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Abstract. Motivated by questions of algorithm analysis, we provide several distinct ap-
proaches to determining convergence and limit values for a class of linear iterations.

1. INTRODUCTION.

Problem I. Determine the behavior of the sequence defined recursively by

xn :=
xn−1 + xn−2 + · · · + xn−m

m
for n ≥ m + 1 (1)

and satisfying the initial conditions

xk = ak, for k = 1, 2, . . . ,m, (2)

where a1, a2, . . . , am are given real numbers.

This problem was encountered by Bauschke, Sarada, and Wang [1] while exam-
ining algorithms to compute zeroes of maximal monotone operators in optimization.
Questions they raised concerning its resolution motivated our ensuing consideration of
various approaches whereby it might be addressed.

We suspect that, like us, the first thing most readers do when presented with a dis-
crete iteration is to try to solve for the limit, call it L , by taking the limit in (1). Sup-
posing the limit to exist, we deduce

L =

m︷ ︸︸ ︷
L + L + · · · + L

m
= L , (3)

and learn nothing—at least not about the limit. There is a clue in that the result is
vacuous in large part because it involves an average, or mean.

In the next three sections, we present three quite distinct approaches. While at least
one will be familiar to many readers, we suspect that not all three will be. Each has
its advantages, both as an example of more general techniques and as a doorway to a
beautiful corpus of mathematics.

2. SPECTRAL SOLUTION. We start with what may well be the best-known ap-
proach. It may be found in many linear algebra courses, often along with a discussion
of the Fibonacci numbers Fn = Fn−1 + Fn−2 with F0 = 0, F1 = 1.

Equation (1) is an example of a linear homogeneous recurrence relation of order m
with constant coefficients. Standard theory (see, for example [5, Chapter 13.2, p. 252]
or [9, Section 12.5, p. 90]) runs as follows.
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Theorem 2.1 (Linear recurrences). The general solution of a linear recurrence

xn =

m∑
k=1

αk xn−k

with constant coeffients, has the form

xn =

l∑
k=1

qk(n)r
n
k , (4)

where the rk are the l distinct roots of the characteristic polynomial

p(r) := rm
−

m∑
k=1

αkr k−1, (5)

with algebraic multiplicity mk and qk , which are polynomials of degree at most mk − 1.

Typically, elementary books only consider simple roots, but we shall use a little
more.

Our equation analyzed. The linear recurrence relation specified by equation (1) has
characteristic polynomial

p(r) := rm
−

1

m
(rm−1

+ rm−2
+ · · · + r + 1)

=
mrm+1

− (m + 1)rm
+ 1

m(r − 1)
(6)

with roots r1 = 1, r2, r3, . . . , rm . Since

p′(1) = m −
1

m

m−1∑
n=1

n = m −
m − 1

2
=

m + 1

2
,

the root at 1 is simple.
We next show that if p(r) = 0 and r 6= 1, then |r | < 1. We argue as follows. We

know from (6) that p(r) = 0 if and only if

r +
1

mrm
= 1+

1

m
. (7)

If |r | > 1, then ∣∣∣∣r + 1

mrm

∣∣∣∣ ≤ |r | + 1

m|r |m
< 1+

1

m
,

since the function f (x) := x + 1
mxm is strictly increasing for real x > 1 and f (1) =

1 + 1
m . Thus, p(r) 6= 0 when |r | > 1. Suppose therefore that p(r) = 0 with r =
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eiθ , 0 ≤ θ < 2π . Then by (7) we must have

cos(θ)+
cos(−mθ)

m
= 1+

1

m
,

which is only possible when θ = 0.
By (4) we must have

xn = c1 +

r∑
k=2

qk(n)r
n
k , (8)

where rk lies in the open unit disc for 2 ≤ k ≤ m. Thus, the limit in (8) exists and
equals c1 = qk(1), the constant polynomial coefficient of the eigenvalue 1.

Identifying the limit. In fact, we may use (6) to see that all roots are simple. It follows
from (6) that

((1− r)p(r))′ = (m + 1)rm−1(1− r),

and hence that the only possible multiple root of p is r1 = 1, which we have already
shown to be simple. So the solution is actually of the form

xn = c1 +

m∑
k=2

ckr n
k , with c1, . . . , cm constants. (9)

Observe now that if r is any of the roots r2, r3, . . . , rm , then

m∑
n=1

nr n
=

mrm+2
− (m + 1)rm+1

+ r

(r − 1)2
=

mr p(r)

r − 1
= 0, (10)

and so multiplying (9) by n and summing from n = 1 to m, we obtain

c1 =
2

m(m + 1)

m∑
n=1

nan. (11)

Thence, we do have convergence and the limit L = c1 is given by (11).

