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1. Introduction

Sine [30] and Soardi [33] proved independently that the fixed point property for
nonexpansive mappings holds in bounded hyperconvex spaces. Since then hyperconvex
metric spaces have been widely studied and many interesting results for nonexpansive
mappings have been established within this framework, e.g., see Baillon [2], Goebel
and Kirk [13], Khamsi et al. [19,20], Kirk [22,23], Lin and Sine [27], Sine [31,32] and
others. More recently, Khasmi [18] established a hyperconvex version of the famous
KKM-Fan principle due to Fan [8]. Kirk [22] has obtained a constructive fixed point
theorem which arises from interval analysis in compact hyperconvex metric spaces;
and also Kirk and Shin [24] have established a number of fixed point theorems for
both condensing and nonexpansive mappings in hyperconvex spaces. In this paper, we
first establish a characterization of the Knaster—Kuratowski and Mazurkiewicz principle
in hyperconvex metric spaces which in turn leads to a characterization theorem for a
family of subsets with the finite intersection property in such a setting. As applications
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we give hyperconvex versions of Fan’s celebrated minimax principle and Fan’s best
approximation theorem for set-valued mappings. These in turn are applied to obtain
formulations ot the Browder—Fan fixed point theorem and the Schauder-Tychonoff fixed
point theorem in hyperconvex metric spaces for set-valued mappings. Finally. existence
theorems for saddle points, intersection theorems and Nash equilibria are also obtained.
Our results unify and extend several of the results cited above.

The basic definition is due to Aronszajn and Panitchpakdi [1]. (B(x,r) denotes the
closed ball centered at x ¢ X with radius » > 0.)

Definition 1.1. A metric space (X,d) is said to be a hyperconvex space if for any
collection of points {x,} of X and any collection {r,} of nonnegative real numbers for
which d(x,,x5) <, + 13, it is the case that [, B(xy.n)# 0.

This definition can be seen as equivalently a binary intersection property plus metric
convexity in the sense that for each given x, y € X and « € [0. 1], there exists z €.X such
that d(x,z) =ad(x.y) and d(v.z) = (1—2)d(x, ¥). The corresponding linear theory for
hyperconvex spaces can be found in Lacey {25]. As Sine [32] points out, the nonlinear
theory is still developing. Hyperconvex spaces can have quite strange aspects. For
example, a hyperconvex subset need not be convex in even R? (with the /.. norm).
Also convex sets in linear spaces may fail to be hyperconvex (but for this one must
go to at least R*, e.g.. see Sine [32]). Some nice spaces such as Hilbert space fail to
be hyperconvex. However hyperconvexity enjoys some properties similar to convexity
and others much like compactness. More convincing analogies hold for hyperconvex
sets which are ball intersections. The Nachbin—-Kelley—Goodner and Hasumi Theorem
in Lacey [25, p. 92] (see also Isbell [16], Nachbin [28] or Kelley [17]) says that a
Banach space is hyperconvex if and only if it is linearly isometric to C(K ), where C(K)
is the space of all continuous real functions defined on some stonian space K (i.e., K
is Hausdorfl, compact and extremally disconnected). Thus, the space /..(/) for any set
I and the space L., (y) for a finite measure u are examples of hyperconvex spaces.
Secondly, order intervals in L. are hyperconvex, but weak compact convex sets of
L. need not be hyperconvex. Moreover, hyperconvex sets of L. may not be convex
(e.g., see Lin and Sine [27, p. 943]). On the other hand any hyperconvex space (indeed
any metric space) embeds isometrically in some /..(/), e.g., see Lacey [25] or Khamsi
[18, pp. 300-301].

