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Abstract. In this paper, we introduce a new geometric property (Aε
2)∗ and

we show that if a separable Banach space has property (Aε
2)∗ then both X and

its dual X∗ have the weak fixed point property. Criteria for Orlicz spaces to
have the properties (Aε

2), (Aε
2)∗ and (NUS∗) are given.
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§ 1. INTRODUCTIONS

Let X be a Banach space and let S(X) and B(X) denote the unit sphere and
the unit ball of X, respectively.

Given any element x ∈ S(X) and any positive number δ, we define

S∗(x, δ) = {x∗ ∈ B(X∗) : x∗(x) ≥ 1− δ} .

Let A be a bounded subset of X. Its Kuratowski measure of noncompactness
α(A) is defined as the infimum of all numbers d > 0 such that A may be covered
by a finite family of sets of diameters smaller than d.

A Banach space X is said to be NUS∗ provided that for any ε > 0 there exists
δ > 0 such that if x ∈ S(X), then α(S∗(x, δ)) ≤ ε.

A Banach space X is said to have the weak Banach-Saks property whenever
given any weakly null sequence {xn} in X there exists a subsequence {zn} of
{xn} such that the sequence { 1

k
(z1 + z2 + · · ·+ zk)} converges to zero strongly.

A Banach space X is said to have property (A2) if there exists a number Θ ∈
(0, 2) such that for each weakly null sequence {xn} in S(X), there are n1,n2

∈ N satisfying ‖xn1 + xn2‖ < Θ. It is well known that if X has property (A2)
then X has the weak Banach-Saks property (see [3]).

A Banach space X is said to have property (Aε2) if for any ε > 0 there exists a
number δ > 0 such that for any t ∈ (0, δ) and each weakly null sequence {xn}
in S(X), there is k ∈ N satisfying ‖x1 + txk‖ < 1 + tε (see [10]).

Now, we introduce the notions of (UAε2) and (Aε2)∗-properties.

(1) Supported by Chinese National Science Foundation Grant.
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A Banach space X is said to have property (UAε2) if for any ε > 0 there exists
a number δ > 0 such that for each weakly null sequence {xn} in S(X), there is
k ∈ N satisfying ‖x1 + txk‖ < 1 + tε for all t ∈ (0, δ).

The dual space X∗ of a Banach space X is said to have property (Aε2)∗ if for
any ε > 0 there exists a number δ > 0 such that if 0 < t < δ and each weak star
null sequence {x∗n} of S(X∗), there is k ∈ N satisfying ‖x∗1 + tx∗k‖ < 1 + tε.

Notice that for reflexive Banach spaces the properties (Aε2) and (Aε2)∗ coincide.

Prus (see [9]) has proved that X is NUS∗ if and only if X has property (Aε2)
and X contains no copy of l1. He also proved that if X is NUS∗, then X has
the weak Banach-Saks property.

A natural generalization of this notion is property (WAε2).

A Banach space X has property (WAε2) whenever it satisfies the condition from
the definition of property (Aε2) with ”for every ε > 0” replaced by ”for some
ε ∈ (0, 1)”.

Let C be a nonempty bounded closed convex subset of X. A mapping T : C →
C is said to be nonexpansive whenever the inequality ‖Tx− Ty‖ ≤ ‖x− y‖
holds for every x, y ∈ C.

We will say that X has the weak fixed point property (WFPP for short) if
every nonexpansive mapping T : K → K from a nonempty weakly compact
convex subset K of X into itself has a fixed point.

R. Browder, D. Gohde, W. A. Kirk (see [5]) and other authors have established
that conditions of a geometric nature on the norm of X, guarantee the WFPP.
Uniform convexity and normal structure are examples of such conditions.

To obtain the weak fixed point property in Banach spaces, Garćıa-Falset [3]
introduced the coefficient R(X) as follows:

R(X) = sup
{

lim inf
n→∞

‖xn + x‖ : {xn} ⊂ B(X), xn
w→ 0, x ∈ B(X)

}
.