Example 2.2 (The weighted mean). We may perform the same analysis, if the arith-
metic average in (1) is replaced by any weighted arithmetic mean

W(α)(x1, x2, . . . , xm) := α1x1 + α2x2 + · · · + αm xm

for strictly positive weights αk > 0 with
∑m

k=1 αk = 1. Then W(1/m) = A is the arith-
metic mean of Problem I. As is often the case, the analysis becomes easier when we
generalize. The recurrence relation in this case is

xn = αm xn−1 + αm−1xn−2 + · · · + α1xn−m
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for n ≥ m + 1, with companion matrix

Am :=


αm αm−1 · · · α2 α1

1 0 · · · 0 0

0 1 · · · 0 0

· · · · · · 1 0 0

0 0 · · · 1 0

 . (12)

The corresponding characteristic polynomial of the recurrence relation

p(r) := rm
−
(
αmrm−1

+ αm−1rm−2
+ · · · + α2r 1

+ α1

)
is also the characteristic polynomial of the matrix.

Clearly, p(1) = 0. Now suppose that r is a root of p and set ρ := |r |. Then the
triangle inequality and the mean property of W(α) imply that

ρm
≤

m∑
k=1

αkρ
k−1
≤ max

1≤k≤m
ρk−1, (13)

and so 0 ≤ ρ ≤ 1.
If ρ = 1 but r 6= 1, then r = eiθ for 0 < θ < 2π and, on observing that r−m p(r) =

0 and equating real parts, we get

1 =
m∑

k=1

αkei(k−m−1)θ
=

m−1∑
k=1

αk cos((m + 1− k)θ)+ αm cos(θ),

whence cos(θ) = 1, which is a contradiction. [Alternatively, we may note that the
modulus is a strictly convex function, whence exp(iθ) = 1, which is again a contra-
diction.] Thence, all roots other than 1 have modulus strictly less than 1.

Finally, since p′(1) = m −
∑m

k=1(k − 1)αk ≥ m − (m − 1)
∑m

k=1 αk = 1, the root
at 1 is still simple. Moreover, if σk := α1 + α2 + · · · + αk , then

p(r) = (r − 1)
m∑

k=1

σkr k−1. (14)

Hence, p has no other positive real root. In particular, from (4) we again have

xn = L +
r∑

k=2

qk(n)r
n
k = L + εn,

where εn → 0 since the root at 1 is simple while all other roots are strictly inside the
unit disc—but need not be simple, as illustrated in Example 2.4.

Remark 2.3. An analysis of the proof in Example 2.2 shows that the conclusions
continue to hold for nonnegative weights, as long as the highest-order term αm > 0.
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Example 2.4 (A weighted mean with multiple roots). The polynomial

p(r) = r 6
−

r 5
+ r 4
+ 16r 3

+ 18r 2
+ 45r + 81

162
(15)

=
1

162
(2r + 1) (r − 1)

(
1+ 9r 2

)2
, (16)

has a root at one and a repeated pair of conjugate roots at ± i
3 . Nonetheless, the

weighted mean iteration

xn =
81xn−6 + 45xn−5 + 18xn−4 + 16xn−3 + xn−2 + xn−1

162

is covered by the development of Example 2.2. The limit is

L :=
162a6 + 161a5 + 160a4 + 144a3 + 126a2 + 81a1

834
. (17)

Once found, this is easily checked (in a computer algebra system) from the Invariance
principle of the next section. In fact, the coefficients were found by looking in Maple
at the thousandth power of the corresponding matrix and converting the entries to be
rational.

The polynomial was constructed by examining how to place repeated roots on
the imaginary axis while preserving increasing coefficients as required in (14). One
general potential form is then p(σ, τ ) := (r − 1)(r + σ)(r 2

+ τ 2)2, and we selected
p(1/2, 1/3). In the same fashion,

p

(
1

2
,

1

2

)
= r 6
−

16r 5
+ 8r 3

+ 6r 2
+ r + 1

32
,

in which r 4 has a zero coefficient, but the corresponding iteration remains well be-
haved; see Remark 2.3.

