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NON-EXPANSIVE MAPPINGS ON BANACH LATTICES
AND RELATED TOPICS

Jon. M. Borwein and Brailey Sims

ABSTRACT. We give a new lattice theoretic criterion for a
non-expansive mapping defined on a weakly compact convex
subset of a Banach space to have a fixed point. Our condition
allows us to show that a wide variety of Banach sequence spaces,
including c(T") and c(T), have the fixed point property.

§1. Introduction. A self-mapping T of a closed convex subset C in a Banach
space X is said to be non-expansive if [|Tx - Ty|| <|(|x - y|| for all x,y in C.

We say X has the (weak) fixed point property if every non-expansive mapping
defined on a non-empty weakly compact convex subset of X has a fixed point.

Classical results of Browder [3], Kirk [11] and others [7, 9, 15] established that
every uniformly convex space and every space with “normal structure’ has the fixed
point property.

Until recently further positive results have been fragmentary. It remained open zs
to whether or not every Banach space possessed the fixed point property until Alspach
[1] gave an example of a fixed point free non-expansive mapping on a weakiy
compact convex subset of.Cl [0,1] (see also [18], [20]). Shortly afterwards Maurey
[14], using ultrafilter methods, succeeded in showing that CO(N) and refiexive
subspaces of £ [0,1] do have the fixed point property.

In this paper we simgltaneously refine some of Maurey’s ideas and remove the
dependence on ultrafilters. In consequence we are able to show that a large varicty of
Banach spaces have the fixed point property. Our techniques are lattice theoretic in
spirit and allow us to give surprisingly general and simple criteria for a Banach space 1o
have the fixed point property. In particular we are able to:

(i) characterize order complete M-spaces with the fixed point property:

(i) recover substantially strengthened versions of examples used by Kazrlovitz

[10] and others:
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(iii) show that c(T"), (") and c(I") with Day’s Lu.c. norm {16] have the fixed

point property.

It is worth observing that a large number of the examples and counter-examples
in non-expansive fixed point theory have had a lattice theoretic underpinning, but to
the best of our knowledge, before Maurey’s paper, this has remained largely implicit.

§2. Some basic constructions for non-expansive mappings. Let C be a
non-empty weakly compact convex subset of a Banac'h space Xand let T: C = C be a
non-expansive mapping. A standard application of Zorn’s lemma ensures the existence
of a minimal invariant subset D from the class of non-empty weakly compact convex
subsets of C which are invariant under T.

Geometric properties of the space such as UCED or the Opial condition have
been used to rule out the existence of weakly compact convex diametral sets
containing more than one point (normal structure). That such spaces have the fixed
point property then follows from Proposition 2.2 below.

LEMMA 2.1. If y:D->R is a weak-lower semi-continuous mapping with
U(Tx) < Y(x) forall x € D, then s is constant on D.

PROOF. Let xp€D be such that Y(xg)=inf (D) and let E= {x€D:
vix) = yl/(xo)} then E is a non-empty weakly compact convex set which is invariant
under T and so by minimality E = D.

PROPOSITION 2.2. [Kirk, 1965] D is diametral.

PROOF.

W(x): = Sup{lix- yll: y ED}

=Sup{ix- Tyll: y € D}
(as coT(D) = D by minimality)

satisfies the conditions of Lemma 2.1. Thus ¢ is constant on D with value
SUB SUBHX - yll = diam(D) and so D is diametral.
xeD ye

Applying the Banach contraction mapping principle to the strict ¢ontraction

(1- XJ{)T +%I yields a sequence (xp) of approximate fixed points for T in
C:ITxy, - x,ll = 0. (Note, this does not require C to be weakly compact. only closed
and convex.)