He proved that a Banach space X with R(X) < 2 has the weak fixed point
property ( see [4]).

It is clear that a Banach space X with property (WAε2) has R(X) < 2. There-
fore, a Banach space X with property (WAε2) has the fixed point property.

Let ‖·‖ be a norm in X. We say that ‖·‖ is a uniformly Frechet differentiable
norm (UF-norm for short) if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists uniformly over x, y ∈ S(X).

Denote by N and R the sets of natural and real numbers, respectively. Let
(G,Σ, µ) be a measure space with a finite and non-atomic measure µ. Denote
by L0 the set of all µ-equivalence classes of real valued measurable functions
defined on G. Let l0 stand for the space of all real sequences.
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A map Φ : R → [0,∞) is said to be an Orlicz function if it is even, convex,
vanishes at 0, but not identically 0.

An Orlicz function is called an N -function if

lim
u→0

Φ(u)

u
=∞.

By the Orlicz function space LΦ we mean

LΦ =

{
x ∈ L0 : IΦ(cx) =

∫
G

Φ (cx(t)) dµ <∞ for some c > 0

}
.

Analogously, we define the Orlicz sequence space

lΦ =

{
x ∈ l0 : IΦ(cx) =

∞∑
i=1

Φ(cx(i)) <∞ for some c > 0

}
.

The spaces LΦ and lΦ are equipped with the so-called Luxemburg norm

‖x‖ = inf{ε > 0 : IΦ(
x

ε
) ≤ 1}

or with the equivalent one

‖x‖0 = inf
k>0

1

k
(1 + IΦ(kx)) ,

called the Orlicz or the Amemiya norm. It is well known that if Φ is an N -
function, then for any x 6= 0 there exists a number k such that

‖x‖0 =
1

k
(1 + IΦ(kx)) .

(see [1]).

To simplify notations, we put LΦ = (LΦ, ‖·‖) , lΦ = (lΦ, ‖·‖) , L0
Φ = (LΦ, ‖·‖0)

and l0Φ = (l0Φ, ‖·‖0).

For any Orlicz function Φ we define its complementary function
Ψ : R −→ [0,∞) by the formula

Ψ (v) = sup
u>0
{u |v| − Φ (u)}

for every v ∈ R. The complementary function Ψ is also a convex function
vanishing at zero.

We say an Orlicz function Φ satisfies the ∆2-condition (δ2-condition) if there
exist constants k ≥ 2 and u0 > 0 such that Φ(u0) > 0 and

Φ (2u) ≤ kΦ (u)

for every |u| ≥ u0 (for every |u| ≤ u0), respectively (see [1], [7] an [10]).

We say an Orlicz function Φ satisfies the ∇2-condition (δ2-condition) if its com-
plementary function Ψ satisfies the ∆2-condition (δ2-condition), respectively.
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An Orlicz function Φ is said to be uniformly convex on [0, u0], if for all
ε > 0, there exists δ > 0 such that

Φ

(
u+ v

2

)
≤ (1− δ)Φ(u) + Φ(v)

2

for all u, v ∈ [0, u0] satisfying |u− v| ≥ εmax {u, v} .
We say an Orlicz function Φ is strictly convex if for any u 6= v and α ∈ (0, 1)
we have

Φ (αu+ (1− α)v) < αΦ(u) + (1− α)Φ(v).

For more details on Orlicz functions and Orlicz spaces we refer to [1], [8] and
[11].

§2. RESULTS

Theorem 1. If a norm ‖·‖ in a Banach space X is a UF-norm, then X has
property (UAε2).

Proof: Since ‖·‖ is a UF-norm inX, we get that the Banach spaceX is Gateaux
differentiable, i.e., X is smooth. Let fx ∈ S(X∗) be the unique supporting
functional at x ∈ S(X). It is well know that the norm ‖·‖ on a Banach space
X is UF if and only if

lim
t→0

‖x+ ty‖ − ‖x‖
t

= fx(y)

exists uniformly for x, y ∈ S(X).

