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Abstract. In this paper, we introduce a new geometric property (UÃ2)∗

and we show that if a separable Banach space has this property, then both
X and its dual X∗ have the weak fixed point property. We also prove that a

uniformly Gateaux differentiable Banach space has property (UÃ2) and that

if X∗ has property (UÃ2)∗, then X has the (UKK)-property. Criteria for
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§ 1. INTRODUCTIONS

We will denote by N and R the sets of natural and real numbers, respectively.
Let X be a Banach space and let S(X) and B(X) denote the unit sphere and
the unit ball of X, respectively.

Given any element x ∈ S(X) and any positive number δ, we define a w∗-slice
by,

S∗(x, δ) = {x∗ ∈ B(X∗) : x∗(x) ≥ 1− δ} .

Let A be a bounded subset of X. Its Kuratowski measure of noncompactness,
α(A), is defined as the infimum of all numbers d > 0 such that A may be covered
by a finite family of sets with diameters smaller than d.

A Banach space X is said to be NUS∗ [14] (equivalently, its dual is UKK*, [17])
if for each ε > 0 there exists δ > 0 such that if x ∈ S(X), then α(S∗(x, δ)) ≤ ε.

A Banach space X is said to have the weak Banach-Saks property whenever
given any weak null sequence {xn} in X there exists a subsequence {zn} of {xn}
such that the sequence { 1

k
(z1 + z2 + · · ·+ zk)} converges strongly to zero.

A Banach space X is said to have property (A2) if there exists a number Θ ∈
(0, 2) such that for each weak null sequence {xn} in S(X), there are n1,n2 ∈ N
satisfying ‖xn1 + xn2‖ < Θ. It is well known that if X has property (A2) then
X has the weak Banach-Saks property (see [7]).

(1) Supported by the Chinese National Science Foundation Grant.
(2) Supported by the ARC Centre for Complex Dynamic Systems and Control.
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A Banach space X is said to have property (Ã2) if for each ε > 0 there exists a
number δ > 0 such that for any t ∈ (0, δ) and each weak null sequence {xn} in
S(X), there is k ∈ N satisfying ‖x1 + txk‖ < 1 + tε (see [14] and [15]).

Now, we introduce the notions of the (UÃ2), (UÃ2)∗ and (WÃ2) properties.

A Banach space X is said to have property (UÃ2) if for each ε > 0 there exists
a number δ > 0 such that for each weak null sequence {xn} in S(X), there is
k ∈ N satisfying ‖x1 + txk‖ < 1 + tε for all t ∈ (0, δ).

The dual space X∗ of a Banach space X is said to have property (UÃ2)∗ if for
each ε > 0 there exists a number δ > 0 such that for each weak* null sequence
{x∗n} of S(X∗), there is k ∈ N satisfying ‖x∗1 + tx∗k‖ < 1 + tε for all t ∈ (0, δ).

Notice that for reflexive Banach spaces the properties (UÃ2) and (UÃ2)∗ coin-
cide.

Prus (see [15]) has proved that X is NUS∗ if and only if X has property (UÃ2)
and X contains no copy of l1. He also proved that if X is NUS∗, then X has
the weak Banach-Saks property (see [14] and [15]).

A natural generalization of this notion is the following property (WÃ2) defined
below.

We say a Banach space X has property (WÃ2) whenever it satisfies the condition

from the definition of property (UÃ2) with ‘for some ε ∈ (0, 1)’ in place of ‘for
every ε > 0’.

Let C be a nonempty subset of X. A mapping T : C → C is said to be
nonexpansive whenever the inequality ‖Tx− Ty‖ ≤ ‖x− y‖ holds for every
x, y ∈ C.

We will say that X has the weak fixed point property (WFPP for short) if
every nonexpansive mapping T : K → K from a nonempty weakly compact
convex subset K of X into itself has a fixed point.

