For example, if X is a Banach space with a bound-
edly complete Schauder basis {en}n, and corresponding biorthogonal functionals
{fn}n ⊂ X∗, then for Y := the closed linear span of {fn}n in X∗, Y ∗ is isomor-
phic to X and every a.f.p.s. in X has a subsequence that is σ(X,Y )-convergent.
Therefore, we will subsequently assume that approximate fixed point sequences in
bounded subsets of X are w∗-convergent.

Using Cantor’s theorem (see [14] or [11, Lemma 1]), the above argument lets us
deduce that if T : C → C is a fixed point free nonexpansive mapping, there exist
some a > 0 and a closed convex T -invariant subset, denoted again by C, such that
lim supn ‖yn − y‖ > a whenever (yn) ⊂ C is an a.f.p.s. and y = w∗-lim yn.

Note that from Definition 2.1 it is not difficult to check the following [2]:

Lemma 2.5. A norm ||| · ||| in a Banach space X with a Schauder basis {en}n is
sequentially separating if and only if limk Sk(X, ||| · |||) = 1, with

Sk(X, ||| · |||) := sup
{
|||x|||+ lim supn |||xn|||

lim supn |||x+ xn|||

}
,

where the supremum is taken over all vectors x ∈ X with k ≤ x and all block basic
sequences of {en}n.

If we fix the norm ||| · ||| in the Banach space X, we will use Sk to denote
Sk(X, ||| · |||).

Lemma 2.6. Let (X, ||| · |||) be a Banach space with a boundedly complete Schauder
basis {en}n such that ||| · ||| is premonotone and sequentially separating. The fol-
lowing holds: if (xn), (yn) are two sequences in X that are w∗-convergent to x and
y respectively, then

lim sup
m

lim sup
n
|||xn − ym||| ≥ lim sup

n
|||xn − x|||+ lim sup

m
|||ym − y|||.

Proof. Let k ∈ N and δ > 0 be given. Choose a subsequence (xn`
) of (xn) such

that
lim sup

n
|||Qk(xn − x)||| = lim

`
|||Qk(xn`

− x)||| .

Fix m ∈ N. Then
lim sup

n
|||xn − ym||| ≥ lim sup

n
|||Qk(xn − ym)|||

= lim sup
n
|||Qk(xn − x)−Qk(ym − x)|||

≥ lim sup
`
|||Qk(xn`

− x)−Qk(ym − x)||| .
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By the Bessaga-Pe lczynski Selection Principle (see, for example, [1, p. 14]), passing
to a further subsequence if necessary, we may choose a block basic sequence (u`) of
(en) such that Qk(u`) = u` and |||u` −Qk(xn`

− x)||| < δ. Then

lim sup
n
|||xn − ym||| ≥ lim sup

`
|||u` −Qk(ym − x)||| − δ

≥ 1
Sk

(
|||Qk(ym − x)|||+ lim sup

`
|||u`|||

)
− δ

≥ 1
Sk

(
|||Qk(ym − x)|||+ lim

`
|||Qk(xn`

− x)|||
)
− 2δ

=
1
Sk

(
|||Qk(ym − x)|||+ lim sup

n
|||Qk(xn − x)|||

)
− 2δ .

Letting m tend to ∞; noting that Sk ≥ 1; and using a perturbation argument
similar to the one above then yields:

lim sup
m

lim sup
n

|||xn − ym||| ≥
1
Sk

(
lim sup

m
|||Qk(ym − x)|||+ lim sup

n
|||Qk(xn − x)|||

)
− 2δ

=
1
Sk

(
lim sup

n
|||xn − x|||+ lim sup

m
|||Qk(ym − y) +Qk(y − x)|||

)
− 2δ

≥ 1
Sk

lim sup
n
|||xn − x|||+

1
S2
k

(
|||Qk(y − x)|||+ lim sup

m
|||Qk(ym − y)|||

)
− 4δ

≥ 1
Sk

lim sup
n
|||xn − x|||+

1
S2
k

lim sup
m

|||Qk(ym − y)||| − 4δ

=
1
Sk

lim sup
n
|||xn − x|||+

1
S2
k

lim sup
m

|||ym − y||| − 4δ .

In the above calculation, we used the fact that lim supn |||Qk(xn−x)||| = lim supn |||xn−
x||| and lim supm |||Qk(ym − y)||| = lim supm |||ym − y||| for every k ∈ N.

