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Abstract 

Stampfli and Embry characterized points in the numerical range which are extreme in terms of the 
linearity of corresponding sets of vectors. Das and Craven generalized thls to include the case of 
unattained boundary points. We give an alternative proof of this result using a technique of Berberian. 
This approach appears to be more conceptual in that it enables us to deduce the result from that of 
Stampfli and Embry. We also illustrate how the same technique may be used to generalize other 
results of Embry. 
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1. Introduction 

Let H be a complex Hilbert space with inner product ( , ) and induced norm 
1 1  . 11. The numerical range W ( T )  of an operator (i.e. a bounded linear transforma- 
' m )  on H i s  the set 

w W(T) = {(Tx, X) : 11x11 = 1, x E H). 
The Toeplitz-Hausdorff theorem asserts that W ( T )  is a convex set in the plane. 
For a given z E C, let M,(T)= {x: ( T X , ~ )  - z(x,x) = 0, x E H). J. G. 
Stampfli [I9661 and M. R. Embry [1970, 19751 have shown that a point z of the 
numerical range W ( T )  is extreme if and only if M,(T) is a subspace. This has 
been generalized by K. C. Das and B. D. Craven [I9831 to show that a point z of 
W(T)-, the closure of W(T), is extreme if and only if 

N , ( T )  = {(x,): ( ~ x , ,  x,) - z(x,, x,) + 0, (x,) E I , ( H ) } ,  
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is a subspace where l,(H) is the set of all bounded sequences of vectors from H. 
In t h s  note we give an alternative approach to establish the same result 

employing a technique of S. K. Berberian [1962], and S. K. Berberian and G. H. 
Orland [1967]. This approach appears to be more conceptual in that it enables us 
to deduce the result of Das and Craven from that of Stampfli and Embry. 

Using the same technique other results may also be generalized to unattained 
boundary points. T h s  is illustrated in Section 5 where we extend results of Embry 
[1975]. 

2. A technical lemma - 

Let I,, I:, c and c, be the sets of real bounded, bounded nonnegative, 
convergent and null sequences respectively. Let x = (x,,) = (x,, x,. . . . .x,) E 1, 
and 1: be the dual of 1,. 

We prove a simple lemma which will be used in the following sections to prove 
our main results. 

LEMMA 1. For any element y E 1; \ c,, there exists f E 1: such that 

( i ) f ( r >  > 0,  
(ii) f ispositive, that is, f ( x )  > Ofor all x E I:, 

(iii) f (e)  = 1 where e = (1,1,. . .) and so 1 1  f 1 1  = 1, 
(iv) f 1 co = 0, and 
(v) For all x E I,, lim inf x ,  g f (x )  6 lim sup x,, in particular, for x E c, 

f (x)  = lim x,. 

In other words, y may be strictly separated from c, by a 'normahzed positive 
linear functional'. 

PROOF. Let A = ( x  E 1,: lim supx, g 0). It can be verified that A = c, - 1: 
and that A is closed and convex. Obviously y 4 A since y E 1; \ c,. Hence there ' 

exists g E 1; with g(y) > 0 = supg(A). If x E c, then x, -x E c, G A, so we 
have both g(x) and g(-x) 6 0 and g(x) = 0. Also, x E 1; implies -x E A. So 
g(-x) g 0, or g(x) > 0; that is g is positive on 1:. Further 1 1  ylle - y E I:, so 
g(ll ylle - y )  0 and g(e) > 0. Write f = g/g(e), then f satisfies (i) to (iv) and 
therefore (v) which is an immediate consequence of (ii), (iii) and (iv). 
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3. A modification of Berberian's technique 

S. K. Berberian [I9621 used the existence of a Banach-Mazur generalized limit, 
glim, for bounded sequences of real numbers to introduce a pseudo-inner product 
on l,(H) and thereby obtained a Hilbert space extention K of H.  In fact glim 
was only required to be an element of 1: satisfying the properties (ii) to (v) of 
Section 2. Thus, for every f of the type described by Lemma 1 we have the 
following construction (for details see, Berberian [1962]). 

Suppose s = (x,) and t = (y,) belong to l,(H). Define +(s. t)  = 

f ( ( ~ e ( x , ,  y n ) ) )  + if((1m(xn, y,))), then +(s, t ) is a pseudo-inner product on 
- T. ( H ) .  N =  { s  E l,(H): +(s, s )  = 0) = {s  E l,(H): +(s, t )  = 0 for all t E 

I,( H ) }  is a subspace of l,(H), so we can define the quotient inner-product 
space P = l ,(H)/Nwith inner product (s', t') = +(s, t )  where s' = s + N .  
Let K be the Hilbert space completion of P. 