PROPOSITION 2.3. [Karlovitz, 1976] If (xy) s a sequence of approximare
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fixed points for T in the minimal invariant set D, then

limlix - x Il = diam(D), for all x in D.
n

PROOF. Let (y,} be any sequence of approximate fixed points for T in D and
let Y(x)= Ellx— Yl Then § satisfies the assumptions of Lemma 1 and so ¢ is
n w
constant on D with value K say. Let (ynk) be a subsequence with y“k = vp, then
K >Tmllx - vy 13 limlix -y, 13> i yol

k
Thus K > Sg%ilx - yoll = diam(D) (by Proposition 2.2).
XE

Now taking (yn) to be any subsequence (xnk) of (xn) we therefore have

li}r;on - Xnk” = diam(D) for all x in D and so
lirxlmlx - Xpll = diam(D)

If (x,)) is the orbit of a point x under T: x, = Tnxo, then replacing “lim sup” by
a Banach limit ¢ in the above argument and using the translational invariance of ¢ to
establish  (Tx) < Y(x) where ¥(x) = &(l|x - Tnxoll) we may conclude that
Ul - T”xOH) = diam(D). Indeed replacing T by (T +1) and using the asymptotic
regularity of the latter operator [8] we may, without loss of generality,
simultaneously assume that (x,,) is both an orbit and a sequence of approximate fixed
points.

We now develop a basic construction which in part is motivated by the desire to
replace sequences of approximate fixed points by fixed points in a related space.
Muurey constructed such a space using an ultraproduct. We realize it as a quotient of
appropriate substitution spaces. An analogy with the role of the Calkin algebra in
operator theory may also Be noted.

Denote by £.(X) and cp(X) the spaces obtained by substitution of the Banach
space X into £o.(N) and CO(N).

Define

Hm(X): = Lo(X)ep(X)

and denote by [xn] or [';(] the equivalence class x + cO(X), where x = (xn) € £(X).

The quotient norm is @ven by

flExg 1= timiix Il
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and with this norm I_ir_n_(X) is an order complete Banach lattice provided X is an order
complete Banach lattice.

Denote by J the cannonical embedding of X into E(X); J(x): = [xn], where
X, =x foralln.

If Cis a closed bounded convex subset of X and T: C = C is a non-expansive
mapping then it follows that

(C]: =TT Cleg(X)

is a closed bounded convex subset of lim(X) and that

[T}{x]: = [Tx,] where (x,) € [x] and x, €C,

is a well defined non-expansive mapping on {C].

Of basic importance is the observation that (x) is a sequence of approximate
fixed points for T in C if and only if (Txp-x) € cO(X), and so if and only if [xn] is
fixed by [T]. In particular then {T] always has fixed points in [C].

Before proceeding to the main result of the section let us recall that the set of
quasi-midpoints for two points x and y in a Banach space is

Qey) =1Lzt lix -zl = lly - zll = %lix - yII} .
Q(x.y) is a non-empty (*a(x + y) € Q(x,v)), closed and convex set. Further if x and v
are two fixed points of the non-expansive mapping T on the closed convex subset C,
then Q(x,y) N C is invariant under T.

LEMMA 2.4, Let T be a non-expansive mapping of the non-empty w-compact
convex set Cinto itself. Assume that C is a minimal invariant set for T with O €C.

Suppose that (xp) and (y ) are sequences of approximate fixed points for Tin C

]imen - ynH = diam(C).
n
Iiien tkere exists a sequence (z),) of approximate fixed points for T in Cwiii:

imlix_ - 7
llm,xn z

I=Limly - =1lmlz || = Yadiam(
T ! llrgnhyn ZnH -hﬁn.lznll 2diam(C).

n

PROOF. Since Q:=|C] nQ([x]).[v]) is a non-empty closed convex subset
wlich is invariant under the non-expansive mapping [T] we can construct a s=quence

{T™] of approximate fixed points for [T} in Q with Ji{T][tM] - [69}; = 270771 L
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(the (t™] with T in C, then?mll'rt’;l’ -t < 27(m*1) 4nd 5o for sufficiently large
n we have
HTtrrrl1 - tnmll <2m,
Let d = diam(C) = diam[C], then from
X1 - (E™30= 1y - [0 = valx] - [y1)=%d
we have that