The relationship between hyperconvex metric spaces and nonexpansive mappings is
an important one as shown independently by the work of Sine [30] and Soardi [33].
On the other hand, we also know how important the famous Fan-KKM principle is
in the study of nonlinear analysis, in particular for the study of topological fixed
point theory, e.g.. see [3,5-12,14,26,29,34-37] and references therein. In [18] Khamsi
introduced a version of the KKM principle in hyperconvex spaces and as an application,
he gave hyperconvex versions of Fan’s best approximation theorem for single-valued
mappings and the Schauder—Tychonoff fixed point theorem. The main thrust of this
paper is in the same direction, i.e., our aim is to give a comprehensive study of
KKM theory in hyperconvex spaces and its related applications to fixed point theorems,
to characterize the KKM principle in hyperconvex spaces, to obtain Fan’s minimax
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principle in hyperconvex spaces, the existence of saddle points, the intersection of sets
and the existence of Nash equilibria in game theory. In order to study the KKM theory
in hyperconvex spaces, we first recall some notation and basic facts about hyperconvex
spaces which will be used later in the paper.

Definition 1.2. Let 4 be a bounded subset of a metric space (M, d). Then:

(1) co(Ay=n{BCM:B is a closed ball in M such that 4 C B};

(2) AM)={AM:A=co(d)}, ie., A€ /(M) if and only if 4 is an intersection of
closed balls. In this case, we shall say that 4 is an admissible subset of M. We
also note that if M is a hyperconvex space, then each admissible set in M is also
hyperconvex.

For convenience we summarize the following facts.

Proposition 1.1. Let M be a metric space. Then:

(1) There exists an index set I and a natural isometric embedding from M to 1,.(1).

(2) If M is hvperconvex, then it is complete.

(3) M is hyperconvex if and only if for each metric space N whiclt contains M
isometrically, there exists a nonexpansive retraction v:N —M; ie., r is nonex-
pansive and r(x)=x for each x € M. In particular, if N is a normed space. for any
nonempty finite set of points {vy.y2,....,ya CM}, r(cont{y...., v} Cco{y,
V2sooo Vot Where co{yy. ya..... 1} is given by Definition 1.2 above.

(4) M is hyperconvex if and only if for each metric space N which is contained
metrically in any space D, and any nonexpansive mapping T : N — M. there exist
an extension T* : D — M which is nonexpansive, i.e., T(x)=T*(x) for each x € N.

Proof. For example, see Proposition 1 of Khamsi [18, p. 300]. O

Let M be a metric space and consider the natural embedding into /..(/) given by
statement (1) in Proposition 1.1. If M. :=co(M)&€ o7/(1(1)) clearly M. then is a
hyperconvex subset of /,.(I), and M. is also a convex subset of the linear space
I ().

2. The KKM theory in hyperconvex metric spaces

Let X be a nonempty set. We denote by Z(X) and 2% the family of all nonempty
finite subsets of X and the family of all subsets of X. respectively. If 4 is a subset of
a linear space F, the notation ‘conv(A4)’ always means the convex hull of A.

Let (M,d) be a metric space. Following Khamsi [20], a subset § C M is said to be
finitely metricully closed if for each F € # (M), the set co(F)NS is closed. Note that
co(F) is always defined and belongs to </(M ). Thus if S is closed in M it is obviously
finitely metrically closed. We also recall that a family {4,},2p of M has the finire
mrersection properiy if the intersection of each of its nonempty finite subfamilies is
not empty.
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Definition 2.1. Let X be any nonempty set and let M be a metric space. A set-valued
mapping G: X — 2M\ {0} is said to be a generalized metric KKM mapping (GMKKM )
if for each nonempty finite set {x...., X, } C X, there exists a set {y1,..., ¥, of points
of M, not necessarily all different, such that for each subset {y;...., v, } of {y1,..., %}
we have

k
cofvi; j=1....kbc |GG,

Jj=1

As a special case of a generalized metric KKM mapping, we have the following
definition of KKM mappings given essentially by Khamsi in [18§].

Definition 2.2. Let X be a nonempty subset of a metric space M. Suppose G : X — 2¥
is a set-valued mapping with nonempty values. Then G is said to be a metric KKM
(MKKM) mapping if for each finite subset F € #(X). co(F)C|J,.rG(x).

