
æ
THE LERAY-SCHAUDER ALTERNATIVE FOR NONEXPANSIVE MAPS

FROM THE BALL CHARACTERIZE HILBERT SPACE

Michael Ireland
Department of Mathematics
The University of Newcastle

Newcastle 2308, NSW, Australia

William A. Kirk *
Department of Mathematics

The University of Iowa
Iowa City, Iowa 52242-1419 ,USA

e-mail: kirk@math.uiowa.edu

and

Brailey Sims
Department of Mathematics
The University of Newcastle

Newcastle 2308, NSW, Australia
e-mail: bsims@maths.newcastle.edu.au

Abstract: We show that for a nonexpansive map from the unit ball of a Hilbert
space into the space the existence of a fixed point and the Leray-Schauder alterna-
tive are mutually exclusive alternatives, and that this characterizes Hilbert space.
The equivalence of several formulations of the Leray-Schauder alternative is also
established.

1991 Mathematics Subject Classification: 47H09, 47H10.

Key Words and Phrases: Hilbert space, nonexpansive mapping, fixed point, Leray-
Schauder alternative principle, extension property.

For a real Banach space X we denote by BX and SX the unit ball and unit sphere
respectively:

BX := {x ∈ X : ‖x‖ ≤ 1} and SX := {x ∈ X : ‖x‖ = 1} = bdry(BX).

When the space is a Hilbert space we will denote it by H and the inner-product by
〈·, ·〉.

* This work was carried out while the second author was visiting The University
of Newcastle in February, 1998 and that author wishes to thank the University for its
support and hospitality.
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We say that a mapping T : BX −→ X satisfies the Leray-Schauder alternative prin-
ciple if either

(i) T has a fixed point in BX ; that is, Fix(T ) := {x : Tx = x} 6= ∅, or

(ii) (The Leray-Schauder alternative) there exists an x0 ∈ SX and a scalar λ > 1
such that Tx0 = λx0.

As indicated we will refer to the second possibility as the Leray- Schauder alternative
for T .

Typically, the Leray-Schauder altrnative principle for a particular type of mapping is
established via a homotopy argument. See, for example, Granas [G], where it is shown
that if U is a nonempty open subset of a complete metric space (X, d), Tt : U → X
for t ∈ [0, 1] is a homotopic family of maps which are

(a) uniformly contractive; that is, d(Ttx, Tty) ≤ kd(x, y), for all t ∈ [0, 1] and
some k < 1,

satisfy

(b) d(Ttx, Tsx) ≤M |t− s| for all t, s ∈ [0, 1], x ∈ U and some M > 0

and for which

(c) Fix(Tt) ∩ bdry(U) = ∅, for all t ∈ [0, 1],

then, if T0 has a fixed point in U so does Tt for each t ∈ (0, 1].

Applying this to the homotopic family tT , where t ∈ [0, 1] and T : BX → X is a strict
contration, we readily deduce the Leray-Schauder alternative principle for such a T .

Unfortunately, examples of Marlène Frigon [F] show that such a homotopy argument is
not possible when T is only required to be nonexpansive; that is, ‖Tx−Ty‖ ≤ ‖x−y‖,
even when T maps B`2 into `2. Never-the-less we shall see that it is relatively straight
forward to show that such maps do indeed satisfy the Leray-Schauder alternative
principle.

Theorem 1: Let C be a nonempty closed bounded convex subset of the Hilbert space
H, and let T : C −→ H be a nonexpansive mapping, then there exists x0, necessarily
in bdry(C), such that the following are equivalent.

(i) Fix(T ) = ∅.

(ii) 0 < ‖Tx0 − x0‖ = dist(Tx0, C).

(iii) C ⊂ {x ∈ H : 〈Tx0 − x0, x− x0〉 ≤ 0}.