We will show in Example 3.3 that the approach of the next section provides the most
efficient way of identifying the limit in this generalization. (In fact, we shall discover
that the numerator coefficients in (17) are the partial sums of those in (15).) Example
3.3 also provides a quick way to check the assertions about limits in the next example.

Example 2.5 (Limiting examples I). Consider first

A3 :=


1
2 0 1

2

1 0 0

0 1 0

 .
The corresponding iteration is xn = (xn−1 + xn−3)/2 with limit a1/4 + a2/4 + a3/2.
By comparison, for

A3 :=


1
2

1
2 0

1 0 0

0 1 0


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the corresponding iteration is xn = (xn−1 + xn−2)/2 with limit (a1 + 2a2)/3. This can
also be deduced by considering Problem I with m = 2 and ignoring the third row and
column. The third permutation

A3 :=

 0 1
2

1
2

1 0 0

0 1 0


corresponding to the iteration xn = (xn−2 + xn−3)/2 has limit (a1 + 2a2 + 2a3)/5.

Finally,

A3 :=

 0 0 1

1 0 0

0 1 0


has A3

3 = I , and so Ak
3 is periodic of period three, as is obvious from the iteration

xn = xn−3.
We return to these matrices in Example 4.7 of the penultimate section.

3. MEAN ITERATION SOLUTION. The second approach, based on [3, Section
8.7], deals very efficiently with equation (1); as a bonus, the proof of convergence we
give below holds for nonlinear means given positive starting values.

We say a real-valued function of M is a strict m-variable mean if

min(x1, x2, . . . , xm) ≤ M(x1, x2, . . . , xm) ≤ max(x1, x2, . . . , xm)

with equality only when all variables are equal. We observe that when M is a weighted
arithmetic mean, we may take its domain to be Rm ; however, certain nonlinear
means—such as G := (x1x2 · · · xm)

1/m—are defined only for positive values of the
variables.

Convergence of mean iterations. In the language of [3, Section 8.7], we have the
following.

Theorem 3.1 (Convergence of a mean iteration). Let M be any strict m-variable
mean and consider the iteration

xn := M(xn−m, xn−m+1, . . . , xn−1), (18)

so when M = A we recover the iteration in (1). Then xn converges to a finite limit
L(x1, x2, . . . , xm).

Proof. Indeed, specialization of [3, Section 8.7, Exercise 7] actually establishes con-
vergence for an arbitrary strict mean; but let us make this explicit for this case.

Let xn := (xn, xn−1, . . . , xn−m+1) and let an := max xn, bn := min xn . As noted
above, for general means we need to restrict the variables to nonnegative values, but
for linear means no such restriction is needed. Then for all n, the mean property
implies that

an−1 ≥ an ≥ bn ≥ bn−1. (19)
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Thus, a := limn an and b := limn bn exist with a ≥ b. In particular, xn remains
bounded. Select a subsequence xnk with xnk → x . It follows that

b ≤ min x ≤ max x ≤ a (20)

while

b = min M(x) and max M(x) = a. (21)

Since M is a strict mean, we must have a = b and the iteration converges.

It is both here and in Theorem 3.2 that we see the power of identifying the iteration
as a mean iteration.

Determining the limit. In what follows, a mapping L : Dn
→ R, where D ⊆ R, is

said to be a diagonal mapping if L(x, x, . . . , x) = x for all x ∈ D.

Theorem 3.2 (Invariance principle [3]). For any mean iteration, the limit L is neces-
sarily a mean and is the unique diagonal mapping satisfying the Invariance principle:

L(xn−m, xn−m+1, . . . , xn−1) = L(xn−m+1, . . . , xn−1,

M(xn−m, xn−m+1, . . . , xn−1)). (22)

Moreover, L is linear whenever M is.

Proof. We sketch the proof (details may again be found in [3, Section 8.7]). First,
check that the limit, being a pointwise limit of means, is itself a mean and so is con-
tinuous on the diagonal.

The principle follows, since

L(xm) = · · · = L(xn) = L(xn+1) = L
(
lim

n
xn

)
= lim

n
(xn).

We leave it to the reader to show that L is linear whenever M is.

We note that we can mix and match arguments—if we have used the ideas of the
previous section to convince ourselves that the limit exists, the Invariance principle is
ready to finish the job.