Now, for any ε > 0 and each weakly null sequence {xn} in S(X), there exists
n0 ∈ N such that

|fx(xn)| < ε

2
,

for all n ≥ n0. Since the norm ‖·‖ on a Banach space X is UF, there exists a
δ > 0 such that ∣∣∣∣‖x+ txn0‖ − ‖x‖

t
− fx(xn0)

∣∣∣∣ < ε

2

whenever |t| < δ, whence

‖x+ txn0‖ − ‖x‖ <
tε

2
+ |fx(xn0)| t < tε

uniformly with respect x ∈ S(X). This means that X has property (Aε2).

Theorem 2. Suppose that a Banach space X has property (WAε2). Then X
has the weak Banach-Saks property and the weak fixed point property.

Proof: Since X has property (WAε2), there exist ε ∈ (0, 1) and δ > 0 such that
for t ∈ [0, δ] and weak null sequence {xn} ∈ B(X) there exists k ∈ N, k > 1
such that ‖x1 + txk‖ < 1 + εδ. Hence

‖x1 + xk‖ = ‖x1 + δxk + (1− δ)xk‖

≤ ‖x1 + δxk‖+ (1− δ) ≤ 1 + εδ + 1− δ = 2− δ(1− ε),
4



That is, a Banach space with property (WAε2) has property (A2). Consequently,
a Banach space with property (WAε2) has the weak Banach-Saks property.

Moreover, we have R(X) ≤ 2− δ(1− ε) < 2, so X enjoys the weak fixed point
property.

Theorem 3. Let X be a separable Banach space. If X∗has property (Aε2)∗,
then X has the (UKK)-property.

Proof: Let {xn} be a sequence in S(X) with sep({xn}) > ε and xn
w→ x ∈

B(X), deleting at most one element of the sequence, we can assume that
sep({xn − x}) > ε. For any ε1 > 0 let M = 1 + ε1. By the Bessaga-Pelczynski
selection principle, there exists a subsequence {zn} of {xn − x, x} with z1 = x
that is a basic sequence with basic constant less than or equal to M . (See [[2]]
p 46)

Let us consider the sequence {z∗n} of the Hahn-Banach extensions of the coeffi-
cient functionals of the basic sequence { zn

‖zn‖}. Put X0 = span{zn : n = 1, 2, ...}.
Then 〈z∗n, z〉 → 0 for any z ∈ X0 as n → ∞. In fact, for any z ∈ X0 we have

z =
∞∑
i=1

z∗i (z)zi., hence

|〈z∗n, z〉| = ‖z∗n(z)zn‖ =

∥∥∥∥∥
∞∑
i=n

z∗i (z)zi −
∞∑

i=n+1

z∗i (z)zi

∥∥∥∥∥
≤

∥∥∥∥∥
∞∑
i=n

z∗i (z)zi

∥∥∥∥∥+

∥∥∥∥∥
∞∑

i=n+1

z∗i (z)zi

∥∥∥∥∥→ 0.

Since X is separable, we can assume that z∗n
w∗
→ z∗ as n→∞.

Now, for any ε2 > 0. Since X∗ has property (WAε2)∗, there exists 0 < δ2 ≤ 1
such that for any t ∈ (0, δ2) there exists k > 1 such that

(1)

∥∥∥∥ z∗1
‖z∗1‖

+ t
(z∗k − z∗)
‖z∗k − z∗‖

∥∥∥∥ < 1 + tε2,

It is easy to see that

(2) For all k ∈ N, 〈z∗, zk〉 = 0 and 〈z∗k, zk〉 = ‖zk‖. In particular 〈z∗, x〉 = 0

(3) For all k ≥ 2, ‖x+ zk‖ = 1 and 〈z∗k, x〉 = 0

(4) For all k ∈ N, ‖z∗k − z∗‖ ≤ 4M , and ‖z∗1‖ ≤M .

