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Abstract 

In this note we make some remarks concerning D-metric spaces, 
and present some examples which show that many of the ba- 
sic claims concerning the topological structure of such spaces are 
incorrect, thus nullifying many of the results claimed for these 
spaces. 

1 Introduction 

In 1992 B. C. Dhage [I] :proposed the notion of a D-metric space in 
an attempt to obtain analogous results to those for metric spaces, but in 
a more general setting. In a subsequent series of papers (including: 121, 
[3], [4], and [ 5 ] )  Dhage presented topological structures in such spaces 
together with several fixed point results. These works have been the ba- 
sis for a substantial number of results by other authors. Unfortunately, 
as we will show, most of the claims concerning the fundamental topolog- 
ical properties of D-metric spaces are incorrect, nullifying the validity 
of many results obtained in these spaces. 

We begin by recalling the axioms of a D-metric space. 
Definition: let X be a nonempty set, and let R denote the real 

numbers. A function D : X x X x X + R satisfying the following 
axioms: 

(Dl)  D(x,  y, z) 2 0 for all x, y, z E X, 

(D2) D ( x , y , z ) = O  ifandonlyif x = y = z ,  

(D3) D(x, y, z) = D(x, z, y) = . . . (symmetry in all three variables), 
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(D4) D(x,  y, z) F D(x,  y, a)+D(x,  a ,  z)+D(a, y, z) for all x, y, z, a E 
X.  (rectangle inequality), 

is called a generalized metric, or a D-metric on X. The set X together 
with such a generalized metric, D l  is called a generalized metric space, 
or D-metric space, and denoted by (X,  D). 

An additional property sometimes imposed on a D-metric (see [3]) 
is, 

If D(x,  x ,  y) = D(x, y, y) for all x ,  y E X then D is referred to as a 
symmetric D-metric. 

The following constructions show that intuitively D(x, y, z) may be 
thought of as providing some measure of the perimeter of the triangle 
with vertices a t  x,  y and z. 

If p : X x X + R is any semi-metric on X (that is, p is a positive, 
symmetric function with p(x, y) = 0 if and only if x = y) then it is easily 
verified that D defined by either, 

is a symmetric D-metric on X ,  but need not satisfy (D5). In particular 
every metric space can be equipped with a D-metric in either of these 
two ways and in this case (D5) is also satisfied. It should, however, be 
noted that the rectangle inequality (D4) satisfied by D-metrics arising 
in this way does not depend on the presence of a triangle inequality for 
the underlying metric, and is rarely sharp. 

In a D-metric space (X,  D) ,  three possible notions for the conver- 
gence of a sequence (x,) to a point x suggest themselves: 
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Clearly, (C3) + (C2) and if D is symmetric then ( C l )  H (C2). 
Further, if D arrises from a metric according to either (MI) or (M2) then 
it is easily checked that all three types of convergence are equivalent and 
correspond to convergence with respect to the underlying metric. 

No other implications are true in general. The following example 
shows that (Cl )  and (C2) need not imply (C3), even for D-metrics 
arising from semi-metrics. 

Example 1: Let A = { l l n  : n = 1,2 ,3 , .  . . } and X = A U (0) and 
let p be the semi-metric on X defined by: 

p(x, x) := 0, for all x E X, 
p(0, l l n )  := p(l /n,  0) = l l n ,  for n = 2,3, .  . . , 
P(X,Y)  := 1, for x, y E A with x # y. 

Then, for D(x,  y, z) := max{p(x, y), p(x, z), p(y, z)) we have 

but the sequence ( l l n )  does not converge in the sense of (C3), as 
D(x,, x,, 0) = 1 for all n ,  m with n # m. 

The next example demonstrates that (C2) convergence of a sequence 
need not imply its convergence in the sense of (Cl)  or (C3). 

Example 2: For X as above, define D by, 

0, i f x = y = z  

l l n ,  if one of x, y, z 
D(x,  y, z) := 

is equal to 0 and the other two are equal to l l n ,  
1, otherwise, 

then it is readily seen that D is a generalized metric which also satisfies 
C2 

(D5). Further, l l n  (A 0, but the sequence ( l l n )  does not converge in 
the sense of (Cl )  or (C3), as D(l/n,O,O) = 1 = D ( l / n ,  l l m ,  0) for all 
n, m, (m # n). This also shows that a generalized metric need not be 
a continuous function of its variables with respect to convergence in the 
sense of (C2), as D(l/n,O,O) f ,  D(O,O, 0) = 0. 