Every operator T in H determines an operator in K as follows. Define To: 
I,( H )  + l,(H) by Tos = (Tx,) and To: P + P by TOS'  = (Tos)'. The continu- 
ous linear mapping T O  extends to a unique operator in K which we also denote by 
T". Berberian and Orland [I9671 have shown in the proposition of Section 3 that 
M.( TO) = W(T)-. This fact is basic to our proofs. 

4. Linearity of N, ( T ) 

We are now ready to prove 

THEOREM 2. N,(T) is a subspace of I,( H )  if and only if t is an extreme point of 
U"( T ) - . 

PROOF. By carrying out the standard reduction T + exp(i8)(T - ,-I ) where 8 is 
a suitably chosen real number, we can assume without loss of generality that 
z = 0 and Re W(T) > 0. We first prove sufficiency. 

Homogeneity being obvious, we need prove only additivity of N.(T). 
By the construction of Section 3, for each f of the type described in Lemma 1 

we have w(T') = W(T)-. Indeed if (TX,,, x,) + 0 then 0 = ( ~ " s ' ,  s f )  where 
s '  = S + N ,  S = (x,). 

Now let (x,), (y,) be such that both (Tx,,, x , )  and (Ty,, yn) + 0 (an extreme 
point of W(T)-). Then (T's ' ,~ ' )  = ( ~ O t ' , t ' )  = 0 is an extreme point of 



24 S. Majumdar and Brailey Sims 141 

w(TO),  so by Theorem 1 of Embry [1970], (TO(s '  + t'), s' + t') = 0, or, 
( T(( x, + y, ))', (x, + yn )') = 0. Thus, by the form of the inner-product in K we 
have for each f that 

Let a = (a,) and j3 = (P,). 
Now, a = ( R ~ ( T ( x ,  + yn), xn + yn) )  E I: and so by (1) and Lemma 1, a E co 

or a, - 0. TO show fin = 1m(T(x, + y n ) ,  x, + yn) - 0 requires a little more 
work. First note that 

liminfj3, < f ( p )  < lim supp,. 
t 

Also, by (2), f ( P )  = 0. Assume a = lim supp, > 0, then there exists a subse- 
quence ( n  ,) such that 

Passing on to a further subsequence we may assume 

(If L = 0, then pnk - 0 contradicting a > 0.) Thus 

while 

So ia/L2 E W(T)-. If also b = lim inf p, < 0, we would similarly have ib/12 E 

W(T)-, where b/12 < 0 < a /L2  contradicting that 0 is an extreme point of 
W(T)-. Thus at least one of a  and b is zero. Now P can be decomposed :- 
/3 = P o  + ( P  - PO)where 

( : - a ,  i f o m >  a ;  
otherwise. 

So D o  E co and ae - ( p  - ~ O ) E  1;. If a  = 0, p - Po E 1,. Similarly, if b = 0, 
p - Po E 1;. But then for all f satisfying the condition of Lemma 1 we have 
0 = f ( P )  = f ( 0  - PO) and so /3 - p0 E c0. Thus P E co and consequently No(T) 
is linear. 

To prove the converse we may assume that 0 is not an interior point of W(T) 
(for which case the proof follows easily from the result of Embry [1970]), and that 
0 lies on the join of ia and -ib where ia and -ib belong to W(T)-, a ,  b > 0. We 
will show that No(T) is not linear. 
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Let s = ( x , )  and t = (y,)  be two sequences of unit vectors such that 
( Tx,, x,,) + ia and ( T ~ ,  , y,) + -ib. Then, since ( ( T  + T*)x, ,  x,) + 0 and 0 
is an extreme point of W ( T  + T*),  it is also an approximate eigenvalue of the 
Hermitian operator T  + T*. It follows that, for any A ,  a subsequence of 
(( ( T ( x ,  + X y,), x ,  + Xy,))) is convergent. For the sake of simplicity we shall 
denote the subsequence by the same symbols. 