Remark 2.1. [z is clear that each metric KKM mapping is a generalized metric KKM
mapping but in general the converse is not true. When X is a subset of a linear space
M, if ‘co’ is replaced with *cont’, the usual “convex hll’, in a linear space M, then
our definition of GMKKM becomes that of Chang and Zhang [5] and Yuan [36] (see
also Bardaro and Ceppitelli [3], Fan [12], Granas [14], Lassonde [26], Park [29], Tun
and Yuan [34), Tarafdar [35] and Yuan [36] for more recent developments in the
study of KKM theorv in topological vector spaces).

Now, we give a characterization of the generalized metric KKM mapping principle
in hyperconvex metric spaces.

Theorem 2.1. Let X be a nonempty set and let M be a hyperconvex metric space.
Suppose G : X — 2Y\{0} has finitely metrically closed values. Then the family {G(x):
x €X'} has the finite intersection property if and only if the mapping G is au gener-
alized metric KKM mapping.

Proof. Necessity: (Hyperconvexity is not needed for this implication.) If the family
{G(x):x € X} has the finite intersection property then for each finite subset {xi,....x,}
CX, (., G(x;)#0. Take any point x* € (}_, G(x;) and set y;=x* for i=1,....n.
Then for any 1 <4 <n and any subsequence v;,..., ¥, it follows that co({y;:j=
... k}y=co({x*})={x*} CUL G(x;).This proves that G is a GMKKM mapping.

Sufficiency: Suppose that G: X — 2Y\{0} is a GMKKM mapping and suppose the
family {G(x):x € X} does not have the finite intersection property. Then there exists
a nonempty finite set {x;,...,x,} for which ()_, G(x;)=0. Since G is a GMKKM
mapping there exist corresponding points yi,.... v, of M such that for each subse-
quence yj....,v;,, we have c()({y,-J,...,yiA})CUI}ZIG(.\',-, ). Since M is hyperconvex
there exists a nonexpansive retraction »: M, — M. In particular, if we identify M
with its isometric copy in the Banach space M. then ;- maps the linear span L
of points {31,..., v} into M. Let Y:=co({yy,...,y}) and S:=conv({yi...., y}).



W.A. Kirk et al. | Nonlinear Analysis 39 (2000} 611-627 613

Then »(§)C M (indeed, »(S)C Y) and r(x) =x for each x € M. The assumption that
G(x) is finitely metrically closed for each x € X implies that ¥ N G(x;) is closed for
i=1,...,n. Note also that ¥ NG(x;)#{ since, in particular, y; € Y 1 G(x;). However,
(" ,G(x;)=10, so for each s €S there exists i; € {1.....n} such that (s) € ¥ N G(x;,).
Hence dist(r(s), Y N G(x;,))>0. Therefore if the mapping f: 5 — [0.2¢) is defined by
setting
f(s):= Z dist(r(s), Y NG(x;))
=1
for each s € S, it must be the case that f(s)>0 for each s €S and also f is obviously
continuous.
Now define a (single-valued) mapping F :S — S by setting

1
f(s)
for each s€S. Then F is also continuous. Since S is a bounded closed and convex

subset of the finite-dimensional space L, by Brouwer’s fixed point theorem there exists
so €S such that F(sg)=ysp; i.e.,

F(s):= Z dist(r(s), YN G(x;))y;
i=1

so=F(sp)= 750 Z{ dist(r(so), Y NG(x;))vr. (2.1)
If
F={iy,....ix} = {ie{l.....n}:dist(r(s0), Y NG(x;))>0}, (2.2)

then /#@. and for each i€l r(sq)€YNG(x;). Note that since #(S)CY by
Proposition 1.1 (3), r(sp) €Y. (Indeed, so € conv{y,....y}. To see this, note that
B is a closed ball centered at a point of M which contains the set {y;:j=1,...,n}.
Since r is nonexpansive and leaves points of M fixed, it follows that #(y) < B. This in
turn implies #(3) € co({vi,,..., ¥, })). Thus, it must be the case that r(so) & G(x;) for
each i €1, ie.,

r(so) & [ J Gn). (2.3)
il
Then by definition of F, we have

k
Z dist(r(so). YN G(x;))yi, € conv({vy,.... v, }).