Example 3.3 (A general strict linear mean). If we suppose that M(y1, . . . , ym) =∑m
i=1 αi yi , with all αi > 0, and that L(y1, . . . , ym) =

∑m
i=1 λi yi are both linear, we

may solve (22) to determine that for k = 1, 2, . . .m − 1 we have

λk+1 = λk + λmαk+1. (23)

Whence, on setting σk := α1 + · · · + αk , we obtain

λk

λm
= σk . (24)
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Further, since L is a linear mean, we have 1 = L(1, 1, . . . , 1) = 6m
k=1λk ; whence,

summing (3.3) from k = 1 to m yields 1
λm
= 6m

k=1σk and so becomes

λk =
σk∑m

k=1 σk
. (25)

In particular, setting αk ≡
1
m , we compute that σk =

k
m and so λk =

2k
m(m+1) , as was

already determined in (11) of the previous section.

Example 3.4 (A nonlinear mean). We may replace A by the Hölder mean

Hp(x1, x2, . . . , xm) :=

(
1

m

m∑
i=1

x p
i

)1/p

for −∞ < p <∞. The limit will be
(∑m

k=1 λka p
k

)1/p
, with λk as in (25). In particular,

with p = 0 (taken as a limit), we obtain in the limit the weighted geometric mean
G(a1, a2, . . . , am) =

∏m
k=1 aλk

k . We also apply the same considerations to weighted
Hölder means.

We conclude this section with an especially neat application of the arithmetic In-
variance principle to an example by Carlson [3, Section 8.7].

Example 3.5 (Carlson’s logarithmic mean). Consider the iterations with a0 := a >
0, b0 := b > a, and

an+1 =
an +
√

anbn

2
, bn+1 =

bn +
√

anbn

2
,

for n ≥ 0. In this case, convergence is immediate since |an+1 − bn+1| = |an − bn|/2.
If asked for the limit, we might make little progress. But suppose we are told that

the answer is the logarithmic mean

L(a, b) :=
a − b

log a − log b
,

for a 6= b and a (the limit as a→ b) when a = b > 0. We check that

L(an+1, bn+1) =
an − bn

2 log an+
√

bnan
bn+
√

bnan

= L(an, bn),

since 2 log
√

an
√

bn
= log an

bn
. The invariance principle of Theorem 3.2 then confirms that

L(a, b) is the limit. In particular, for a > 1,

L
(

a

a − 1
,

1

a − 1

)
=

1

log a
,

which quite neatly computes the logarithm (slowly) using only arithmetic operations
and square roots.
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4. NONNEGATIVE MATRIX SOLUTION. A third approach is to exploit directly
the nonnegativity of the entries of the matrix Am . This seems best organized as a case
of the Perron–Frobenius theorem [6, Theorem 8.8.1].

Recall that a matrix A is row stochastic if all entries are nonnegative and each row
sums to one. Moreover, A is irreducible if for every pair of indices i and j , there exists
a natural number k such that (Ak)i j is not equal to zero. Recall also that the spectral
radius is defined as ρ(A) := sup{|λ| : λ is an eigenvalue of A} [6, p. 177]. Since A is
not assumed symmetric, we may have distinct eigenvectors for A and its transpose
corresponding to the same nonzero eigenvalue. We call the latter left eigenvectors.

Theorem 4.1 (Perron–Frobenius, Utility grade [2, 6, 8]). Let A be a row-stochastic
irreducible square matrix. Then the spectral radius ρ(A) = 1 and 1 is a simple eigen-
value. Moreover, the right eigenvector e := [1, 1, . . . , 1m] and the left eigenvector l =
[lm, lm−1, . . . , l1] are necessarily both strictly positive, and hence one-dimensional.

In consequence,

lim
k→∞

Ak
=


lm lm−1 · · · l2 l1

lm lm−1 · · · l2 l1

· · · · · · · · · · · · · · ·

lm lm−1 · · · l2 l1

lm lm−1 · · · l2 l1

 . (26)

[We choose to consider l as a column vector with the highest-order entry at the top.]
The full version of Theorem 4.1 treats arbitrary matrices with nonnegative entries.