We can assume that ‖zn‖ ≥ ε
2

for n ≥ 2, because sep({xn}) > ε

Let t ∈ (0, δ2) and let k > 1 be such that (1) holds , by (2)- (4) we obtain

‖x‖ = 〈z∗1 , x〉 = ‖z∗1‖〈
z∗1
‖z∗1‖

, x〉 = ‖z∗1‖[〈
z∗1
‖z∗1‖

, x+ zk〉]
5



= ‖z∗1‖[〈
z∗1
‖z∗1‖

, x+ zk〉+ t〈 z∗k − z∗
‖z∗k − z ∗ ‖

, x+ zk〉 − t〈
z∗k − z∗
‖z∗k − z ∗ ‖

, x+ zk〉]

= ‖z∗1‖[〈
z∗1
‖z∗1‖

+ t
z∗k − z∗
‖z∗k − z ∗ ‖

, x+ zk〉 −
t‖zk‖
‖z∗k − z∗‖

]

≤ ‖z∗1‖[‖
z∗1
‖z∗1‖

+ t
z∗k − z∗
‖z∗k − z ∗ ‖

‖ − t‖zk‖
‖z∗k − z∗‖

]

≤M [(1 + tε2)− tε

2‖z∗k − z∗‖
] ≤M [(1 + tε2)− tε

8M
]

So far we have ‖x‖ ≤M(1 + tε2 − tε
8M

).Using M = 1 + ε1, and taking the limit
as ε1 → 0 and obtain

‖x‖ ≤ 1 + t(ε2 −
ε

8
)

Now take ε2 = ε
16

, and t = δ2
2

, and get

‖x‖ ≤ 1− δ2ε

32
Completing the proof of the theorem.

Remark 1. It worth noting that separability of X in the last theorem is only
necessary to ensure that w∗- compact subsets are w∗-sequentially compact. We
can relax the assumption of separability of X to, for example, requiring X admit
an equivalent smooth norm [13].

Corollary 1. Let X be a separable Banach space. If X∗has property (Aε2)∗,
then both X and X∗ have the weak fixed point property.

Proof: The result follows from theorem 2, Theorem 3 and Theorem 1 in [ ].

Corollary 2. Let X be the Orlicz space LM or L0
M . The following statements

are equivalent:

(1) X is uniformly smooth;

(2) X is nearly uniformly smooth;

(3) X is (NUS*):

(4) X has property (Aε2) ;

(5)Ψ ∈ ∆2, Ψ is strictly convex on the whole real line and Φ is uniformly convex
outside a neighborhood of zero.

Proof: It follows from Theorem 3 and Theorem 3.15 in [1].

Lemma 1. Suppose Φ ∈ δ2. Then for any ε > 0 and L > 0 there exists δ > 0
such that

IΦ(x+ ty)− IΦ(x) < tε
6



whenever IΦ(x) ≤ L, IΦ(y) ≤ δ and t ∈ (0, 1).

Proof: Since Φ ∈ δ2, for any ε > 0 and L > 0 there exists δ ∈ (0, 1) such that

IΦ(x+ y)− IΦ(x) < ε

whenever IΦ(x) ≤ L and IΦ(y) ≤ δ (see [ ]).

So for any t ∈ (0, δ)

IΦ(x+ ty) = IΦ(tx+ ty + (1− t)x)

≤ tIΦ(x+ y) + (1− t)IΦ(x)

≤ t(IΦ(x) + ε) + (1− t)IΦ(x) = IΦ(x) + tε

whenever IΦ(x) ≤ L and IΦ(y) ≤ δ.

Lemma 2. Suppose Φ ∈ δ2. Then for any ε > 0 and u0 > 0 there exists δ > 0
such that

Φ (tu) ≤ tεΦ (u)

whenever |u| ≤ u0 and t ∈ (0, δ).

Proof: Suppose that Φ ∈ δ2. Then for any u0 > 0 there exists θ ∈ (0, 1) such
that

Φ
(u

2

)
≤ θ

2
Φ (u)

whenever |u| ≤ u0 (see [ ]). Take n ∈ N such that θn ≤ ε. Then for δ = 1
2n

, we
have

Φ(δu) = Φ
( u

2n

)
≤
(
θ

2

)n
Φ (u) ≤ δεΦ (u)

whenever |u| ≤ u0.