(iv) Tx0 6∈
⋃
c∈C

B[c, ‖c− x0‖].
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Before proving the theorem we note the following two well know lemmas, proofs of
which are included only for completeness. In both lemmas, C is a nonempty closed
bounded convex subset of a Hilbert space H.

Lemma 1: The closest point map ProjC from H onto C is nonexpansive and char-
acterized by ProjC(x) ∈ C and 〈c − ProjC(x), x − ProjC(x)〉 ≤ 0 for all x ∈ H and
c ∈ C.

Proof: The characterization follows from the observation that ProjC(x) is the closest
point of C to x if and only if ProjC(x) ∈ C and there is a hyperplane through ProjC(x)
which separates C from B[x, ‖x−ProjC(x)‖], and that this hyperplane is necessarily
the unique hyperplane supporting B[x, ‖x− ProjC(x)‖] at ProjC(x); namely,

{y ∈ H : 〈x− ProjC(x), y〉 = 〈x− ProjC(x),ProjC(x)〉}.

That ProjC is nonexpansive now follows from the calculation:

For every x, y ∈ H,

‖x− y‖2 = ‖ProjC(x)− ProjC(y)‖2

+ ‖(I − ProjC)x− (I − ProjC)y‖2

+ 2〈x− ProjC(x),ProjC(x)− ProjC(y)〉
+ 2〈y − ProjC(y),ProjC(y)− ProjC(x)〉,

and that both the last two terms are positive, so that ‖ProjC(x) − ProjC(y)‖ ≤
‖x− y‖.

The next lemmas follows from more general results due to Browder, Göhde, and Kirk,
see the book by Goebel and Kirk [G-K] for more details on this and metric fixed point
theory in general. The proof we give essentially relies on Hilbert spaces enjoying the
Opial property.

Lemma 2: If T : C −→ C is nonexpansive, then T has a fixed point in C.

Proof: Choose x0 ∈ C, then for each n ∈ N the mapping Tnx := (1 − 1/n)Tx +
(1/n)x0 is a strict contraction mapping C into C, and so by the Banach contraction
mapping principle has a fixed point xn. This gives a sequence (xn) with ‖xn−Txn‖ →
0. By passing to a subsequence if necessary, we may also assume that (xn) converges
weakly to some point x ∈ C.

Now,

‖xn − Tx‖2 = 〈(xn − x) + (x− Tx), (xn − x) + (x− Tx)〉
= ‖xn − x‖2 + ‖x− Tx‖2 + 2〈xn − x, x− Tx〉,
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so,

‖x− Tx‖2 = ‖xn − Tx‖2 − ‖xn − x‖2 − 2〈xn − x, x− Tx〉
≤ (‖xn − Txn‖+ ‖Txn − Tx‖)2 − ‖xn − x‖2 − 2〈xn − x, x− Tx〉
≤ (‖xn − Txn‖+ ‖xn − x‖)2 − ‖xn − x‖2 − 2〈xn − x, x− Tx〉
= ‖xn − Txn‖(‖xn − Txn‖+ 2‖xn − x‖)− 2〈xn − x, x− Tx〉
−→ 0, as n→∞.

Thus, Tx = x, establishing the result.

Proof of theorem 1: To see that (i) implies (ii) we first observe that the mapping
ProjC ◦ T is nonexpansive, by lemma 1., and maps C into C. Thus, by lemma
2., ProjC ◦ T has a fixed point x0 ∈ C, with Tx0 6∈ C, otherwise we would have
x0 = ProjC ◦ Tx0 = Tx0 contradicting (i). It now follows, using the definition of
ProjC , that 0 < ‖Tx0 − x0‖ = ‖Tx0 −ProjC ◦ Tx0‖ = dist(Tx0, C), establishing (ii).

That (ii) is equivalent to (iii) follows immediately from lemma 1. Thus, it only remains
to prove that (iii) implies (iv) implies (i).