R. Browder, D. Gohde, W. A. Kirk (see [9]) and other authors have established
many conditions of a geometric nature on the norm of X that guarantee the
WFPP. Uniform rotundity, uniform rotundity in every direction and normal
structure are examples of such conditions.

To obtain a geometric property of a Banach space X that guarantees it has
the weak fixed point property, Garćıa-Falset [7] introduced the coefficient R(X)
defined by the formula:

R(X) = sup
{

lim inf
n→∞

‖xn + x‖ : {xn} ⊂ B(X), xn
w→ 0, x ∈ B(X)

}
.

He proved in [7] that a Banach space X with R(X) < 2 has the weak fixed
point property. This coefficient was also considered in [20].

A Banach space X with property (WÃ2) has R(X) < 2 (see Note 1 below).

Therefore, a Banach space X with property (WÃ2) has the weak fixed point
property.
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We say that a norm ‖·‖ on X is uniformly Frechet differentiable (a UF-norm
for short) if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists uniformly with respect to x and y in S(X).

Let (G,Σ, µ) be a measure space with a finite and non-atomic measure µ. De-
note by L0 the set of all µ-equivalence classes of real valued measurable functions
defined on G. Let l0 stand for the space of all real sequences.

A map Φ : R → [0,∞) is said to be an Orlicz function if it is even, convex,
vanishes at 0, and it is not identically equal to 0.

An Orlicz function is called an N -function if

lim
u→∞

Φ(u)

u
=∞.

By the Orlicz function space LΦ we mean the space

LΦ =

{
x ∈ L0 : IΦ(cx) =

∫
G

Φ (cx(t)) dµ <∞ for some c > 0

}
.

Analogously, we define the Orlicz sequence space

lΦ =

{
x ∈ l0 : IΦ(cx) =

∞∑
i=1

Φ(cx(i)) <∞ for some c > 0

}
.

The spaces LΦ and lΦ are equipped with the so-called Luxemburg norm

‖x‖ = inf{ε > 0 : IΦ(
x

ε
) ≤ 1}

or with the equivalent one

‖x‖0 = inf
k>0

1

k
(1 + IΦ(kx)) ,

called the Orlicz or the Amemiya norm. It is well known that if Φ is an N -
function, then for any x 6= 0 there exists a number k > 0 such that

‖x‖0 =
1

k
(1 + IΦ(kx)) .

(see [1]).

To simplify notations, we put LΦ = (LΦ, ‖·‖) , lΦ = (lΦ, ‖·‖) , L0
Φ = (LΦ, ‖·‖0)

and l0Φ = (l0Φ, ‖·‖0).

For any Orlicz function Φ we define its complementary function Ψ : R −→
[0,∞] by the formula

Ψ (v) = sup
u>0
{u |v| − Φ (u)} ,

for every v ∈ R. The complementary function Ψ of an Orlicz function is also a
convex function vanishing at zero.
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For x ∈ L0
Φ (respectively l0Φ) we denote by k(x) the set of those k > 0 such

that ‖x‖0 = 1
k

(1 + IΦ(kx)). It is known (see [1], [2] and [19]) that k(x) =
[k ∗ (x), k ∗ ∗(x)], whenever k ∗ ∗(x) <∞, where,

k∗(x) = inf{λ > 0 : IΨ(p(λ|x|)) ≥ 1}, k∗∗(x) = sup{λ > 0 : IΨ(p(λ|x|)) ≤ 1}
and Psi is the function complementary to Phi. In the case when k ∗ ∗(x) =∞
and k ∗ (x) <∞, we have k(x) = [k ∗ (x), k ∗ ∗(x)). When k ∗ (x) =∞),

‖x‖0 = lim
k→∞

1

k
(1 + IΦ(kx)) = lim

k→∞

1

k
IΦ(kx).