Timlix, -t =Tmlly, - t7] = %d.
miixp - | nIyn n.H z

but then
d = timflxp - yll < limflx - 80 +Timlly - ()
n _n_ n
= lim|ix, - 'l + %d
n
whence
Yad < lim|lx, - tT] <@|xn - M) = 224
n
and so

]iIEnHX“-» Y = %d.
A symmetric argument yields
limilyy, - th = %d.
Thus there exists an increasing sequence N(m) such that, for n 2 N(m) we have
ixp - Y- 2d] < 270
;o) -m
|y, -t - Yad| < 2
m_.m -m
e - gl < 270

Taking z_ = t™ for N(m}<n< N(m+1) we conclude thzt (z.) is a sequence of
n- n n

approximate fixed points for T in C with
limix_ - z..|| = imljy. - z_.Il = %Ad.
DXy = Zpll = WY - 2
To complete the proof it suffices to note that since O € C, by Proposition 2.3 we
have limfiz.li = limiz_ - O} = d.
oo non

In the following proof we indicate how it is always po:sibie to construci a pair of
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sequences (x,) and (yn) satisfying the hypotheses of Lemma 2.4.

COROLLARY 2.5. For T and C as in Lemma 2.4, there exists fixed points [;] .
(] and [2) of [T] in [C] with (z] €QUX).[Y)) and X1 = (¥]1= II[2]I =
1(x) - [y) I = diam(C).

PROOF. Let (x,) be any sequence of approximate fixed points for T in C. By
Proposition 2.3, for each n,

liml|x_ - x .|l = diam(C},
m . n m J
SO we may extract a subsequence (X“k) such that

limilx;, - x.. } = diam(C).
lk \' K “kh )

The result now follows by taking;= (xn).;’ = (xnk) and applying Lemma 2.4.
§3. Weak orthogonality in Banach lattices. Let X be a Banach lattice. Given a

sequence (xn) weakly convergent to X we will say that (xn) is weakly orthogonal if

lim lim|i ]xn - xol A \'xm - xO! || =0.
n m :

Every weakly convergent monotone sequence is weakly orthogonal.

A subset C of X is a weakly orthogonal set if every weakly convergent sequence
of points of C is weakly orthogonal.

Obviously, every compact subset of a Banach lattice is weakly orthogonal.

We say X is weakly orthogonal if every weakly compact convex subset of X is
weakly orthogonal.

To obtain an easily verified sufficient condition for a space to be weakly
orthogonal we introduce thg following.

A Banach lattice X has the Riesz 4pproximation Property (R.A.P.) if there exists
a family P of linear projections with Pixj = [Px;, for 2l P € P, which satisfy:

(O P(X), the range of P, is a finite dimensional ideal:

(i) foreach x € X, Sgiipx -x]i = 0.

THEOREM 3.1. Let X be a Banach lattice with the R.AP., then X is weakly
orthogonal.

PROOQOF. It suffices to prove the stronger result: For any x in X the mapping

y x| A |yl is weak to norm continuous at 0.
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Given x € X and € > 0, select P € P such that |} [x|- Pix| || <e/2. Then, if (ya) is

any net weakly convergent to zero, there is an «q s.t. for o> «
[Plygl =11 Py ) 1T = Py Il <e/2.
That this is possible follows because P is weakly continuous with a finite dimensional
range. Now,
IXI A lygl <PIxI A Plygl + lixl - Pixil A fygl+ Pixl Adlyg) - Plygli.

Putting 2 = PIx| 4 [ly,l - Ply, |l we see that z lies in the ideal P(X) and z 2 0.

Thus, 0 <2=Pz=Pix| A |Plyyl-Ply,ll =0,and soz=0.

Hence

IXI A lyg | <PIxI A Ply, I+ 11x]- PIxIl A lygl

<PIx| A Plyy !+ | IxI-Pixi|
and so, for « >«
I x] A lygl < HPlygl I+ i Ix1 - PIx{ il <e.

Taking P to be the standard bases projections we have for any set I' that the
spaces cp(I") and EP(F) (1 < p <o) have the R.A.P. as does any separable Orlicz space
) (that is to say, M satisfies the Ay condition) together with a variety of Lorentz
spaces. We also observe that R.A.P. is preserved under Riesz isomorphisms.