Since the above inequalities hold for every k ∈ N, letting k tend to infinity gives

lim sup
m

lim sup
n
|||xn − ym||| ≥ lim sup

n
|||xn − x|||+ lim sup

m
|||ym − y||| − 4δ ,

for every δ > 0. Since δ > 0 is arbitrary, we obtain the desired inequality.
�

Theorem 2.7. Let X be a Banach space with a boundedly complete Schauder basis
and let ||| · ||| be a near-infinity concentrated (n.i.c.) norm on X. Then (X, ||| · |||)
has the FPP, that is, every nonexpansive self-map on a closed bounded convex subset
of X has a fixed point.

Proof. Assume, to the contrary, that there exists a closed bounded convex subset
C of X and T : C → C a nonexpansive mapping such that

b = inf{lim sup
n
|||yn − y||| : (yn) ⊂ C is an a.f.p.s. and yn

w∗→ y} > 0.

Without loss of generality we can assume that b = 1. We proceed as follows.

Fix some 0 < ε1 < min{ 1
4 (1− M+1

2 ), 1
10 (R0 − 5)}, where M ∈ [0, 1) and R0 > 5

are the constants given by condition (3) in Definition 2.2.

Consider an a.f.p.s. (xn) in C such that xn
w∗→ x0 ∈ X and lim supn |||xn−x0||| <

1 + ε1. Again, without loss of generality, we can assume that x0 = 0 so that
lim supn |||xn||| < 1 + ε1. Define the set

D :=
{
z ∈ C : lim sup

n
|||xn − z||| ≤ 2(1 + ε1)

}
.
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Then D is a closed convex T -invariant subset of C. Moreover, using the triangle
inequality,

lim sup
m

lim sup
n
|||xn − xm||| ≤ 2 lim sup

n
|||xn||| < 2(1 + ε1) ;

so D is not empty and we can assume that xn ∈ D for n large enough. Define

c := inf
{

lim sup
n
|||yn − y||| : (yn) ⊂ D is an a.f.p.s. and yn

w∗→ y

}
.

Notice that 1 ≤ c.
To simplify the notation, we define

A∗(D) :=
{
y ∈ X : ∃ (yn) ⊂ D an a.f.p.s. such that w∗- lim

n
yn = y

}
.

We now prove that sup
y∈A∗(D)

|||y||| ≤ 4 + 4ε1:

Indeed, let (yn) ⊂ D be an a.f.p.s. with w∗-lim yn = y. In particular, lim supn |||xn−
ym||| ≤ 2(1 + ε1) for every m ∈ N. Using the triangle inequality and Lemma 2.6
(with x = 0):

|||y||| ≤ lim sup
m

|||y−ym|||+lim sup
n
|||xn|||+lim sup

m
lim sup

n
|||xn−ym||| ≤ 4(1+ε1).

Next we show that sup
y∈A∗(D)

|||Qk(y)||| ≤ µk := 2S2
k(1 + ε1) − Sk − 1 for every

k ∈ N. Using the proof of Lemma 2.6 we deduce that:

2(1 + ε1) ≥ lim sup
m

lim sup
n
|||xn − ym||| ≥

1
Sk

lim sup
n
|||xn|||+

1
S2
k

[
lim sup

m
|||ym − y|||+ |||Qk(y)|||

]
≥ 1
Sk

+
1
S2
k

[1 + |||Qk(y)|||] ,

which implies that
|||Qk(y)||| ≤ 2S2

k(1 + ε1)− Sk − 1
for all y ∈ A∗(D).

Choose x := xν with ν ∈ N large enough so that x ∈ D and |||x||| < 1 + ε1.
Since the norm satisfies condition (1) in Definition 2.2, we know that limk Sk = 1
and therefore limk µk = 2ε1. Take k1 ∈ N so that

|||Qk(x)||| < ε1, and µk < 3ε1
if k ≥ k1. In particular, this implies that

|||Qk1(y − x)||| ≤ |||Qk1(y)|||+ |||Qk1(x)||| ≤ 3ε1 + ε1 = 4ε1 < 1,

and
|||Pk1(y − x)||| ≤ |||x− y|||+ |||Qk1(y − x)|||

≤ |||x|||+ |||y|||+ 4ε1
≤ 1 + ε1 + 4 + 4ε1 + 4ε1 = 5 + 9ε1 < R0

for every y ∈ A∗(D).