The next example demonstrates that (Cl )  convergence of a sequence 
need not imply its convergence in the sense of (C2) or (C3). 
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Example 3: For X as above, define D by, 

0, i f x = y = z  
l l n ,  if two of x, y, z 

D(x,  y, Z) := are equal to 0 and the other 
is equal to l l n ,  

1, otherwise. 

Then, it is readily seen that D is a generalized metric satisfying (D5). 
Further, l l n  (3 0, but the sequence ( l l n )  does not converge in the 
sense of (C2) or (C3) , as D( l /n ,  l l m ,  0) = 1 for all n ,  m. This also shows 
that a generalized metric need not be a continuous function of its vari- 
ables with respect to convergence in the sense of (Cl ) ,  as D( l /n ,  l l n ,  0) $, 
D(O,O, 0) = 0. 

Our next example shows that even a symmetric D-metric arising 
from a semi-metric, need not be a continuous function of its variables 
with respect to convergence in the sense of (C3), contrary to the claim 
in [:I.] lemma 2.1. 

Example 4: For X again as in example 1, but with semi-metric p 
defined by: 

p(0, l )  := p(1,O) = 1, 
p(1, l l n )  := p(l /n ,  1) = 112, for n = 2,3,.  . . , 
p(1 , l )  := 0, 

P(X ,Y)  := 15 - Y I ,  for x, y E X\{l). 

and D (x, y, Z )  := p(x, y) + p(x, Z) + p(y, Z) we have that the sequence 
( l l n )  converges to 0 in each of the senses (Cl ) ,  (C2) and (C3), but 
D( l /n ,  1 , l )  = 1 f ,  D(O,l, 1) = 2, so D is not continuous with respect 
to convergence in any of these ways. 

In [I], Dhage defined Cauchy sequences in a D-metric space as fol- 
lows. 

Definition: A sequence (x,) of points in a D-metric space is said 
to be a D-Cauchy sequence if for all E > 0, there exists an no E N such 
that for all m, n , p  2 no, D(x,, x,, xp) < E .  

In [I], Dhage mentioned the possibility of defining two topologies, 
denoted by T* and T, in any D-metric space, with convergence in the 
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sense of (C3) corresponding to convergence in the r topology. Details 
were presented in two subsequent papers; [2] and [3]. 

The T* topology is generated by the family of 'open balls' of the form 

(Bl)  B*(x,  r) := {y E X : D(x,  y, y) < r), 

where x E X and r > 0. To ensure that these form a base for the 
topology it was necessary to assume that the D-metric satisfied the 
additional condition (D5), see [3]. However, with the exception of [4], [5] 
and [2], no subsequent paper dealing with D-metric spaces acknowledges 
the need for this extra axiom when considering (C2) convergence, or its 
associated topology. 

Clearly, convergence of a sequence in the T* topology is equivalent to 
its (C2) convergence. But, in [3], where the T* topology was discussed, 
D-metric convergence of a sequence is taken to mean that it converges 
in both the sense of (C2) and (Cl ) ,  and it is claimed that "the D- 
metric topology (here the T*-topology) is the same as the topology of 
D-metric convergence of sequences in X" in this sense of (Cl )  and (C2) 
convergence. But, this claim is not true, as we have already seen in 
example 2 that (C2) convergence of a sequence need not imply its (Cl )  
convergence, even in the presence of (D5). Thus, this notion of D- 
metric convergence is stronger than convergence in the T* topology. If, 
however, we try to correct this by taking convergence to mean only in 
the sense of (C2), then we encounter a new problem; namely, that the 
sequence (x,) of example 2 is now convergent, but is not D-Cauchy, since 
D(xm, x,, xp) = 1 = D(xm, x,, x,) whenever m, n and p are distinct. 