We say an Orlicz function Φ satisfies the ∆2-condition (δ2-condition) if there
exist constants k ≥ 2 and u0 > 0 such that Φ(u0) <∞ (respectively, Φ(u0) > 0)
and

Φ (2u) ≤ kΦ (u) ,

for every |u| ≥ u0 (respectively, for every |u| ≤ u0), (see [1], [11], [12], [14] and
[16]).

We say an Orlicz function Φ satisfies the ∇2-condition (respectively, δ2-condition)
if its complementary function Ψ satisfies the ∆2-condition (respectively, δ2-
condition).

An Orlicz function Φ is said to be uniformly convex in [0, u0], if for all
ε > 0, there exists δ > 0 such that

Φ

(
u+ v

2

)
≤ (1− δ)Φ(u) + Φ(v)

2

for all u, v ∈ [0, u0] satisfying |u− v| ≥ εmax {u, v} .
We say an Orlicz function Φ is strictly convex in R if for any u, v ∈ R, u 6= v,
and α ∈ (0, 1) we have

Φ (αu+ (1− α)v) < αΦ(u) + (1− α)Φ(v).

For more details on Orlicz functions and Orlicz spaces we refer to [1], [11], [12],
[14] and [18].

§2. GENERAL RESULTS

We begin with the following observation. Note 1. Property (WÃ2) of a Banach

space X implies that R(X) < 2.

Proof. Take any weak null sequence {xn} in S(X) and x ∈ S(X). Then we
have that the sequence {x, x1, x2, . . .} ⊂ S(X) is weakly null. So, by property

(WÃ2), for some ε > 0 and δ which we may take to be in (0, 1)) we can find
a k1 such that ‖x + δxk1‖ ≤ 1 + δε. Consider next the weak null sequence
{x, xk1+1, xk1+2, . . .}. There is a k2 > k1 such that ‖x+ δxk2‖ ≤ 1 + δε. In this
way we can inductively construct a sequence

k1 < k2 < . . . < kl < . . .
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of natural numbers such that ‖x + δxkl‖ ≤ 1 + δε for all l ∈ N . Therefore,
‖x+xkl‖ = ‖x+ δxkl + (1− δ)xkl‖ ≤ 1 + δε+ (1− δ) = η(ε) ∈ (1, 2). Since η(ε)
is independent of x ∈ S(X) and independent of the weakly convergent sequence
{xn} in S(X), the proof is complete.

Theorem 1. If ‖·‖ is a UF-norm in a Banach space X, then X has property

(UÃ2).

Proof. Since ‖·‖ is a UF-norm in X, it follows that X is Gateaux differentiable;
that is, X is smooth. Let fx ∈ S(X∗) denote the unique supporting functional
at x ∈ S(X). It is known that the norm ‖·‖ is uniformly Fréchet differentiable
on the space X if and only if

lim
t→0

‖x+ ty‖ − ‖x‖
t

= fx(y)

exists uniformly with respect to x, y ∈ S(X).

Now, for any ε > 0 and each weak null sequence {xn} in S(X), there exists
n0 ∈ N such that

|fx(xn)| < ε

2
for all n ≥ n0. Since the norm ‖·‖ is (by assumption) UF on X, there exists a
δ > 0 such that ∣∣∣∣‖x+ txn0‖ − ‖x‖

t
− fx(xn0)

∣∣∣∣ < ε

2

whenever |t| < δ, whence

‖x+ txn0‖ − ‖x‖ <
tε

2
+ |fx(xn0)| t < tε

uniformly with respect to x ∈ S(X). This means that X has property (UÃ2),
as required.

Theorem 2. Suppose that a Banach space X has property (WÃ2). Then X
has the weak Banach-Saks property and the weak fixed point property.

Proof. Since X has the property (WÃ2), there exist ε ∈ (0, 1) and δ > 0 such
that for any t ∈ [0, δ] and any weak null sequence {xn} in B(X) there exists
k ∈ N, k > 1, such that ‖x1 + txk‖ < 1 + εδ. Hence

‖x1 + xk‖ = ‖x1 + δxk + (1− δ)xk‖

≤ ‖x1 + δxk‖+ (1− δ) ≤ 1 + εδ + 1− δ = 2− δ(1− ε),

which means that a Banach space with property (WÃ2) has property (A2).