The spaces £,(T), c(I") and.Cp[O,]] (1 < p < o) fail to have the R.A.P. and with
the exception of c(T") also fail to be weakly orthogonal. (In the case of .Cp spaces
consider the sequences of Rademacher functions.) To see that c(I') is weakly
orthogonal, let x™ 2 0in o(T') then vP = x" - Lim(x™e defines a weak null sequence in
CO(I‘) where Lim denotes the norm, and hence weakly, continuous limit functional on
o(I". Thus, for each n. rlriin*w]ynl A ly™| = 0. but then, since |x™, < [y™| + [Lim(x")le,
we have '

X2 T <y Al™ + y? A Lim(x™)]e + ‘Lim(xMle A XM
and so im_ lim Ix™ A x™} =0 as Lim(x") ~ 0.
n—o° m—oe
§4. The Riesz angle of a Banach lattice. We define the Kiesz angle of a Banach

lattice X to be

alX) = Suplil Ixi ¥yl [l ik < 1 vl <€ 15
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The Banach-Mazur distance of two Banach spaces X and Y is
d(X,Y) = infiU) JUH)

where the infimum is taken over all linear isomorphisms U of X onto Y.

We similarly define the Riesz distance dp(X.Y) by restricting the infimum to
only Riesz isomorphisms.

Observe that if ll-Hl, and II-II?_ are two equivalent Riesz norms for the Banach

. iattice X satisfying miixil < |lx||2 < M||x| 1> then
d(XI,Xz) <M/m

where X1 denotes X with M1 (i=1,2).
PROPOSITION 4.1. (a) Forany Banach lattice X we have 1 <o(X) < 2.
(b) a(X) = 1ifandonly if X is an M-space.

(¢) If Xisan abstract L space (1 < p < o), then a(X) = 21/p.

p
(d) If X is a full substirutionspace on an index set 1 (and hence a Banach lattice
~ith respect to pointwise order) and (X1) (i€ 1) is a family of Banach lattices, then for
:he substitution space Py (X,) we have
a(Py (X)) € a(X) SUiJ al(X;).
i€

(e) For any pair of Banach lattices X and Y, a(Y) < dR(X.Y)oz(X).
PROOF. (a) follows immediately from the inequality
IxI <l xbov iy I+ Iy < Ixd + dlyie
(b) is immediate from the definition of an M-space.
(c) By Bonhenblust’s theorem [12, Theorem 15.3] we may assume that X is

Lp('u) for some measure u. from which it follows that for 0 < x,v we have

lIx v ylIP < x)iP+ liyllP <20x|P v {tylP.

Thus
ix vyl < 2VPaixi v oy
«nd we have
a(x) < 2/p.
Taking Ixlf = iy}l = 1 and x A~ v=0 wehavellx v vIP=2soa(xi > 21/p.

(d)} Let (xj),(yi) S PX(Xi) and let a; = o X;), then for each i
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lix; v oyl < el v iy,
SO
N0 v il <glitxp) v (ypli
S a(X)[Sup o1 I(xliy v Iyl
(e) Let U: X = Y be any Riesz isomorphism, then

Il v iyt ly < TUIEU v Uyl
< UV iy v Uyl

< JUINU X0ty v livtlys

whence a(Y)< Ul ||U'1||a(X) for all Riesz isomorphisms U of X onto Y and so
a(Y) < dp(X,Y)a(X).

We also note that for an Orlicz sequence lattice &)y where M(1)=1 we have
o) < l/g'](‘/:) where g(t) = 52<]h1(tz)/h1(z). In particular a(fy) <2 if
2M(z) <M@Q22) for0<z< .