J=!

so=F(so)=

f(s0)

This in turn implies #(sy) € co({y,-..., ¥;, }). Thus we are able to conclude that r(sp) €
col{¥ijs o, vi I C Uli} G(x;,) and this contradicts Eq. (2.3), completing the proof. [

As an application of Theorem 2.1 we have the following characterization giving
the existence of a nonempty intersection for the values of a set-valued mapping in a
hyperconvex metric space.
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Theorem 2.2, Let X be a non-empty set and M be a hyperconvex metric space.
Suppose G:X —2M\{0} is a set-valued mapping with nonempty closed values and
suppose there exists xo € X such that G(xy) is compact. Then () o G(x)50 if and
only if the mapping G is a generalized metric KKM mupping. i

Proof. Necessity: Since [, G(x)# 0, it follows that the family {G(x):x € X'} has the
finite intersection property. Since G(x) is closed for each x € X’ it is finitely metrically
closed. Thus by Theorem 2.1, G is a generalized metric KKM mapping.

Sufficiency: Since G is a generalized metric KKM mapping, it follows by Theo-
rem 2.1 that the family {G(x): x € X'} has the finite intersection property. Rewriting
this as {G(x)N(xg): x€X} and noting G(xg) is compact, we have

0# () GINGlx) = Glxo) (] G)= [ G).

xeEX xex xeX

This completes the proof. [

As a special cases of Theorem 2.1 we also have the following result which extends
Theorem 3 of Khamsi [18, p. 303].

Corollary 2.3. Let X be a nonempty subset of a hyperconvex metrie spuce M. Sup-
pose G: X —2Y\{0} is a metric KKM mapping with finitely metrically closed values.
Then the family {G(x): x €X'} hus the finite intersection property.

Definition 2.3. Let X be a nonempty set and let ¥ be a topological space. A mapping
G:X — 27 is said to be rrunsfer closed valued if for each (x, ¥) € X x Y with y € G(x),
there exist x’ € X and a nonempty open neighborhood N(y) of y such that 3’ ¢ G(x')
for all v € N(v).

Definition 2.4. Let ¥ be a nonempty set and X a topological space. A mapping
F:X —2" is said to be transfer open inversed valued if for each (x,yv)€X x Y with
y & F(x), there exists y' €Y and a nonempty open neighborhood N(x) of x such that
Ve F(z) for all ze N(x).

Remark 2.2. Let X be a nonempty set and Y a topological space. Suppose G: X —
2. Then it is clear to see that G is transfer closed valued if and only if the mapping
F:Y —2% defined by F(y)=X\G~'(y) for each v&Y is transfer open inversed
ralued.

The following simple example shovs that set-valued nmiappings with transfer open
intersed values may not be open inversed valued.

Let X :=10,1] and the set-valued mapping F . X — 2% be defined by

Flx)= { [x.1] if x is rational,

[0.1] if x is irrational.

Then ir is clear that F is transfer open inversed valued ver not open inversed valued.
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Lemma 2.4. Let X be a nonempty set and Y be a topological space. Suppose F: X —
2"\{0}. Then N,y F(x)= Ny clF(x) if and only if F is transfer closed valued.

Proof. This is Lemma 2.4 of Yuan [38, p. 137].

By Theorem 2.1 and Lemma 2.4, we have the following characterization of the finite
intersection property for set-valued mappings.

Theorem 2.5. Let X he a nonempty set and let M be a liyperconvex metric space.
Suppose G: X —2Y\{0} is transfer closed valued and suppose there exists a finite
subset Xy of X TWCII that ﬂxe‘x“ clG(x) is nonempty and conpact. Then [,c, G(x)
is noneinpty if and only If the mapping clG is a generalized metric KKM
mapping.