Consequently, a Banach space with property (WÃ2) has the weak Banach-Saks
property.
Moreover, we have by the above estimate that R(X) ≤ 2− δ(1− ε) < 2, so X
enjoys the weak fixed point property (see [7]).
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Let us recall that for a Banach space X with basis {xi}, the basis constant
of the space is the number M = sup

n
‖Pn‖, where Pn are the projections defined

by Pn(x) =
n∑
i=1

aixi, where x =
∞∑
i=1

aixi.

Theorem 3. Let X be a separable Banach space. If its dual space X∗ has

property (UÃ2)∗, then X has the (UKK)-property.

Proof. Let {xn} be a sequence in S(X) with sep({xn}) := infm 6=n ‖xm−xn‖ > ε

and xn
w→ x ∈ B(X). Deleting at most one element of the sequence, we can

assume that sep({xn−x}) > ε. For any ε1 > 0 let M = 1 + ε1. By the Bessaga-
Pelczynski selection principle, there exists a subsequence {zn} of the sequence
{xn − x, x} with z1 = x, being a basic sequence with the basis constant less
than or equal to M (see [5], p. 46).

Let us consider the sequence {z∗n} of the Hahn-Banach extensions of the coef-
ficient functionals of the basic sequence { zn

‖zn‖} and put X0 = span{zn : n =

1, 2, ...}. Then we can prove that 〈z∗n, z〉 → 0 for any z ∈ X0 as n→∞. Namely,

for any z ∈ X0 we have z =
∞∑
i=1

z∗i (z)zi, whence

|〈z∗n, z〉| = ‖z∗n(z)zn‖ =

∥∥∥∥∥
∞∑
i=n

z∗i (z)zi −
∞∑

i=n+1

z∗i (z)zi

∥∥∥∥∥
≤

∥∥∥∥∥
∞∑
i=n

z∗i (z)zi

∥∥∥∥∥+

∥∥∥∥∥
∞∑

i=n+1

z∗i (z)zi

∥∥∥∥∥→ 0.

Since X is separable, we can assume that z∗n
w∗
→ z∗ as n→∞.

Let us now take any ε2 ∈ (0, 1). Since X∗ has property (WUÃ2)∗, there exists
0 < δ2 ≤ 1 and k ∈ N , k > 1, such that for any t ∈ (0, δ2)

(1)

∥∥∥∥ z∗1
‖z∗1‖

+ t
(z∗k − z∗)
‖z∗k − z∗‖

∥∥∥∥ < 1 + tε2.

It is easy to see that:

(2) For all k ∈ N, 〈z∗, zk〉 = 0 and 〈z∗k, zk〉 = ‖zk‖. In particular 〈z∗, x〉 = 0,

(3) For all k ≥ 2, ‖x+ zk‖ = 1 and 〈z∗k, x〉 = 0,

(4) For all k ∈ N, ‖z∗k − z∗‖ ≤ 4M and ‖z∗1‖ ≤M .

Since sep({xn}) > ε we can assume that ‖zn‖ ≥ ε
2

for n ≥ 2. Let k > 1 be a
natural number for which (1) holds for all t ∈ (0, δ2). Then by conditions (2)-
(4) and the fact that z1 = x, we obtain

‖x‖ = 〈z∗1 , x〉 = ‖z∗1‖〈
z∗1
‖z∗1‖

, x〉 = ‖z∗1‖[〈
z∗1
‖z∗1‖

, x+ zk〉]
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= ‖z∗1‖[〈
z∗1
‖z∗1‖

, x+ zk〉+ t〈 z∗k − z∗
‖z∗k − z ∗ ‖

, x+ zk〉 − t〈
z∗k − z∗
‖z∗k − z ∗ ‖

, x+ zk〉]