To see this, let ag = g'l(‘/z), then for X,y with [Ixllyg.livily < 1 we have
Z Mag(Ix;1 v 1yih) < glag)T MUxji v 1y;D
<Y(Z M(ix;D) +  M(lyj)
<]
whence Il Ix| v y| iy < Ve
The final conclusion now foilows by observing that g(t) <t so ag = Y2
The fundamental inequality involving the Riesz angle is:
THEOREM 4.2. Suppose that X is a Banach lattice with Riesz angle a{X). Then
cor X, Y, zin X we have
izl <oX)ix -zt v fty -z +1EiIx] A Byt
PROOF.
< Ixi+x-zl<bx-zh v ly-zi+ixl
Similarly

V< ix-zb v ly-z[+ Iyl
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nus,

lzl <ix -zl viy-zl+1yl » [x].
5y Riesz properties

flzif <l ix -zl v Iy -zl + 1 Iyl A Ix]]
.nd so, by definition of a(X),

fzll < aX)0Ix -zt v lly -zl + iyl A Ixd I
There seems to be only a tenuous connection between the geometry of a space

:»d its Riesz angle. Every uniformly convex Banach lattice X has a Riesz angle

- X) < 2. If this were not the case, for each n there would exist x, and y, with

o ] _
spilllypll <1and 2-— < I, v iypl i, but then

] , ,
2-5 < xgl vy B g+ Iyl I < Iixg I+ ly gl < 2
:nd so by the uniform convexity || Ixnl-\yn] = 0. In which case, since

Spl v lypll < ixglh+ 20ixpl-dyplil, - we - have limil [xpf viyplii<1,  a

ol
. ontradiction.

On the other hand, Davis. Ghoussoub and Lindenstrauss [6] have constructed an
«juivalent locally uniform convex Riesz norm for £{0,1]. Equipped with this norm
Z110,1] retains a Riesz angle of 2. Indeed we know of no way of equivalently
rvnorming a space to effect a reduction in the Riesz angle.

§5. (Weak) fixed point results.

THEOREM 5.1. A Banach space X has the fixed point property if there exists a

~cakly orthogonal Banach lattice Y such that

(5.1 dX, Y)Yy <2:

PROOF. Let T be a nomexpansive mapping on a non-empty weakly compact
-onvex set Cand let D be a minimal invariant subset for T. Select a sequence (x ) of
spproximate fixed points for T in D. By the extraction of a subsequence and a
‘runslation we may assume that xnw—> 0 (in particular, then O € D).

Now let U be a linear isomorphism from X onto Y with [jU]j IlU'll‘;cx(Y) < 2, the
existence of such a U is ensured by (5.1).

By the weak orthogonality of Y, for each k in N there exists ny in N such that
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I Ux,, (/\ [Ux lH<k
m

~:nce by Proposition 2.3, 11m|lx “xplh= diam(D) we may {ind mk ny such that

Hxnk- X, 1 diam(D) -
=nd
(5:2) 1 b | 4 gy 1<
Applying Lemma 2.4 we obtain a further sequence of approximate fixed points (z))
such that
limilzl = diam(D)

and
(5.3} livmh'xnk ~zp = li}r(nllxmk - 23l = Yadiam(D).
Theorem 4.2 shows that
(5.4) TETTHUZH <alY) llm(llUx - Uzl v Wxpy - Uzgl)
+Ti£n71 (Ut | ¥ 1Uxgy 1
Then (5.2), (5.3) and (5.4) combine to show that
o 1 T 1 NI
2d Dj = 2 limiizy f < 24U Ullad Y)Y timix - p - )
iam(D] lﬁn(z}\l U ,i(mllxk 7l v Xy my " K

< U N Uty diami(D).

Since 2 > HU‘] I'1UflaCY) it follows that diam(D) = 0 and D is the singleton <0}. Tr.us

T has a fixed point in C.

COROLLARY 5.2. Let X be a weakly orthogonal latrice such thar o(X) << 2.

Then X has the weak fixed point properiy.