In an attempt to specify a base for the T topology Dhage introduced a 
new class of 'open balls', denoted by B(x,  r) . In [I.] we find the definition, 

B ( x , r )  = n {Y, z E X : D(x,Y,  4 < r) , 
z E X  

while in [2] we find this modified to become, 

B(x,  r) = {y E B* (x, r) : if y, z E B* (x, r )  are any 
two points then D(x, y, z) < r )  

= {y, z E X : D(x, y, z) < r) . 
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We take these ill-formed statements to mean, 

(B2) B(x ,  r) := {y E B*(x , r )  : for all z E B*(x, r )  we have D(x, y, z) < 
7 

an interpretation consistent with Dhage7s calculations concerning these 
balls found in [2]. 

Example 5: Let X = R and define D(x,  y, z) := p(x,y) + p(y, z) + 
p(x, z), where p(x, y) := 1x - yl is the usual metric on R .  In this case all 
three types of convergence (Cl )  - (C3) reduce to the usual convergence 
in R, so the balls B(x,  r) should be a base for the usual topology. Indeed, 
Dhage ([2], theorem 3.2) claimed that B(x, r )  equaled the interval (x - 
7-/4,x + 7-14). What his proof actually establishes is that B(x , r )  
(x - r/4, x + 7-14), which is certainly true, as a quick calculation reveals 
that in fact B(x, r )  = {x}, for all x R and r > 0, and so r is the 
discrete topology. Similar problems arise when D is defined via (M2) 
showing that Theorem (3.1) in [2] is false. 

If in a generalized metric space (X, D) convergence in the sense of 
(C3) corresponds to convergence with respect to a topology r ,  then 
we would have (at least in the first countable case) that the sequential 
closure of a set A C X; that is, 

- (C3) 
A := {x E X : there exists (a,) C_ A with a, x),  

- 
coincides with its r-closure, cl(A), in particular then we must have = 
- 
A, see for example 161. The following example shows that this need not 
be the case in a general D-metric space and so the sought after topology 
r may fail to exist. 

Example 6: let po , pl , p2, ps , . . . be the prime numbers enumerated 
in ascending order, and define, - 

1 1  1 1 A~ := { E 7  2, gl"'  , T,"'}, 
Po 

1 1 1  1 1  1 A1 := {- + - - + 1 1  
Po p l , p o  p 7 , E + ~ ~ " '  PI ' PO - + T 7 " '  PI , } 7  

and in general, 
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Let X = (0) U UrZo An, define a semi-metric on X by, 

whenever x = y, 

x - 1 ,  if x , y  E Ao u {0), or 
P(X, Y)  := f o r s o m e n = 1 , 2 , 3 , . . .  , x ,yEA,U{$i ) ,  

I 1, otherwise, 

and let D(x ,y ,  z) := p(x, y) + p(y, z) + p(x, z) ,  then D is a symmetric 
generalized metric, not satisfying (D5). 

(21 a s~c - ioo .  For A := UF=P,,An we have A. C 2, since + 2 P; '- 
Thus, 0 E & C 2, but it is readily seen that 0 6 A, so 2 # x. 

This same example also shows that in the absence of the (D5) con- 
dition convergence in the sense of (Cl) ,  or (C2) may fail to correspond 
to  convergence in any topology. 

For X and A as above, but with, 

I )x  - yl + ly - zl + lx - zl, if x, y, z E AO u {O), or 
if x, y, z E A, u {k), for 
some n = 1 , 2 , 3 , . . .  , or 

D(x ,  y, z )  := if two or more of x, y 
and z are equal, 

I otherwise, 

we see that (X,  D) is a generalized metric space with D both symmetric 
and satisfying (D5), so (Cl )  = (C2) convergence corresponds to  conver- 
gence in the T*-topology (indeed, the (C2)-sequential closure of A con- 
tains 0 and is itself (C2)-sequentially closed), but for which convergence 
in the sense of (C3) still fails, as above, to correspond to  convergence 
with respect to  any topology. 

The following example confirms just how aberrant the 'balls' defined 
by (B2) can be. 

Example 7: let X = R and define, 

i f x = y = z  
D(x,  y, z) := 

1x1 + lyl + 121, otherwise. 
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then it is readily checked that (X, D)  is a D-metric space satisfying (D5) 
in which B*(3,7) = (3) U (-2,2), while B(3,7) = (-1, l )  9 3. So, balls 
defined by (B2) need not contain their centres. 