= ‖z∗1‖[〈
z∗1
‖z∗1‖

+ t
z∗k − z∗
‖z∗k − z ∗ ‖

, x+ zk〉 −
t‖zk‖
‖z∗k − z∗‖

]

≤ ‖z∗1‖[‖
z∗1
‖z∗1‖

+ t
z∗k − z∗
‖z∗k − z ∗ ‖

‖ − t‖zk‖
‖z∗k − z∗‖

]

≤M [(1 + tε2)− tε

2‖z∗k − z∗‖
] ≤M [(1 + tε2)− tε

8M
].

So, we have ‖x‖ ≤M(1 + tε2− tε
8M

). Using M = 1 + ε1, and taking the limit as
ε1 → 0, we obtain

‖x‖ ≤ 1 + t(ε2 −
ε

8
).

Now taking ε2 = ε
16

, and t = δ2
2

, we get

‖x‖ ≤ 1− δ2ε

32
,

completing the proof.

Remark 1. It is worth noticing that separability of X in the last theorem is only
necessary to ensure that w∗- compact subsets of X are w∗-sequentially compact.
We can relax the assumption of separability of X, requiring for example that
X admits an equivalent smooth norm (see [10]).

The next result follows directly from our Theorems 2 and 3.

Corollary 1. Let X be a separable Banach space. If its dual space X∗ has

property (UÃ2)∗, then both X and X∗ have the weak fixed point property.

§ 3. THE CASE OF ORLICZ SPACES

Corollary 2. Let X be the Orlicz space LM or L0
M . Then the following

statements are equivalent:

(1) X is uniformly smooth;

(2) X is nearly uniformly smooth;

(3) X is (NUS∗);

(4) X has property (UÃ2) ;

(5) Ψ ∈ ∆2, Ψ is strictly convex on the whole real line and Φ is uniformly convex
outside a neighborhood of zero.

Proof. This follows from our Theorem 3 and Theorem 3.15 in [1].
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Lemma 1. Suppose Φ ∈ δ2. Then for any ε > 0 and L > 0 there exists δ > 0
such that,

IΦ(x+ ty)− IΦ(x) < tε,

whenever IΦ(x) ≤ L, IΦ(y) ≤ δ and t ∈ (0, 1).

Proof. Since Φ ∈ δ2, for any ε > 0 and L > 0 there exists δ ∈ (0, 1) such that,

IΦ(x+ y)− IΦ(x) < ε

whenever IΦ(x) ≤ L and IΦ(y) ≤ δ (see [4]). So for any t ∈ (0, δ), we have,

IΦ(x+ ty) = IΦ(tx+ ty + (1− t)x)

≤ tIΦ(x+ y) + (1− t)IΦ(x)

≤ t(IΦ(x) + ε) + (1− t)IΦ(x) = IΦ(x) + tε,

whenever IΦ(x) ≤ L and IΦ(y) ≤ δ.

Lemma 2. Suppose Φ ∈ δ2. Then for any ε > 0 and u0 > 0 there exists δ > 0
such that

Φ (tu) ≤ tεΦ (u) ,

whenever |u| ≤ u0 and t ∈ (0, δ).

Proof. Suppose that Φ ∈ δ2. Then for any u0 > 0 there exists θ ∈ (0, 1) such
that

Φ
(u

2

)
≤ θ

2
Φ (u)

whenever |u| ≤ u0 (see [1] and [16]). Take n ∈ N such that θn ≤ ε. Then for
δ = 1

2n
, we have

Φ(δu) = Φ
( u

2n

)
≤
(
θ

2

)n
Φ (u) ≤ δεΦ (u) ,

whenever |u| ≤ u0.

Hence, for any t ∈ (0, δ), we have

Φ(tu) = Φ

(
t

δ
δu

)
≤ t

δ
δεΦ (u) = tεΦ (u) ,

whenever |u| ≤ u0, which finishes the proof.