Given k1 ∈ N as before, there exists a corresponding function F (λ) := Fk1(λ)
satisfying property (3) in Definition 2.2. Since limλ→0+

F (λ)
λ ≤ M

R0
, take λ ∈ (0, 1)

such that
F (λ)
λ

<
M + 1
2R0

<
1− 4ε1
R0

≤ c− 4ε1
R0

,

which implies that
(2− λ)c+ F (λ)R0 + λ4ε1 < 2c.

Now, choose ε2 > 0 with

(2− λ)(c+ ε2) + F (λ)R0 + λ4ε1 < 2c.
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Choose (yn) ⊂ D an a.f.p.s. with w∗-limn yn = y and such that

lim sup
n
|||yn − y||| ≤ c+ ε2.

By passing to a subsequence, we may also suppose that

lim inf
n
|||yn − y||| = lim sup

n
|||yn − y||| ≥ c ≥ 1.

Notice that, for every m ∈ N, the vectors (1− λ)ym + λx ∈ D. We claim that

(∗∗) lim sup
m

lim sup
n
|||yn − [(1− λ)ym + λx] ||| < 2c.

Assume that (∗∗) holds. Then we can find some m ∈ N such that

lim sup
n
|||yn − [(1− λ)ym + λx] ||| < 2c.

This implies that for some r ∈ (0, 2c) the set

G := {z ∈ D : lim sup
n
|||yn − z||| ≤ r}

is a nonempty closed convex T -invariant subset of D, and therefore it contains an
a.f.p.s. (zs), which tends to some z ∈ X with respect to the w∗-topology. In this
case, using the definition of c, Lemma 2.6, and that each zs ∈ G, we have

2c ≤ lim sup
s
|||zs − z|||+ lim sup

n
|||yn − y||| ≤ lim sup

s
lim sup

n
|||yn − zs||| ≤ r ,

which is a contradiction.

We finish by proving the claim (∗∗). Noting that lim infn |||yn − y||| ≥ 1 and by
property (3) in Definition 2.2, we have:

lim supn |||(yn − y) + λPk1(y − x)||| ≤ lim supn |||yn − y|||+ F (λ)|||Pk1(y − x)|||
≤ c+ ε2 + F (λ)R0.

Therefore,

lim supm lim supn |||yn − [(1− λ)ym + λx] |||
= lim supm lim supn |||yn − y + y − (1− λ)ym − λx|||
= lim supm lim supn |||yn − y + (1− λ)y + λy − (1− λ)ym − λx|||
≤ lim supm lim supn [(1− λ)|||ym − y|||+ |||(yn − y) + λ(y − x)|||]
≤ (1− λ) lim supm |||ym − y|||+ lim supn |||(yn − y) + λPk1(y − x)|||+ λ|||Qk1(y − x)|||
≤ (1− λ)(c+ ε2) + c+ ε2 + F (λ)R0 + λ4ε1
≤ (2− λ)(c+ ε2) + F (λ)R0 + λ4ε1
< 2c ,

which proves (∗∗), and completes the proof of the theorem.
�

3. Norms with the Fixed Point Property

Throughout this section, we will study several examples of norms which are
near-infinity concentrated norms and therefore they satisfy the FPP according to
Theorem 2.7. As a particular case of a more general result, we will deduce that
(`1, νp(·)) has the FPP whenever νp(·) is a renorming of `1.

We will start by proving that P.K. Lin’s norm is an example of a near-infinity
concentrated norm. We will deduce this assertion from the following lemma.

Lemma 3.1. Let (X, | · |) be a Banach space with a Schauder basis and assume
that | · | satisfies properties (1) and (2) in Definition 2.1. If (γk) is a nondecreasing
sequence in (0, 1) converging to 1, then the norm defined as

|x|1 := sup
k
γk|Qk(x)| , for all x ∈ X ,
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is a near-infinity concentrated norm on X that is equivalent to | · |.