Even in our setting, we do not know that the other eigenvalues are simple, but we may
observe that this is equivalent to the matrix A being similar to a diagonal matrix D—
whose entries are the eigenvalues in, say, decreasing order. Then An

= U−1 DnU →
U−1 D∞U , where the diagonal of D∞ = [1, 0, . . . , 0m]. More generally, the Jordan
form [7] suffices to show that (26) still follows. See [8] for very nice reprises of the
general Perron–Frobenius theory and its multi-fold applications (and indeed [11]). In
particular, [8, §4] gives Karlin’s resolvent proof of Theorem 4.1.

Remark 4.2 (Collatz and Wielandt, [4, 10]). An attractive proof of Theorem 4.1,
originating with Collatz and before him Perron, is to consider

g(x1, x2, . . . , xm) := min
1≤k≤m

{∑m
j=1 a j,k x j

xk

}
.

Then the maximum, max∑ x j=1,x j≥0 g(x) = g(v) = 1, exists and yields uniquely
the Perron–Frobenius vector v (which in our case is e).

Example 4.3 (The closed form for l). The recursion we study is xn+1 = Axn , where
the matrix A has kth row Ak for m strict arithmetic means Ak . Hence, A is row stochas-
tic and strictly positive and so its Perron eigenvalue is 1, while A∗l = l shows the limit
l is the left or adjoint eigenvector. Equivalently, this is also a so-called compound it-
eration L :=

⊗
Ak as in [3, Section 8.7]; so mean arguments much as in the previous

section also establish convergence. Here, we identify the eigenvector l with the corre-
sponding linear function L since L(x) = 〈l, x〉.
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Remark 4.4 (The closed form for L). Again, we can solve for the right eigenvector
l = A∗l, either numerically (using a linear algebra package or direct iteration) or sym-
bolically. Note that this closed form is simultaneously a generalization of Theorem 3.2
and a specialization of the general Invariance principle in [3, Section 8.7].

The case originating in (1) again has A being the companion matrix

Am :=


am am−1 · · · a2 a1

1 0 · · · 0 0

0 1 · · · 0 0

· · · · · · 1 0 0

0 0 · · · 1 0


with ak > 0 and

∑m
k=1 ak = 1.

Proposition 4.5. If for all 1 ≤ k ≤ m we have ak > 0, then the matrix Am
m has all

entries strictly positive.

Proof. We induct on k. Suppose that the first k < m rows of Ak
m have strictly positive

entries. Since

Ak+1
m =


am am−1 · · · a2 a1

1 0 · · · 0 0

0 1 · · · 0 0

· · · · · · 1 0 0

0 0 · · · 1 0

 Ak
m,

it follows that

(Ak+1
m )1 j =

m∑
r=1

(Am)1r (A
k
m)r j > 0,

and that, for 2 ≤ i ≤ k + 1 ≤ m,

(Ak+1
m )i j =

m∑
r=1

(Am)ir (A
k
m)r j = (A

k
m)i−1, j > 0.

Thus, the first k + 1 rows of Ak+1
m have strictly positive entries, and we are done.

Remark 4.6 (A picture may be worth a thousand words). The last theorem ensures
the irreducibility of Am by establishing the stronger condition that Am

m is a strictly
positive matrix.

Both the irreducibility of Am and the stronger condition obtained above may be
observed in the following alternative way. There are many equivalent conditions for the
irreducibility of A. One obvious condition is that an m ×m matrix A with nonnegative
entries is irreducible if (and only if) A′ is irreducible, where A′ is A with each of its
nonzero entries replaced by 1.

Now, A′ may be interpreted as the adjacency matrix (see [6, Chapter 8]) for the
directed graph G with vertices labeled 1, 2, . . . ,m and an edge from i to j precisely
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when (A′)i j = 1. In this case, the i j entry in the kth power of A′ equals the number of
paths of length k from i to j in G. Thus, irreducibility of A corresponds to G being
strongly connected.

For our particular matrix Am , as given in (12), the associated graph Gm is depicted
in Figure 1.

· · ·
m m − 1 m − 2 1

Figure 1. The graph Gm with adjacency matrix A′m

The presence of the cycle m → m − 1→ m − 2→ · · · → 1→ m shows that Gm

is connected and hence that Am is irreducible.
A moments’ checking also reveals that in Gm , any vertex i is connected to any other

j by a path of length m (when forming such paths, the loop at 1 may be traced as many
times as necessary), thus also establishing the strict positivity of Am

m .