(iii) =⇒ (iv): Suppose (iv) is not true, then there exists c ∈ C with Tx0 ∈ B[c, ‖c−
x0‖], so both c and Tx0 lie on the positive side of the support hyperplane to B[c, ‖c−
x0‖] at x0; namely {x ∈ H : 〈c−x0, x〉 = 〈c−x0, x0〉}. That is, 〈Tx0−x0, c−x0〉 ≥ 0,
contradicting (iii).

(iv) =⇒ (i): Suppose (i) is not true; that is, there exists c0 ∈ C with Tc0 = c0. Then,
‖Tx0 − c0‖ = ‖Tx0 − Tc0‖ ≤ ‖x0 − c0‖, so Tx0 ∈ B[c0, ‖c0 − x0‖], and so certainly

Tx0 ∈
⋃
c∈C

B[c, ‖c− x0‖], contradicting (iv).

Remark 1: The equivalence of conditions (ii) and (iii) of theorem 1. and their
relation to (i) were essentially studied by Williamson [W], where (iii) was introduced
as a generalized Leray-Schauder alternative.

Remark 2: Condition (ii) of theorem 1. was considered by Browder and Petryshyn
[B-P] and the equivalence of (i) and (iii) represtents a Ky Fan [Ky F] type result for
nonexpansive maps on non-compact domains.

Remark 3: Condition (iv) of theorem 1. seems new and like (ii) can be formulated
in any Banach space where it may play the role of a generalized Leray-Schauder
alternative. In particular one is led to ask: in which spaces X are the following two
conditions equivalent for a nonexpansive map T : BX → X?

(a) Fix(T ) 6= ∅.

(b) For all x ∈ BX we have Tx ∈
⋃

p∈BX

B[p, ‖p− x‖].
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Clearly we always have (a) implies (b).

Remark 4: When C = BH it is clear that (ii) of theorem 1. is equivalent to the Leray-
Schauder alternative (the closest point map onto the unit ball is radial retraction).
This observation combined with the above theorem yields the following.

Corollary 1: If T : BH −→ H is a nonexpansive mapping, then T satisfies the
Leray-Schauder alternative principle and the two alternatives are mutually exclusive.

We conclude by showing that this dichotomy between the two alternatives of the
Leray-Schauder alternative principle for nonexpansive mappings of the unit ball is
only possible when the space is a Hilbert space, and so characterizes Hilbert spaces
among all Banach spaces.

Theorem 2: A Banach space X is a Hilbert space if and only if for all nonexpansive
mappings T : BX −→ X the two possibilities below are mutually exclusive.

(i) Fix(T ) 6= ∅.

(ii) The Leray-Schauder alternative holds.

Proof: Necessity has been established in corollary 1. Thus, we need only establish
sufficiency. To this end, suppose X is not a Hilbert space. Then, there exists points
x0 and p0 in SX such that every closest point of the line Rp0 := {λp0 : λ ∈ R} to
x0 lies outside BX . This follows, for example, from characterization (13.8) of Amir’s
book [A], or see [H].

Let y0 be a closest point of Rp0 to x0, then we have, y0 = λp0 for some λ with |λ| > 1.
Replacing p0 by −p0 if necessary, we therefore have,

y0 = λp0, where λ > 1, and

‖x0 − y0‖ < ‖x0 − p0‖.

Denote by L the line through x0 and y0, which we can identify with a copy of R, and
define T : {x0, p0} ⊂ BX −→ L by

T (x0) := x0 and T (p0) := y0.

Then, T is nonexpansive and, since R is an injective metric space (see for example
[A-P]), T has a nonexpansive extension T̃ from BX into L ⊂ X.

Thus, T̃ : BX −→ X is a nonexpansive mapping which has a fixed point, T̃ (x0) = x0,
and for which the Leray-Schauder alternative holds, T̃ (p0) = y0 = λp0, with λ > 1.
These two conditions are therefore not mutually exclusive in X.

5



References

[A] Amir, Dan, Characterizations of Inner Product Spaces, Birkhäuser Verlag,
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