Before listing 2 further immediate corollaries we remark: that the abo.e

srguments establish the fixed point property for a Banach lattice & provided at X - is

iess than 2 and any weakly convergent sequence which is diameterizing for a weaiy

compact convex set (in particular, any weakly convergent sequence of approximzte

‘ixed points in a minimal invafant set for a non-expansive map) is » eakly orthogorel

Indeed for such a sequence we only require that lim lim ¢ X K A X - X
n m
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soioently small.
COROLLARY 5.3. A Banach space X has the fixed point property if for some I’
i1 <p <eewe have

/g (L,1_
4(X,8,(1) <2 Grg=1

COROLLARY 5.4. A4 Banach space X has the weak fixed point property if
Teer

() d(X,e(IN) <2,

(i) d(X,eq(IN) <2

EXAMPLES 5.5. (Generalized Karlovitz norms) (a) Let | <p <r<{oo and let
- > Q. Consider XR’T as Ep(]_") renormed by || |y = (Al llp) vl Forp=2r1= o
crese norms were studied in [10, 2 and 4]. It is immediate that X;;,r is a weakly

.zhogonal lattice. Moreover, by Proposition 4.1

«(XBT) < max {a(Ni-il), a(l )} = 21/P <2

“nus Corollary 5.2 applies and X%r has the weak fixed point property. Now forp = 2,
- = o Baillon and Schonberg [2] showed that Xi’w has normal struciure if and only if
» > 1/ 2 while asymprotic normal structure [4] obtains for A > 1/2. Their paper
1-us establishes the existence of fixed points only for A > 1/2, while our lattice
srzuments work equally easily for all A > O and for general p and .
(b) Consider
N: = {XId(X.X3*) <27},

> follows from Theorem 5.1 and a(sz'w) < 21/2 that all Banach sgaces in N have the
~cak fixed point property. In particular N contains spaces which are uniformly
.Invex, spaces with normal structure and without uniform convexity, spaces with
.nly asymptotic normal structure and spaces without asymptotic normal structure.
Tnis emphasizes the fact that our results allow one to move entire!ly awz, from the
..assical geometric conditions by studying both lattice and isomorphic condizions.

(¢) Let cg(I‘) denote CO(I‘) with Day’s equivalent (Lu.c.) norm [16]. It follows
casily that d(cO(F),Cg( 1)) <\/§72 < 2 and Corollary 5.4(ii) implies that cg"r) has the
“ixed point property. In fact with a littie effort it can be seen the: ':8\[“) i« 2 Benach
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s with RA.P. and so Corollary 5.2 also applies (in conjunction with Proposition
- We note in passing that a(c3(I) > 1.

(d) It is known that d(cO(F),c(F)) =3 [5]. It follows that one can not deduce

- »llary 5.4(i) from Corollary 5.4(ii) nor conversely.
te) In {6] it is shown that order continuous Banach lattices are exactly those
-s2ssing equivalent (l.u.c.) lattice renorms. It follows from this and standard
-.~>rming techniques that a wide variety of spaces with the weak fixed point property
~z\Vv be given an equivalent (L.u.c.) renorm with the weak fixed point property.

(f) Since R.A.P. is preserved under substitution into a space with R.A.P.it follows
.zt one can establish the fixed point property for a profusion of spaces. In particular
-.zarding the space X = (£, & £3 ® +--)4 as the substitution of countably many copies

: \ic_ together with the spaces £3,%4.... into £9(N) it follows from Proposition 4.1 that
i< 22913 <2 and so X has the weak fixed point property. Similarly
- "T1X &Iy has the fixed point property in the maximum norm [(x,y)i:
S\ e v Iyl '

(g) Bynum [4] has shown that the fixed point property is inherited by Banach
+:2es whose distance from a uniformly convex space is not too large. In particular, he
- ~ws that if d(SZp(F),X) <2l/p (I <p<o) then X has the weak ﬁxed point
~-sperty. For p > 2 this is weaker than our Corollary 5.3, but for p <2 Bynum’s
-.~ult is stronger. He also points out that the space Qp’w(l“) (which is SZp(F) renormed

x”p,w: = |ix+||p v ||x'|!p) does not have asymptotically normal structure but has
'z fixed point property. Qur results as given do not recapture this for p < 2.
“ioreover, Qp,w(l‘) is not a Banach lattice. This présents no obstacle for p > 2 as the
" ~.lowing results shows.