Proof. Notice that γk|Qk(x)| ≤ |Qk(x)|1 ≤ |Qk(x)| for every k ∈ N and x ∈ X,
which implies that | · |1 is a sequentially separating norm whenever | · | satisfies the
same property. It is also easy to check that | · |1 satisfies (2) in Definition 2.2. It
remains to prove condition (3). Fix some k ∈ N and R > 0. Let (xn) be a bounded
pointwise-null sequence in X with lim infn |x|1 ≥ 1. Without loss of generality we
can assume that Ql(xn) = Qk(xn) for every l ≤ k. Moreover, it is not difficult
to check that lim supn |xn| = lim supn |xn|1. For every z ∈ X with Qk(z) = 0,
|z|1 ≤ R and for every λ > 0 we have

|xn + λz|1 = supl γl|Ql(xn + λz)| = supl γl|Ql(xn) + λQl(z)|

= max
{

max
1≤l≤k−1

γl|Ql(xn) + λQl(z)|, sup
l≥k

γl|Ql(xn)|
}

= max
{

max
1≤l≤k−1

γl|Ql(xn) + λQl(z)|, |xn|1
}

≤ max{γk−1|xn|+ λ|z|1, |xn|1}
Taking limits when n goes to infinity:

lim sup
n
|xn + λz|1 ≤ max{γk−1 lim sup

n
|xn|1 + λ|z|1, lim sup

n
|xn|1}.

From above, lim supn |xn|1 ≥ 1 and |z|1 ≤ R; and so

lim sup
n
|xn + λz|1 ≤ lim sup

n
|xn|1 + Fk(λ)|z|1 ,

where Fk(λ) := 0 if λ ≤ (1 − γk−1)/R, and Fk(λ) := λ otherwise. Taking M = 0
and any R > 5 in Definition 2.2(3), we see that | · |1 is a near infinity concentrated
norm. �

If we let | · | := ‖ · ‖1 in `1 we obtain that | · |1 coincides with P.K. Lin’s norm
||| · |||L. Moreover, given a norm | · |0 := | · | satisfying (1) and (2) in Definition 2.2
and defining in a recursive way the equivalent norms

| · |n = sup
k
γk|Qk(·)|n−1

for every n ∈ N, we can construct sequences of near-infinity concentrated norms.
All of these norms | · |n (n ≥ 1) satisfy the FPP when the basis is boundedly
complete, according to Theorem 2.7.

Lemma 3.2. Assume that (pn) ⊂ (1,+∞) is a nonincreasing sequence with limn pn =
1. Then the norm νp(·) is a near-infinity concentrated norm in the Banach space
X, defined as the completion of c00 with the norm νp(·).

Proof. Let us start by proving that νp(·) is a sequentially separating norm, that
is, νp(·) satisfies property (1) in Definition 2.2. By Lemma 2.5, it suffices to check
that limk Sk(X, νp(·)) = 1.

Fix k ∈ N. First note that if x =
l∑

i=k

x(i)ei with k ≤ l and l < y then

νp(x+ y) = νp

(
l∑

i=k

x(i)ei + νp(y)el+1

)
.

On the other hand, it is not difficult to check that if 1 < p ≤ q and a, b, c ≥ 0
then:

‖(a, ‖(b, c)‖p)‖q ≥ ‖(a, ‖(b, c)‖q)‖q =
(
aq + ‖(b, c)‖qq

)1/q = (aq + bq + cq)1/q =

= ‖(‖(a, b)‖q, c)‖q .
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Using now the definition of the norm νp(·) and taking into account that

· · · pn ≤ pn−1 ≤ · · · p2 ≤ p1,

it can recursively be checked that for x =
l∑

i=k

x(i)ei with k ≤ l and l < y

νp(x+ y) = νp

(∑l
i=k x(i)ei + νp(y)el+1

)
≥ ‖(νp(x), νp(y))‖pk

≥ Ck(νp(x) + νp(y)) (†)

where Ck := 2−1+1/pk .

Let (xn) be a block basic sequence in X and let x ∈ X with Qk(x) = x. If ε > 0
is given, choose k′ > k such that

νp(Qk′(x)) < ε

(
νp(x) + lim sup

n
νp(xn)

)
.

Without loss of generality, we can choose n large enough so that k′ < xn. Applying
(†) to the vectors x0 := x−Qk′(x), x1 := Qk′(x), and xn, we obtain:

lim supn νp(x+ xn) ≥ lim supn νp(x0 + xn)− νp(x1)
≥ lim supn Ck (νp(x0) + νp(xn))− νp(x1)
≥ Ck (νp(x)− νp(x1) + lim supn νp(xn))− νp(x1)
= Ck (νp(x) + lim supn νp(xn))− (Ck + 1)νp(x1)
≥ Ck (νp(x) + lim supn νp(xn))− (Ck + 1)ε (νp(x) + lim supn νp(xn))
= (Ck − ε(Ck + 1)) (νp(x) + lim supn νp(xn))

Since ε > 0 is arbitrary,

lim sup
n

νp(x+ xn) ≥ Ck
(
νp(x) + lim sup

n
νp(xn)

)
.