Example 4.7 (Limiting examples, II). We return to the matrices of Example 2.5.
First we look again at

A3 :=


1
2 0 1

2

1 0 0

0 1 0

 .
Then A4

3 is coordinate-wise strictly positive (but A3
3 is not). Thus, A3 is irreducible

despite the first row not being strictly positive. The limit eigenvector is [1/2, 1/4, 1/4]
and the corresponding iteration is xn = (xn−1 + xn−3)/2 with limit a1/4 + a2/4 +
a3/2, where the ai are the given initial values.

Next we consider

A3 :=


1
2

1
2 0

1 0 0

0 1 0

 .
In this case, A3 is reducible and the limit eigenvector [2/3, 1/3, 0] exists but is not
strictly positive (see Remark 2.3). The corresponding iteration is xn = (xn−1 + xn−2)/2
with limit (a1 + 2a2)/3. This is also deducible by considering our starting case with
m = 2 and ignoring the third row and column.

The third case

A3 :=

 0 1
2

1
2

1 0 0

0 1 0


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corresponds to the iteration xn = (xn−2 + xn−3)/2. It, like the first, is irreducible with
limit (a1 + 2a2 + 2a3)/5.

Finally,

A3 :=

 0 0 1

1 0 0

0 1 0


has A3

3 = I , and so Ak
3 is periodic of period three—and does not converge—as is

obvious from the iteration xn = xn−3.

5. CONCLUSION. All three approaches that we have shown have their delights and
advantages. It seems fairly clear, however, that for the original problem, analysis as
a mean iteration—while the least well known—is by far the most efficient and also
the most elementary. Moreover, all three approaches provide for lovely examples in
any linear algebra class, or any introduction to computer algebra. Indeed, they offer
different flavors of algorithmics, combinatorics, analysis, algebra, and graph theory.
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Rejection of Laplace’s Demon

In the 19th century, Laplace claimed that it might be possible to predict the future under the
condition that the positions and speeds of all items in the universe at a certain moment were
known [3]. The entity that is able to make such a prediction is often called Laplace’s demon.
This topic has been extensively discussed and investigated (see, for example, Hawking’s lec-
ture [1]).

Recently, Wolpert [4] defined ”inference devices” and proved several theorems associated
with them. One of the consequences of the theorems is that he disproved any possible existence
of Laplace’s demon. The proof he used is based on Cantor’s diagonal argument. In this note,
we present a much simpler proof using the Halting problem of a Turing machine [2]. Recall
that the Halting problem can be stated as follows, ”Given the description of a Turing machine
with some input string, in general, we cannot determine (predict) whether that Turing machine
will halt.”

We claim that if it is impossible to predict whether a Turing machine will halt, then it is
impossible to predict the future. In other words, if we claim that we can predict the future, then
we must be able to predict whether a Turing machine will halt. This result can be easily pre-
sented without any reference to Turing machines, or even to mathematics at all. Suppose that
there is a device that can predict the future. Ask that device what you will do in the evening.
Without loss of generality, consider that there are only two options: (1) watch TV or (2) listen
to the radio. After the device gives a response, for example, (1) watch TV, you instead listen
to the radio on purpose. The device would, therefore, be wrong. No matter what the device
says, we are free to choose the other option. This implies that Laplace’s demon cannot exist.

REFERENCES

1. S. Hawking, Does God Play Dice? Public Lecture, 2000, available at http://www.hawking.
org.uk/does-god-play-dice.html

2. J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Laguages and Computation.
Addison-Wesley series in computer science. Addison Wesley Publishing, 1979.

3. P. S. Laplace, Philosophical Essays on Probabilities. Translated by F. L. Emory and F. W. Truscott.
Originally published in 1902. Dover, 1985.

4. D. H. Wolpert, Physical limits of inference, Physica D: Nonlinear Phenomena 237 no. 9 (2008)
1257–1281.

—Submitted by Josef Rukavicka, Czech Technical University, Prague

http://dx.doi.org/10.4169/amer.math.monthly.121.06.498
MSC: Primary 68Q05

498 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121

http://www.hawking.org.uk/does-god-play-dice.html
http://www.hawking.org.uk/does-god-play-dice.html

	Introduction.
	Spectral solution.
	Mean iteration solution.
	Nonnegative matrix solution.
	Conclusion.
	Rejection of Laplace's Demon