COROLLARY 5.6. Ler X be a weakly orthogonal Banach lattice and let Y be X

i equivalent monorone lattice norm. Suppose that &(Y) << 2. Then Y ha§ the weak
. :cd point property.

PROOF. Since X is weakly orthogonal it follows that li_.Twiynf riyg, =0

~enever y, 0 weakly in Y. The result now follows from Theorenm 5.1 because only

~-onotonicity of the norm is required in the proof of Theorem 4.2.

To recapture Bynum's result for p > 2 it remains to verify that cx(ip,w(ru <
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7 <2 wheneverp > 2.
¢ 6. Fixed point theorems in M-spaces.
THEOREM 6.1. Let X be a countably order complete M-space. The following
<quivalent.
(1) X has the fixed point property.
ti) X is isometric and lattice isomorphic to co(r‘) for some index set T.
Vi) X is order continuous.
V) X has weakly compact order intervals.
) X contains no (lattice, or norm) copy of . N). (See [17] for other
equivalences.)
it X contains no isometric copy of £1[0,1].
PROOF. (iv) and (iii) coincide for any countably order complete Banach lattice.
Ando’s Theorem [12, Theorem 16.2] it follows that (iii) and (ii) coincide and
corem 5.1 now shows that X has the weak fixed point property. Alspach’s example
shows that (i) implies (vi). Since (vi) implies X contains no norm copy of ¢.(N) it

<erlainly not contain a lattice copy. Since this more restrictive form of (v) is

. -valent to (1v), the equivalences are established.

EXAMPLE 6.2. (a) The theorem is manifoldly false without the hypothesis of
zir completeness as is best seen by considering ¢(I"). Indeed ¢(I") satisfies only (i).
and (Vi)

tb) The space lim R = Qw(N)/'CO(N)¥ Co(N*) with the induced lattice structure

.~ order complete M-space. Since [e] is an order unit for lim R it can not satisfy (i1)

.~ 2 mence fails to have weak fixed point property.

COROLLARY 6.3. An abstract Lp space (1 <p< o) X has the fixed point
corty if and only if X contains no isometric copy of.f] [0.1].

PROOF. For p=oe this is covered by Theorem 6.1. For 1<{p<eo Lp is
“ormly convex and so has the fixed point property.

For p=1 we usc the fact that any abstract L space either (i) contains a copy of

“u.1] or (i) is purely atomic [12, page 136). In the later case X is £(I') on some

- Zux set and has the weak fixed point property. This is an immediate consequence of

> Opial condition [9] and the Shur property.
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These last two results and the scope of our main theorems suggest the conjecture
:t Corollary 6.3 holds for arbitrary Banach spaces. This is further reinforced by
ttaurey’s result [14] that reflexive subspaces of Ly[0,1] have the weak fixed point
©Toperty.
This result of Maurey’s may be combined with Alspach’s example te show the
lowing:
EXAMPLE 6.4. The closed convex hull of an orbit of a nonexpansive mapping
- a weakly compact convex set need not be invariant. Specifically consider T as in
»spach’s paper and xg:=1. It is easily calculated that rn:=Tn(1) is the n’th
= -demacher function. Now define D to be co{T™(1): n € NJ}. Since the closed linear
~«n of the Rademacher functions is isomorphic to £2[0,1] [13, page 133]. D can
© be invariant. Indeed, were it invariant Maurey’s result would imply that T
ssessed a fixed point on D and, a fortiori, on C.
We next turn to a theorem on weakly compact weakly crthogonal subsets of a
» :nach lattice.
THEOREM 6.5. Let C bhe a weakly compact convex weakly orthogonal subset of
. Banach lattice X such that a(X) < 2. Then every non-expansive mapping leaving C
~.ariant has a fixed point.
PROOF. We merely observe that the proof of Theorem 5.1, when Y = X, needs
10 be weakly orthogonal.