Then, by the definition of the coefficient Sk(X, νp(·)), we deduce that

Sk(X, νp(·)) ≤
1
Ck

.

Taking limits as k goes to infinity and using Lemma 2.5 shows that νp(·) is a
sequentially separating norm.

It is clear that νp(·) satisfies (2) in Definition 2.2. Therefore, it remains to prove
(3) in Definition 2.2.

Fix k ∈ N. Consider the equivalent finite dimensional Banach spaces (Rk, ‖ ·‖pk
)

and (Rk, νp(·)). Take some constant Lk > 0 such that ‖x‖pk
≤ Lkνp(x) for every

x ∈ Rk.

Let (xn) be a bounded pointwise-null sequence with lim infn νp(xn) ≥ 1, and
z ∈ X with Qk(z) = 0 and νp(z) ≤ R for some R > 0. We can assume, without
loss of generality, that Pk(xn) = 0 for every n ∈ N.

Having in mind that (pn)n is a nonincreasing sequence, it is not difficult to check
that for all λ ∈ (0,+∞),

νp(xn + λz) ≤ (λpk |z(1)|pk + · · ·λpk |z(k − 1)|pk + νp(xn)pk)1/pk

= νp(xn)
[

λpk

νp(xn)pk
(|z(1)|pk + · · · |z(k − 1)|pk) + 1

]1/pk

= νp(xn)
[

λpk

νp(xn)pk
‖z‖pk

pk
+ 1
]1/pk

.
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It is easy to check that (1 + v)α ≤ 1 + αv if 0 < v and 0 < α < 1. Therefore

νp(xn + λz) ≤ νp(xn)
[

1
pk

λpk

νp(xn)pk
‖z‖pk

pk
+ 1
]

= νp(xn) +
1
pk

λpk

νp(xn)pk−1
‖z‖pk

pk

≤ νp(xn) +
1
pk

λpk

νp(xn)pk−1
Lpk

k νp(z)
pk .

Then, for every λ > 0,

lim supn νp(xn + λz) ≤ lim sup
n

νp(xn) +
1
pk

λpk

lim infn νp(xn)pk−1
Lpk

k νp(z)
pk−1νp(z)

≤ lim sup
n

νp(xn) +
1
pk
λpkLpk

k R
pk−1νp(z).

Define
Fk(λ) :=

1
pk
λpkLpk

k R
pk−1 ,

for every λ > 0. Since, limλ→0+ Fk(λ)/λ = 0, we can take M = 0 in property (3) of
Definition 2.2 and νp(·) is a near-infinity concentrated norm whenever limn pn = 1.

�

Corollary 3.3. For every nonincreasing sequence (pn) ⊂ (1,+∞) with limn pn = 1,
the Banach space (X, νp(·)) satisfies the FPP. In particular, if the sequence of
conjugates of (pn) satisfies that qn ≥ δ log n for all n ∈ N and some δ > 0, the
norm νp(·) is an equivalent norm in `1 with the FPP.

Remark 3.4. We would like to point out that there exist some norms verifying
the FPP which are not near-infinity concentrated. For instance we can consider the
Banach space `1 and the equivalent norm |x|1 = |||PA(x)|||L + |||PB(x)|||L where
A = {2n : n ≥ 1}, B = {2n − 1 : n ≥ 1}, PA, PB denote the corresponding
projections onto the subspaces [en : n ∈ A] and [en : n ∈ B] respectively and ||| · |||L
denotes P.K. Lin’s norm as usual. It is easy to check that (`1, | · |1) is isometric to
the space (`1, ||| · |||L)⊕1 (`1, ||| · |||L), which has the FPP according to [6]. However,
| · |1 does not satisfies condition (3) in Definition 2.2.

A similar situation occurs when we consider the `1-renorming |x|1 = ‖x‖1 +
|||x|||L. From [10] we know that (`1, ‖x‖1 + |||x|||L) verifies the FPP. However,
condition (3) in Definition 2.2 also fails in this example.

Nevertheless, by means of Theorem 2.7, we can obtain a stability result in the
following sense.

Theorem 3.5. Let ||| · ||| be a near-infinity concentrated norm on a Banach space
X with a Schauder basis {en}n, and let ‖ · ‖ be an equivalent norm satisfying
conditions (1) and (2) in Definition 2.2. Then there exists r0 > 0 such that the
norm | · | = ||| · |||+ r‖ · ‖ is also near-infinity concentrated for every 0 ≤ r ≤ r0.