From here on we will make use of the following parameter for an Orlicz
function Φ:

m(Φ) = sup

{
n ∈ N :

n∑
i=1

Ψ(A) < 1

}
,

where A := lim
u→∞

(Φ(u)/u) and Ψ is the function complementary to Φ in the

sense of Young.

For any x ∈ l0Φ, put N(x) = {i ∈ N : x(i) 6= 0} and define D(l0Φ) = {x =
(x(i)) ∈ B(l0Φ) : N(x) is finite }.
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Lemma 4. Let Φ be an Orlicz function with Φ ∈ δ2, m(Φ) ≤ 1 and Φ ∈ δ2.
Then for any ε > 0 there exists δ > 0 such that for every weak null sequence
{xn} in B(l0Φ) and every x ∈ D(l0Φ) there is a natural number k > 1 such that

‖x+ txk‖0 ≤ 1 + tε,

whenever t ∈ (0, δ).

Proof. Case I. Assume that lim
u→∞

Φ(u)
u

= +∞. Let ε > 0 be given. By Φ ∈ δ2,

the set Q = {kx : 1
2
≤ ‖x‖0 ≤ 1 and ‖x‖0 = 1

kx
(1 + IΦ(kxx))} is bounded; that

is, there exists k > 1 such that 1 ≤ kx ≤ k whenever 1
2
≤ ‖x‖0 ≤ 1 (see [1]).

By Lemma 2, we know that there exists δ ∈ (0, 1) such that

Φ (tu) ≤ tδΦ (u)

whenever t ∈ (0, δ) and |u| ≤ Φ−1(k). By Lemma 1, there exists θ > 0 such
that

|IΦ(x+ ty)− IΦ(x)| < tε,

whenever IΦ(x) ≤ L, IΦ(y) ≤ θ and t ∈ (0, 1).

Fix t ∈ (0, δ
k
) and let {xn} be an arbitrary weak null sequence in S(l0Φ). For any

x ∈ D(l0Φ), take i0 ∈ N such that x(i) = 0 for i > i0. Since xn
w→ 0, we conclude

that xn → 0 coordinatewise, and so there exists n0 ∈ N such that
i0∑
i=1

Φ(xn(i)) <

θ for all n ≥ n0. Hence, we get for l ≥ 1 satisfying ‖x‖ = 1
l
(1 + IΦ(lx)) that:

‖x+ txn‖0 ≤ 1

l
[1 + IΦ (l(x+ txn))]

=
1

l

[
1 +

i0∑
i=1

Φ (l(x(i) + txn(i))) +
∞∑

i=i0+1

Φ (ltxn(i))

]

≤ 1

l

[
1 +

i0∑
i=1

Φ (lx(i)) + tε+
∞∑

i=i0+1

Φ (ltxn(i))

]

≤ 1

l

[
1 +

i0∑
i=1

Φ (lx(i)) + tε+ ltε

∞∑
i=i0+1

Φ (xn(i)))

]

≤ 1

l

[
1 +

i0∑
i=1

Φ (lx(i))

]
+ 2tε ≤ 1 + 2tε. �

Case II.
Assume that lim

u→∞
Φ(u)
u

= A <∞. Let {xn} be a weak null sequence in S(`0
Φ)

and x be in D(`0
Φ). Put,

ym =

(
1

A
,

1

m
, 0, 0, ...

)
,

where m := m(Φ). Since xn
w→ 0, we may assume without loss of generality

that xn(i) = 0 for i = 1, 2 (because weak convergence to zero in `0
Φ implies
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coordinatewise convergence to zero). By the condition m(Φ) ≤ 1, we know that
there exists km > 0 such that

‖ym‖0 =
1

kn
(1 + IΦ(kmym)) ∀ m ∈ N.