Proof. By Theorem 2.1 the family {¢/G(x): x € X} has the finite intersection property
if and only if ¢/G is a GMKKM mapping. Since there exists a nonempty finite subset
Xo of X such that [ ., ¢/G(x) is nonempty compact, it follows that (7 .y ¢/G(x) is
nonempty if and only if ¢/G is a GMKKM mapping. As an application of Lemma 2.4
(by noting that G is transfer closed valued), it follows that (1, , G(x) is nonempty if
and only if ¢/G is a generalized metric KKM mapping. [

Corollary 2.6. Let X be a nonempty subset of a hyperconvex metric space M and
let G:X —2Y\{D} be u transfer closed valued and metric KKM mapping. Suppose
there exists a nonempty finite subset Xy of X such that (. x, ClG(x) is compact.
Then (Ney GxX) = [Nyey c/G(x)#10.

Proof. Each metric KKM mapping is a generalized metric KKM mapping; thus, the

—

conclusion follows from Theorem 2.5. T

Theorems 2.1, 2.2 and 2.5 tell us that in hyperconvex metric spaces the finite in-
tersection property for a family of subsets is equivalent to a nonempty intersection
property for a set-valued mapping which is a generalized metric KKM mapping. In
order to study in which situations such generalized metric KKM mappings can be
derived, we now introduce the following definitions.

Definition 2.5. Let X € # (M) be a nonempty subset of a hyperconvex space M. Then:

(1) the function f:X — [— o0, +o<] is said to be hyper quasi-convex (resp., concave)
if the set {x €X: f(x)< A} (resp., the set {x €X: f(x)>2}) for each L€R is
an admissible set in M

(2) the function Y(x, y): X x X —[— ¢, +2c] is said to be hyper diagonal quasi-
convex (resp., concave) in y if for each 4 € #(X) and any yg € co(A4), Y vy, 1) <
max;,c4 W(yo, ¥i) (resp., y(yo, yo) > min,, - W(vo, ¥i));

(3) Y(x, p) is said to be hyper y-diagonal quasi-convex (resp., concare) in y for some
7€[— ¢, +oc] if for any 4 € #(X) and yg € co(4), 7 < max,, eq Y vo, yi) (resp.,
7> min, eq W yo, vi)).
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Remark 2.3. Note that the inequality ‘<’ (resp., ‘>’) could be replaced equivalently
by the strict inequality <’ (resp., ‘>’) in Definition 2.5(1). It is clear that if
W(x,y) is hyperdiagonal quasi-convex (resp., concatve) in y, then y(x,y) must be
hyper v-diagonally quasi-convex (resp., concave) in y, where y =1inf,cx Y(x,x) (resp.,
Y= Supey Y(6x)),

Definition 2.6. Let X € 7 (M) be a nonempty subset of a hyperconvex space metric
space M and let v €(—oc, +oc]. Suppose ¥ M x X —(—o¢,+oc]. Then ¥ is said
to be hyper v-generalized quasi-convex (resp., concave) in M if for each nonempty
finite subset {xi,...,x,} CX, there exists a set {y,...,»,} in M such that for each
subset {y;,,.... v, } of {y1,..., v} and any xo € co{x;,...,x; }, 7 < max << Y(xo, ¥i,)
(resp., = min < < $(xo, i, ))-

Remark 2.4. When M is a linear metric space and X is a nonempty convex set in
M, Definition 2.6 reduces to the corresponding definition given by Chang and Zhang
(5], Zhou and Chen [40] and others. We now have the following result.

Lemma 2.7. Let X be a nonempty set, M a hyperconvex metric space and let y € R
be a given real number. Suppose .M X X —(—oc,+oc]. Then the following are
equivalent:

(1) The mapping G:X —2Y\{0} defined by G(x):={yeM: y(y,x)<7} (resp.,
Gx)y:={yeM: y(y,x)>7}) for each x€X is a generalized metric KKM
mapping.