Now, given any f satisfying the conditions of Lemma 1, we have (T's ' ,  s ' )  = ia 
and ( T ' t  ', t ' )  = -ib and so by Lemma 1 of Embry [I9701 we have 

for two distinct values of A. By (v) in Lemma 1 and the construction of K. T O  we 
.lerefore have for both these values of X that 

that is, ( x ,  + hy,) E No(T)  for two distinct values of h. Hence No(T)  is not 
linear. 

5. Generalization of a Cauchy-Schwartz inequality 

In Theorem 2.2 Embry [I9751 gives a version of the Cauchy-Schwartz inequal- 
ity for the vectors associated with points of L n W ( T ) .  where L is a line of 
support for W ( T ) .  We translate this into a statement about sequences of vectors 
associated with points of L n W ( T ) - .  We then illustrate how other results may 
be extended to unattained boundary points of W ( T )  by deriving generalizations 
',)r some of the consequences given in Section 2 of Embry [1975]. 

Throughout let L be a line of support for W ( T ) -  and define 

By a suitable translation and rotation we may assume that L is the imaginary axis 
and Re W ( T )  2 0, in which case we see that (x , )  E N L ( T )  if and only if 
R ~ ( T x , , .  x,) + 0. 

Since 0 is an extreme point of W ( R e T )  and therefore an approximate 
eigenvalue it follows that 

and so we conclude that NL(T)  is a subspace of l,(H). If we define f on complex 
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sequences by f ( ( A  ,)) = f ( (Re  X ,)) + if((1m X ,)), we have 

LEMMA 3. Lel f satisfy the conditions of Lemma 1 and let z be a point of L such 
that either z is an extreme point of W ( T ) -  or z P W ( T ) - .  Then for all (x , ) ,  

(Y , , )  E NL(T)  

PROOF. AS above we may assume that L is the imaginary axis, Re W ( T )  >, 0 
and, by a further translation if necessary, that z = 0. For the given f let K and T o  
be as in Section 3 and let s = (x , ) ,  t = ( y,), then 

R e ( ~ ' s ' ,  s ' )  = f ( ( R e ( ~ x , ,  x , ) ) )  = 0 , as (Re T ) x ,  -, 0.  Y 

Similarly R e ( ~ ' t ' ,  t ' )  = 0. Theorem 2.2 of Embry [I9751 therefore applies to 
give 

2 
/(TOS', r r ) l  G ( T O S ' ,  s f ) ( t f ,  7 0 t f )  

or, using the definition of inner-product in K, that 

I f ( ( ( ~ x n ,  Yn)))12 f (((Txn9 x n ) ) ) f ( ( ( ~ n 9  Tyn))) 

as required. 

COROLLARY 4. If z is an extreme poinl of W ( T ) -  and L is a line of support for 
W ( T  ) - passing through z, then 

PROOF. Without loss of generality assume z = 0, L is the imaginary axis ar ' 
Re W ( T )  >, 0. v 

Assume (Tx , ,  y,) does not converge to 0, then there exists subsequences ( x n k ) ,  
( ynk)  such that either the real or imaginary parts of ( ~ x , ~ ,  Ynk)  form a sequence 
in 1; \ co (or 1; \ co). 

By Lemma 1, there is an f with the stated properties such that f ( ( ( T x n k ,  yak)))  
# 0. To derive a contradiction we note that ( x n k )  E N Z ( T )  c N,(T), ( T x n k ,  x n k )  

-, 0 and ( y n k )  E NL(T) ,  thus by Lemma 3 f ( ( ( T x n k ,  ynk)))  = 0. 

COROLLARY 5. Let z and L be as in Corollary 4. 
If ( x , )  E N z ( T )  and (Tx,)  E N,(T), then 

lim(T - z ) x ,  = lim(T* - ~ ) x ,  = 0 .  
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PROOF. Again assume z = 0, L is the imagnary axis and Re W ( T )  >, 0. 
Since ( x , )  E N,(T) ,  by definition ( T X , ,  x , )  + 0 and so by Lemma 3 

f ( ( ( T x , , ,  y n ) ) )  = 0 for all (y ,)  E N,(T) .  In particular, taking y, = Tx,  we have 
f ( ( l l T ~ , l ( ~ ) )  = 0. Now (JJTxn1J2)  is in I:, so by Lemma 1 we conclude that 
T x ,  -, 0 and, since (Re T ) x ,  -, 0, that T*x, -, 0. 

Similar extensions of results by Stampfli, de Barra and Lin for unattained 
boundary points will be the subject of a subsequent paper by Das, Majumdar and 
Sims. 
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