It is clear that the sequence {km} is bounded. Hence, by virtue of Lemma 2,

‖x+ txn‖0 ≤ ‖ym + txn‖0

≤ 1

kn

(
1 +

∞∑
i=1

Φ (km (ym(i) + txn(i)))

)

=
1

kn

(
1 +

2∑
i=1

Φ (kmym(i)) +
∞∑
i=3

Φ (kmtxn(i))

)

≤ ‖ym‖0 + tε
∞∑
i=3

Φ (xn(i))

≤ ‖ym‖0 + tε

Passing to the limit as m tends to ∞, we obtain that

‖x+ txn‖0 ≤ 1 + tε,

as required.

Theorem 4. Let Φ be an N -function and X = l0Φ fail the Schur property.
Then the following statements are equivalent:

(1) X has property (UÃ2);

(2) X has property (WÃ2);

(3) R(X) < 2;

(4) Φ ∈ δ2, m(Φ) ≤ 1 and Φ ∈ δ2.

Proof. That (1) implies (2) is clear and by Note 1, (2) implies (3.

To see that (3) implies (4), suppose that Φ /∈ δ2, then for any ε > 0 there exists
x ∈ S(l0Φ) such that

1− ε ≤

∥∥∥∥∥
∞∑
i=n

x(i)ei

∥∥∥∥∥
0

≤ 1

for all n ∈ N . Take a sequence {ni} in N with n1 < n2 < · · · such that∥∥∥∥∥
ni+1∑

j=ni+1

x(j)ej

∥∥∥∥∥
0

≥ 1− 2ε for all i ∈ N .

Put xi =
ni+1∑

j=ni+1

x(j)ej. Since Φ is an N -function,

lim
λ→0

(sup
i∈N

IΦ(λxi)

λ
) ≤ lim

λ→0

IΦ(λx)

λ
= 0,
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so we have that xi
lΨ→ 0. Notice that every singular functional vanishes on any

xi. In consequence xi
w→ 0.

But lim inf
i→∞

‖xi + x‖0 ≥ lim inf
i→∞

2 ‖xi‖0 ≥ 2(1−2ε). By the arbitrariness of ε > 0,

we get R(l0Φ) = 2. Thus, we have proved that if Φ 6∈ δ2, then (3) does not hold.

Now we need to prove the necessity of the condition m(Φ) ≤ 1 for R(X) < 2.
Let us assume that m(Φ) ≥ 2 and for each n ∈ N define

xn =

(
0, ..., 0,

1

A
, 0, ...

)
,

where 1
A

is in the n’th place and A := lim
u→∞

Φ(u)
u

. Then ‖xn‖0 = 1, because

m(Φ) ≤ 2 yields k∗(xn) = ∞, and so from our earlier discussion ‖xn‖0 =
lim
k→∞

(IΦ (kxn) /k). Since `0
Φ fails the Schur property, we have the equality

lim
u→∞

(Φ(u)/u) = 0. Consequently,

lim
λ→0

(
sup
n

IΦ(λxn)

λ

)
= lim

λ→0

Φ
(
λ
A

)
λ

= 0.

Therefore, by virtue of lemma 2.3 in [3](also see, Theorem 1.69 in [1]) and
Φ ∈ δ2, we conclude that {xn} is a weak null sequence (also see the proof of
Theorem 2.3 in [6]). Moreover,

‖xn + x1‖0 = 2A · 1

A
= 2,

so R(`0
Φ) = 2, which establishes the necessity of the condition m(Φ) ≤ 1 for

R(`0
Φ) < 2.

Suppose that Φ /∈ δ2. Then the Kottman constant K(l0Φ) = sup{dx : x ∈
S(l0Φ)} = 2 (see [1] and [18]). Hence for any ε > 0 there exists x ∈ S(l0Φ) such
that dx > 2− ε. Furthermore, we have dx,k ≥ dx > 2− ε for all k > 1.