(2) The function \r is hyper v-generalized quasi-concave (resp., convex) in M.

Proof. We only prove the conclusion for the case s is hyper »-generalized quasi-
concave. The convex case is proved similarly.

()= (2): As G: X — 2"\ {0} is a GMKKM mapping, for each finite set {x,,....x,}
C X, there exist y,...,y, in M such that for any subset {y;,...,y;, } of {31,..., v}
and any yo € co{yi,..., ¥}, we have yg € UjleG(xi,). Hence there exists some m €
{1.....k} such that y;€ G(x;,). It follows that Yy, x;,)<7. Therefore, min < <4
Y(»o,x;, ) <7, which implies that i is hyper y-generalized quasi-concave in M.

(2) = (1): As y is hyper -generalized quasi-concave in M, for any nonempty finite
set {x1,...,x,} CX, there exist yi,...,», in M such that for any subset {y;,....;,}

of {y1.....ya} and yo€co{y;,...,y; } we have minj<; <, ¥(vo,x;)<7. Hence there
exists some me{l,...,k} such that W(yg,x; ) <7. This implies that yy € G(x; ). By
the arbitrariness of yo € co{yi,..., ¥, }, it follows that co{yy,..., v, } C U’}':]G(x,-,)

which implies that G:X —2"\{(} is a generalized metric KKM mapping. []

The following minimax inequality is a hyperconvex version of Fan’s celebrated min-
imax inequality principle in [10].

Theorem 2.8. Let X € .o/(M) be a compact subset of a hyperconvex space M. Sup-
pose Y X x X — (—=,+xc] satisfies
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(1) for each fixed x € X, y — Y(x,y) is hyper O-generalized quasi-concave; and
(2) for each fixed y € X, x — W(x,y) is lower semicontinous.
Then there exists xo € X such that SUP, ¢y W(xo, ¥)<0.

Proof. We define a mapping G: X — 2% by
G(x):={y € X: Y(3x) <0}

for each x € X. Then it is clear that G is a GMKKM mapping by Lemma 2.7. Now
by Theorem 2.2, it follows that [, G(x)# (. Take any point xo € (), G(x). Then
Sup ¢ x ¥(xo, ) <0 completing the proof. [

As an application of the generalized metric MKKM principle established above
we have the following version of Fan’s best approximation in hyperconvex spaces
for set-valued mappings. Note that here and henceforth we are adopting the notation
d(x,A)y=dist(x,A) for x€ X and 4 CX.

Theorem 2.9. Ler M be a hyperconvex metric space and X € /(M) be a nonempty
compact subset of M. Suppose F:X — /(M) is a set-valued continuous mapping.
Then there exists xo € X such that

d(x0, F(xg)) = infd(x, F(x0)).
xcX

Proof. Define a mapping G: X — 2¥\{(0} by
G)={reX:d (y,F(y)<dx.F(y))}

for each x € X. As F is continuous, G(x) is closed and nonempty for each x € X. Now
we claim that G is a metric KKM mapping. Suppose it were not. Then there exists a
nonempty and finite subset {x,...,x,} and y€co({x;: i=1,...,n}) such that

d(x, F(y))<d(y,F(y))

for i=1,...,n. Let ¢>0 be such that d(x;, F(y))<d(y,F(y))—¢ fori=1,...,n Let
r=(v,F(y))y—e Then for i=1,....n, x;€F(y)+r, where F(y)+r:=J{B(a:r):
a € F(y)}. Note that since F(y) e .oZ(M), it follows that F(p) +r € /(M) (e.g., see
[32, p. 864]). Thus co{x|,x2,...,x,} CF(y) +r. This in turn implies y € F(y) + r,
that is, (v, F () <r=(»,F(y)) — ¢ which is impossible. Therefore, G must be a
metric KKM-mapping.