Further, if 0 < rl < 7-2 it need not follow that B(x, rl) 5 B(x, r2) ;  
for instance, B(3,3) = (3) g B(3,7).  By taking a = 0 this provides a 
counter-example to lemma (3.1) in [2], which implies that if a E B(x, r )  
then B ( x , r l )  5 B(x , r ) ,  where rl := D(x ,a , a )  < r .  Similarly, it also 
invalidates arguments on which the proof of theorem (3.5) in [2] is based, 
since the proof relies on the fact that if a E B(x, r), and rl := D(x, a ,  a )  
then we can find E > 0 such that B*(x, rl + E) 5 B(x , r ) ,  but we have 
D(3,0,0) = 3, while (3) = B*(3,3) 5 B*(3,3 + E ) ,  for all E > 0, so 
B*(3,3 + E)  g B(3,7),  for any E > 0. 

1 Example 8 : let A := {&,n  = 1,2,3, .  . . )  and let B := l F , n  = 
1,2,3,  . . . ) ,  l e t X : = A ~ B ~ { O ) , a n d d e f i n e D : X x X x X + R + b y  

0, i f x = y = z  
1 - 
2 7 

if one of x, y and z is zero and 

D(x,  y, z) := one of the other two points belongs to A 
and the other to B 

x + y + z, otherwise. 

Then (X, D)  is a D-metric space for which (D5) holds. 
We note that D is not jointly continuous with respect to convergence 

in the sense of (Cl) ,  (C2) or (C3), since if we take x, := & and y, := $ 
then both sequences (x,) and (y,) converge to 0, in all three senses, but 
limn,, D(0, x,, y,) = # D(0, 0,O) = 0 

Dhage claimed (Theorem 6.1.2 in [2]) that "if a D-Cauchy sequence 
of points in a D-metric space contains a convergent (in the sense of 
(C3)) subsequence, then the sequence is itself convergent", however, the 
previous example shows that this is not generally valid. Define the 
sequence (2,) by 

if n even, 
zn := 

i f n o d d ,  

then (2,) is a D-Cauchy sequence, with convergent subsequences, but 
z, is not itself convergent, since D(0, z,, z,) = i, whenever n # m. 
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In [2] Dhage took the distance between a point x and a subset A of 
(X,  D )  to be 

d(x,x ,  A) := inf{D(x,x, a) : a E A). 

and claimed that the function f (x) := d(x, x, A) is continuous in both 
the r- topology [2], and the r*- topology [3]. However, the proofs 
of lemma (5.1) in [2] and lemma (1.2) in [3] rely on the continuity of 
D in the respective topologies and also contain logical errors. These 
results, and hence theorem (5.4) in [2] and (2.2) in [3] are therefore not 
necessarily true in general. Indeed, for (X,  D )  as in example (2), let 
A := {i : n E N )  then 

and so f (0) = d(O,O, A) = inf{D(O,O, a),  a E A) = inf{l) = 1, on the 
other hand the function f is not continuous a t  rc = 0 with respect to 
the topology r * .  For example, E := B * ( l ,  i) = ( z ,  $) is open in the 
r*- topology, but f - ' (E) = (0) is not open in (X,  D )  with respect the 
r*-topology, since for any 6 > 0 the ball B*(O, 6) contains some element 
of A. 

In [5] Dhage worked with D-metric spaces satisfying the ( 0 5 )  condi- 
tion, he denote by 2X the class of nonempty r-closed and bounded sub- 
sets of X and proceeded to try to develop a notion of Hausdorff D-metric 
on 2X. Here we find yet another attempt to define r E-neighbourhoods 
of a point; namely, 

C x E X : D(a,  x, x) < E and if y, z E N(a ,  E )  are 
N(a ,  E )  = 

any two points then D(a ,  y, z) < E 

This makes no sense, and together with the many problems associated 
with the r topology already pointed out, renders most of the results in 
[5] invalid. 

In generalized metric spaces, the proofs of most fixed point results 
claimed by Dhage and others relied, either directly or indirectly, on the 
continuity of D with respect to the r-topology (or a t  least, convergence 
in the sense of (C3)), or the r*-topology (convergence in the sense of 
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(C2)). However, as we have seen (example 4, and more generally exam- 
ple 8) this need not be the case, even in the presence of (D5), nullifying 
the validity of these arguments. 
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