Hence for any t ∈ (0, δ), we have

Φ(tu) = Φ

(
t

δ
δu

)
≤ t

δ
δεΦ (u) = tεΦ (u)

whenever |u| ≤ u0.

For any x ∈ l0Φ, put N(x) = {i ∈ N : x(i) 6= 0}. Define D(l0Φ) = {x = (x(i)) ∈
B(l0Φ) : N(x) is finite }.

Lemma 4. Let Φ be an N -function such Φ ∈ δ2 and Φ ∈ δ2. Then for any
ε > 0 there exists δ > 0 such that for every weakly null sequence {xn} in B(l0Φ)
and x ∈ D(l0Φ) there exists k > 1 such that

‖x+ txk‖0 ≤ 1 + tε

whenever t ∈ (0, δ).

Proof: Let ε > 0 be given. By Φ ∈ δ2, the set Q = {kx : 1
2
≤ ‖x‖ ≤ 1 } is

bounded, i.e., there exists k > 1 such that 1 ≤ kx ≤ k. By Lemma 2, we know
that there exists δ ∈ (0, 1) such that

Φ (tu) ≤ tδΦ (u)

whenever t ∈ (0, δ) and |u| ≤ Φ−1(k).
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By the Lemma 1, there exists θ > 0 such that

IΦ(x+ ty)− IΦ(x) < tε

whenever IΦ(x) ≤ L, IΦ(y) ≤ θ and t ∈ (0, 1).

Let t ∈ (0, δ
k
) be fixed and {xn} be arbitrary weakly null sequence in S(l0Φ).

For any x ∈ D(l0Φ), take i0 ∈ N such that x(i) = 0 when i > i0. Since xn
w→ 0,

there exists n0 ∈ N such that
i0∑
i=1

Φ(xn(i)) < θ for all n ≥ n0. Hence, we get for

l ≥ 1 satisfying ‖x1‖ = 1
l
(1 + IΦ(lx1)):

‖x1 + txn‖0 ≤ 1

l
[1 + IΦ (l(x1 + txn))]

=
1

l

[
1 +

i0∑
i=1

Φ (l(x1(i) + txn(i))) +
∞∑

i=i0+1

Φ (ltxn(i))

]

≤ 1

l

[
1 +

i0∑
i=1

Φ (lx1(i)) + tε+
∞∑

i=i0+1

Φ (ltxn(i))

]

≤ 1

l

[
1 +

i0∑
i=1

Φ (lx1(i)) + tε+ tlε
∞∑

i=i0+1

Φ (xn(i)))

]

≤ 1

l

[
1 +

i0∑
i=1

Φ (lx1(i))

]
+ 2tε ≤ 1 + 2tε. �

Assume that Φ ∈ δ2. Then for any x ∈ S(l0Φ) and k > 1, there exists a unique

dx,k > 0 such that IΦ

(
kx
dx,k

)
= k−1

2
. Define dx = inf{dx,k : k > 1}.

Theorem 4. Let Φ be an Orlicz function satisfying lim
u→0

Φ(u)
u

= 0 and X = l0Φ.

The following statements are equivalent:

(1) X has property (Aε2);

(2) X has property (WAε2);

(3) R(X) < 2;

(4) Φ ∈ δ2 and Φ ∈ δ2.

Proof: (3) ⇒ (4). Suppose that Φ /∈ δ2. Then for any ε > 0 there exists
x ∈ S(l0Φ) such that

1− ε ≤

∥∥∥∥∥
∞∑
i=n

x(i)ei

∥∥∥∥∥
0

≤ 1

for all n ∈ N . Take n1 < n2 < · · · of N such that∥∥∥∥∥
ni+1∑

j=ni+1

x(j)ej

∥∥∥∥∥
0

≥ 1− 2ε for all i ∈ N .
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Put xi =
ni+1∑

j=ni+1

x(j)ej. Since

lim sup
λ→0

IΦ(λxn)

λ
≤ lim

λ→0

IΦ(λx)

λ
= 0,

we have xi
lΨ→ 0. Notice that every singular functional vanishes on any xi. So,

we have xi
w→ 0.