Note that since X is compact, [, G(x)#{. Take any point x; € (MNyex G(x). Then
it is clear that d(xg, F(xg)) <d(x, F(xp)) for all x € X, which implies that d(xg, F(xp)) =
infocx d(x, F(xp)). O

As a special case of our best approximation theorem we have the following best
approximation result for single-valued mappings, obtained by Khamsi [18].
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Corollary 2.10. Let M be a hyperconvex metric space and let X € o/(m) be a
nonempty compact subset of M. Suppose F: X — M is continuous. Then there exists
X0 €X such that

d(xo.F(x9)) = inf d(x,F(xp)).
xcXx

3. Fixed point theorems in hyperconvex spaces

In this section, we shall use the generalized metric KKM principle and Fan’s best
approximation theorem in hyperconvex metric space established in Section 2 to
derive hyperconvex versions of the Browder—Fan fixed point theorem and the Schauder—
Tychonoff fixed point theorem for both set-valued and single-valued mappings.

Theorem 3.1. Let M be a hyperconvex metric space and let X € /(M) be compact.
Suppose F: X —2\{¢} satisfies

(1) F is transfer open inversed valued,

(2) for each x € X, F(x) is admissible.

Then there exists xo € X such that xo € F(xp).

Proof. Define G:.X¥ —2% by
G(x)=X\F (x)

for each x € X. Since F(x) is nonempty and transfer closed valued, X = ,exF ().
Therefore [,.y G(x)=0. By Corollary 2.6, G must not be a metric KKM mapping;
thus, there exists a subset {xy,...,x,} CX and a point x¢ € co{xi,...,x,} such that
xo & G(x;) for i=1,2,...,n It follows that x; € F(xg) for all i=1,...,n. Note that
F(x¢) is admissible so it follows that xo € co{x;, i=1,....n} CF(xy). Therefore x, is
a fixed point of F. [J

As an application of Theorem 3.1 we have the following result which is Fan’s
geometric lemma 8 in hyperconvex metric space:

Theorem 3.2. Let M he a hyperconvex metric space and let X € .o/(M) be compact.
Suppose C is a nonempty subset of X x X such that

(1) for each fixed x € X. the set {y€X: (x,v) & C} is either empty or admissible;
(2) for each fixed y € X, the set {x€X: (x,y)€ C} is closed,

(3) for each x€ X, (x,x) € C.

Then there exists xo € X such that {xp} x X C C.

Proof. In order to apply Theorem 3.1, we define F': X —2% by

Fx)={yeX: (xy) ¢ C}
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for each x € X. Then F satisfies all the hypotheses of Theorem 3.1. Since F has no
fixed point, by condition (3) it follows that there must exist xg € X such that F(x,)={.
Thus we must have {xo} x X C C by the definition of F. [J

As another application of Theorem 3.2 we have the following:

Theorem 3.3. Let X € .</(M) be a nonempty compact subset of a hyperconvex metric
space M. Suppose F:X — 2% satisfies

(1) for each y € X, X\F~(y) is admissible;

(2) for each x € X, the set F(x) is closed,

(3) for each x € X, x € F(x).

Then there exists xo € X such that xy € ﬂxe v F(x).

Proof. In order to apply Theorem 3.2, let C:={(x,»)€X X X: x € F(»)}. Then:
(1) for each x € X, the set {y€X: (x,)gC}={y€X: x¢F(y)} =X\F~'(x) which
is admissible by the condition (1});
(2) for each fixed y € X, the set {x€X: (x,y)€C}=F(y) is closed in X by a hy-
pothesis (2);
(3) for each x € X, it is clear that (x,x)€ X.
Thus all hypotheses of Theorem 3.2 are satisfied and it follows that there exists
xo €X with {xo} x X C C. This implies that xo € [ oy F(x). O
Remark 3.4. Theorems 3.2 and 3.3 are equivalent. To see this it suffices to prove
Theorem 3.2 from Theorem 3.3. Define F : X —2% by F(y)={xcX:(x,y)€C} for
each yeX. Then the hypotheses of Theorem 3.2 ensure that F satisfies all the hy-
potheses of Theorem 3.3. By Theorem 3.3, (\,oy F(x) # 0. Take any xq € [\, F(x)
and {xo} x X C C as required.