Put,

x1 = (x(1), 0, x(2), 0, x(3), 0, x(4), 0, x(5), 0, x(6), 0, ...),

x2 = (0, x(1), 0, 0, 0, x(2), 0, 0, 0, 0, 0, 0, 0, x(3), 0, 0, ...),

x3 = (0, 0, 0, x(1), 0, 0, 0, 0, 0, 0, 0, 0, x(2), 0, 0, 0, 0, ...), ...,

· · · ,
so the supports of the xn are pairwise disjoint and for any n ∈ N the non-zero
coordinates of xn are precisely the coordinates of x.

Then, ‖xn‖0 = 1, for any n ∈ N , xn
w→ 0 and for any k > 1 we have

1

k

(
1 + IΦ

(
k(xn + x1)

dx

))
≥ 1

k

(
1 + IΦ

(
k(xn + x1)

dx,k

))

=
1

k

(
1 + IΦ

(
kx

dx,k

)
+ IΦ

(
kx

dx,k

))
=

1

k
(1 +

k − 1

2
+
k − 1

2
) = 1.
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So, we get
∥∥∥xn+x1

dx

∥∥∥0

≥ 1; that is, lim inf
n→∞

‖xn + x1‖0 ≥ dx − ε. By the arbitrari-

ness of ε > 0, we get R(l0Φ) = 2. Therefore, we have proved that Φ 6∈ δ2 implies
that (3) does not hold.

(4)⇒ (1). By Lemma 4, for any ε > 0 there exists a δ > 0 such that for every
weak null sequence {xn} in B(l0Φ) and any x ∈ D(l0Φ), there exists a number
m > 1 such that

‖x+ txm‖0 ≤ 1 +
tε

2
,

whenever t ∈ (0, δ).

Let t ∈ (0, δ) be given arbitrarily. For any weak null sequence {xn} in B(l0Φ),
we only need to consider the case when N(x1) is infinite. Take i0 large enough

so that

∥∥∥∥ ∞∑
i=i0+1

x1(i)ei

∥∥∥∥0

≤ tε
2

. Then there exists m ∈ N such that∥∥∥∥∥
i0∑
i=1

x1(i)ei + txm

∥∥∥∥∥
0

≤ 1 +
tε

2
.

Hence,

‖x1 + txm‖0 ≤

∥∥∥∥∥
i0∑
i=1

x1(i)ei + txm

∥∥∥∥∥
0

+
tε

2
≤ 1 +

tε

2
+
tε

2
= 1 + tε.

Corollary 3. Let Φ be any Orlicz function and X = l0Φ. Then the following
statements are equivalent:

(1) X is (NUS∗);

(2) X is nearly uniformly smooth;

(3) Φ ∈ δ2, Φ ∈ δ2 and m(Φ) ≤ 1.

Proof. (3) ⇒ (1). If Φ ∈ δ2, Φ ∈ δ2 and m(Φ) ≤ 1, by Theorem 4, `0
Φ has

property (UÃ2). Moreover, `0
Φ is then B-convex (see [1]), so `0

Φ contains no copy

of `1. Since a Banach space X has (NUS∗) if and only if has property (UÃ2)
and contains no copy of `1 (see [15]), condition (3) implies condition (1).

Again by our Theorem 4 and the result from [15] that we just mentioned, we
have that (1) ⇒ (2), because condition (1) implies reflexivity of `0

Φ and we
therefore also have (2) ⇒ (3).

The following theorem can be proved in a similar way as for X = `0
Φ, so we

omit its proof.

Theorem 5. For any Orlicz function Φ and X = `Φ the following statements
are equivalent:

(1) X has property (UÃ2);

(2) X has property (WÃ2);
12



(3) R(X) < 2;

(4) Φ ∈ δ2 and Φ ∈ δ2.

Corollary 4. Let Φ and X be as in Theorem 5. The following statements are
equivalent:

(1) X is nearly uniformly smooth;

(2) X is (NUS∗);

(3) Φ ∈ δ2 and Φ ∈ δ2.
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