But lim inf
i→∞

‖xi + x‖0 ≥ lim inf
i→∞

2 ‖xi‖0 ≥ 2(1− 2ε). By the arbitrariness of ε, we

get R(l0Φ) = 2. In such a way we proved that if Φ 6∈ δ2 then (3) does not hold.

Suppose that Φ /∈ δ2.Then the Kottman constant K(l0Φ) = sup{dx : x ∈
S(l0Φ)} = 2.( see [1] and [11]). Hence for any ε > 0 there exists x ∈ S(l0Φ)
such that dx > 2− ε. Furthermore, we have dx,k ≥ dx > 2− ε for all k > 1. Put

x1 = (x(1), 0, x(2), 0, x(3), 0, x(4), 0, x(5), 0, x(6), 0, ...),

x2 = (0, x(1), 0, 0, 0, x(2), 0, 0, 0, 0, 0, 0, 0, x(3), 0, 0, ...),

x3 = (0, 0, 0, x(1), 0, 0, 0, 0, 0, 0, 0, 0, x(2), 0, 0, 0, 0, ...), ... .

Then ‖xn‖0 = 1, xn
w→ 0 and for any k > 1 we have

1

k

(
1 + IΦ

(
k(xn + x1)

dx

))
≥ 1

k

(
1 + IΦ

(
k(xn + x1)

dx,k

))
=

1

k

(
1 + IΦ

(
kx

dx,k

)
+ IΦ

(
kx

dx,k

))
=

1

k
(1 +

k − 1

2
+
k − 1

2
) = 1.

So, we get
∥∥∥xn+x1

dx

∥∥∥0

≥ 1, i.e., lim inf
n→∞

‖xn + x1‖0 ≥ dx − ε. By the arbitrariness

of ε, we get R(l0Φ) = 2. Therefore, we proved that Φ 6∈ δ2 implies that (3) does
not hold.

(4)⇒ (1). By Lemma 4, for any ε > 0 there exists a δ > 0 such that for every
weak null sequence {xn} in B(l0Φ) and any x ∈ D(l0Φ), there exists a number
m > 1 such that

‖x+ txm‖0 ≤ 1 +
tε

2
whenever t ∈ (0, δ).

Let t ∈ (0, δ) be given arbitrary. For any weakly null sequence {xn} in B(l0Φ),
we only need to consider the case when N(x1) is infinite. Take i0 large enough

such that

∥∥∥∥ ∞∑
i=i0+1

x1(i)ei

∥∥∥∥0

≤ tε
2

. Then there exists m ∈ N such that∥∥∥∥∥
i0∑
i=1

x1(i)ei + txm

∥∥∥∥∥
0

≤ 1 +
tε

2
.

Hence

‖x1 + txm‖0 ≤

∥∥∥∥∥
i0∑
i=1

x1(i)ei + txm

∥∥∥∥∥
0

+
tε

2
≤ 1 +

tε

2
+
tε

2
= 1 + tε. �
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Corollary 3. Let Φ be an Orlicz function with lim
n→0

Φ(u)
u

= 0 and X = l0Φ. The

following statements are equivalent:

(1) X is nearly uniformly smooth;

(2) X is (NUS*);

(3) M ≤ 1, Φ ∈ δ2 and Φ ∈ δ2.

In same way, we can get the following result.

Theorem 5. For any Orlicz function Φ and X the following statements are
equivalent:

(1) X has property (Aε2);

(2) X has property (WAε2);

(3) R(X) < 2;

(4) Φ ∈ δ2 and Φ ∈ δ2.

Corollary 4. Let Φ and X be as in Theorem 5. The following statements are
equivalent:

(1) X is nearly uniformly smooth;

(2) X is (NUS*);

(3) Φ ∈ δ2 and Φ ∈ δ2.
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