Moreover, if {en}n is boundedly complete, then the spaces (X, | · |) have the FPP
for every 0 ≤ r ≤ r0.

Proof. Since ||| · ||| and ‖ · ‖ are equivalent norms, there exist 0 < a ≤ b such that
a|||x||| ≤ ‖x‖ ≤ b|||x||| for every x ∈ X. Therefore, for all x ∈ X,

(1 + ar)|||x||| ≤ |x| ≤ (1 + rb)|||x||| and
(

1
b

+
ra

b

)
‖x‖ ≤ |x| ≤

(
1
a

+
rb

a

)
‖x‖ .

It is easy to check that | · | satisfies conditions (1) and (2). Let us prove (3). By
hypotheses, there exists some R0 > 5 and M ∈ [0, 1) satisfying Definition 2.2.3 for
the ||| · ||| norm. Take some M ′ ∈ (M, 1). Let (xn) be a bounded pointwise-null
sequence with lim infn |xn| ≥ 1 and let z ∈ X with Qk(z) = 0 and |z| ≤ R0. In this
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case, lim infn |||xn||| ≥ 1/(1 + rb) and |||z||| ≤ R0/(1 + ar). Fix λ ∈ (0,∞). Then
there exists a subsequence (xnj

)j∈N of (xn)n∈N such that

Γ := lim sup
n
|xn + λz| = lim

j
|xnj + λz| .

Taking further subsequences if necessary, we may assume without loss of generality,
that the limits

lim
j
|||xnj

||| , lim
j
‖xnj
‖ , lim

j
|||xnj

+ λz||| and lim
j
‖xnj

+ λz‖

all exist in [0,∞). Therefore,

Γ = r limj ‖xnj
+ λz‖+ limj |||xnj

+ λz|||
≤ r lim

j
‖xnj
‖+ λr‖z‖

+
1

1 + rb
lim
j
|||(1 + rb)xnj

+ λ
1 + rb

1 + ar
(1 + ar)z|||

≤ r lim
j
‖xnj‖+ λr‖z‖

+ lim sup
j
|||xnj

|||+ Fk

(
λ(1 + rb)

1 + ar

)
1 + ar

1 + rb
|||z|||

= lim
j
|xnj
|+ λr‖z‖+ Fk

(
λ(1 + rb)

1 + ar

)
1 + ar

1 + rb
|||z|||

≤ lim sup
n
|xn|+ λ

r

( 1
b + ra

b )
|z|+G(λ)

1
1 + ar

|z|

= lim sup
n
|xn|+

[
λ

r

( 1
b + ra

b )
+G(λ)

1
1 + ar

]
|z|,

where G(λ) := Fk

(
λ

(1 + rb)
(1 + ar)

)(
1 + rb

1 + ar

)−1

. Define the corresponding “Fk-type”

function for the | · | norm by

F ′k(λ) := λ
r

( 1
b + ra

b )
+G(λ)

1
1 + ar

, for all λ ∈ (0,∞) .

Since limλ→0+ G(λ)/λ ≤ M
R0

, we have that

lim
λ→0+

F ′k(λ)
λ
≤ r

( 1
b + ra

b )
+

1
1 + ar

M

R0
:= g(r)

Notice that limr→0 g(r) = M/R0, which implies that there exists some r0 > 0 and
M ′ ∈ (M, 1) (depending on the constants a, b) such that for every 0 ≤ r ≤ r0,
g(r) ≤M ′/R0; and so ||| · |||+ r‖ · ‖ is a near-infinity concentrated norm.

The rest of the theorem follows by applying Theorem 2.7. �

If we proceed as in the previous proof, using the above arguments and the fact
that limλ→0+

Fk(λ)
λ = 0 for both P.K. Lin’s norm and the νp(·) norm, it is not

difficult to check that, in the case where νp(·) is equivalent to the ‖ · ‖1-norm,
νp(·) + λ||| · |||L is a renorming in `1 which is also near-infinity concentrated for
every λ > 0. Therefore we can also deduce (see also [2, Section 4]):

Corollary 3.6. Let (pn) be a nonincreasing sequence in (1,+∞) such that there
exists some δ > 0 so that qn ≥ δ log n for all n ∈ N. Then (`1, νp(·) +λ||| · |||L) has
the FPP for every λ ≥ 0.
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