COROLLARY 6.6. Let C be a weakly compact convex subset of a Banach space

. Suppose that the isometric image of C in any L(T") is weakly orthogonal then
~orv non-expansive mapping leaving C invariant has a fixed poin:.
PROOF. We use the ‘isometry to lift the problem from X to zn M-spzce. The
-o-ult now follows from Theorem 6.5.
Every Banach space X isometrically embeds in some &,'). Thus one sees that
“¢ may establish the (weak) fixed point property for X reflexive, respectivel;,
erretlexive, by showing that all weakly compact subsets of €./T") whesz span is
-.tlexive, respectively superreflexive, are weakly orthogonal in &¢I ). Is ks true?
. s ambitiously, is it true for separabie reflexive subspaces of € (N). Txais would

s'iow one to recapture Maurey's result.



i JON. M. BORWEIN and BRAILEY SIMS

EXAMPLE 6.6. Alspach’s example and Corollary 6.5 show that the isometric
—:ge of the unit interval in £1(0,1) is not weakly orthogonal.

§7. Miscellaneous. A complementary question to those considered so far is
- vther or not every non-expansive mapping on a weak compact order interval has a
“aed point. By a slight modification of Alspach’s example, Robert Sine [20] obtains
.~ example of a fixed point free non-expansive map on the order interval 0 << 2 in
<-.0.1). In the positive direction we show that a non-expansive map on an order
._mplete interval of any abstract M-space has a fixed point. This may be seen as a mild
oviension of an earlier result of Sine’s [19] that a non-expansive map on an order
terval in Lo () has a fixed point.

THEOREM 7.1. Let 1 be an order complete order interval in an M-space X with a
.wre.and let T: 1= 1 be non-expansive, then T has a fixed point in 1.

PROOF. We first establish the existence of a minimal invariant order interval in
- Tnis will follows from Zorn’s lemma provided we show that for any decreasing chain

* of non-empty intervals in 1 the intersection Io= NI, is itself a non-empty

-2wnval. To see this note that a, = sup inf(l,) and b, = igf sup(l,) exist inI by order
. mpleteness and that therefore [y beol = leo-

Now, let IO be a minimal invariant interval in I and set ag = ianO, bO =sup IO
.7& m="Ybg - ag). Define N= {x€ly: Sglp lix-yll <limll}, ciearly N € Q(ag,bg).

7x € Qag,bg) N1 we also have Y=o

- i d = diam( o) = 2fml,

Consequently for ag Sy < b we have

-ge<a0-x<y-x<bo-x< €

[9][=¥

sl iy - x[ <|lml or x € N.
Thus N'=Q(ap,bg) and so N is invariant under T. The proof is completed by

wing that N is in fact an order intcrval and therefore egual to Iy This is an
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-+:hility unless 10 is a singleton,
*--m the definition of M we know that
-limlle+y <x <limlle + y
= Zlgif and only if x € N. As a result for every y € lg we have
-mllet+y <inf N<SupN<|mlle+v
21 N.Sup NJ] = N as required.
wole there are several geometric conditions k'nown to imply the (weak) fixed
* rroperty, many are little removed from the notion of diametrality and with the
. exception of uniform convexity most are difficult to verify.
That uniformly convex spaces have the (weak) fixed point property is a simple

- -wzuence of Corollary 2.5 translated ““‘approximately back™ into the space X.

~ >me further results in this direction are discussed below, however we omit the

w2 note that if, for any Banach space X we define, Sy (t) = 1- lim inf 6x(s),
. s>t
re Ex(s)is the modulus of convexity for X, and let Ay = Sup{t € [0,2): Sx(t) = 0}

3

:t follows from Lemma 2.4 that X has the (weak) fixed point property if
"X': < fx(%2). That the inequality holds locally among Banach spaces follows
“. the inequality
By (1) < dX,Y)Bx(t/d(X,Y)).

- ~»ould also be observed that by the Day-Norlander theorem 5X(‘/’z) >/ 15/4 and so
. imequality (] - }\X)2 <fx (%) is only feasible for Ay < 1 - ‘/:4\/ 15, a small and

- -eresting number.
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