The following existence theorem for maximal elements in hyperconvex spaces is an
equivalent statement of Theorem 3.1.

Theorem 3.4. Let X € /(M) be a compact hyperconvex subset of a hyperconvex
metric space M. Assume F . X — 2% satisfies:

(1) F is transfer open inversed valued,

(2) for each x € X, x € F(x) and F(x) is admissible.

Then there exists xo €X such that F(xy)=0.

As an application of Theorem 2.9 we have the following Schauder-Tychonoff fixed
point theorem for set-valued mappings which includes a result of Khamsi [18].

Theorem 3.5. Let X € #(MY) be a compact subset of a hyperconvex metric space
M. Suppose F: X — /(M) is a set-valued continuous mapping with nonempty closed
values such thar for each x € X with x € F(x), there exists z € X such that d(z,F(x))<
d(x.F(x)). Then F has « fixed point in X.
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Proof. By Theorem 2.9 there exists xo € X such that

d(xo,F(xg))= inf d(x,F(xp)).
XEX

We claim that x4 is a fixed point of F. Indeed, assume this were not true, i.c.,
X0 & F(xg). Then it follows that d(xy, F(x))>0. Then by assumption there exists zg € X
such that d(zg, F(xy)) <d(xe,F(xp)). On the other hand, note that d(zg, F(x¢)) > d(x,
F(x9))>0. This implies that 0<d(z, F(x¢))<d(zg, F(x¢)), which is impossible and
thus xo must be a fixed point of F. [

As an immediate consequence of Theorem 3.5 we have the following fixed point
theorem which is Corollary 3.5 of Kirk and Shin [24, p. 180].

Corollary 3.6. Letr X € #(M) be a compact subset of a hyperconvex metric space
M. Suppose F:X — Z(MW\{¢} has closed values and satisfies F(x)NX £0 for all
x€X. Then F has a fixed point in X.

Proof. Note that F(x)NX # () for each x€X. Tt follows that for any x € X with
x & F(x), if we take z € F(x)N X, then d(z, F(x))=0<d(x, F(x)). Thus all hypotheses
of Theorem 3.5 are satisfied and the conclusion follows. [l

Remark 3.2. Theorem 3.5 is a natural extension of Theorem 6 of Khamsi [18].

4. Noncompact versions of the KKM principle and fixed point theorems in
hyperconvex spaces

Motivated by the recent study of Kirk and Shin [15] we now establish noncom-
pact versions of both the KKM principle and the fixed point theorem for set-valued
mappings in hyperconvex spaces. These results are noncompact generalizations of the
corresponding results given in Sections 2 and 3 above.

Let (M,d) be an arbitrary metric space and let 4 denote the usual Kuratowksi mea-
sure of noncompactness on M. Thus for each nonempty bounded 4 C M:

w(A4)=inf {8>0: there exists n with 4 C UA,-, where dz'am(A,)<c}.
i=1
(Recall that diam(4;):= SUP, e 4, dx,y)y fori=1,2,...,n.)
We also need the following result which is Theorem 1 of Horvath [15, p. 403].

Lemma 4.1. Let (M.d) be a complete metric space and let {F;:i <1} be a family of
nonempty closed subsets of M having the finite intersection property. If inf;c; u(Fy)
=0, then (\,; Fi is nonempty and eompact.

We now give the following noncompact version of the KKM principle for hyper-
convex spaces which includes Theorem 2.5 above as a special case.
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Theorem 4.2. Let X be a nonempty set and M a hyperconvex metric space. Suppose
G:X =2\ {0} is transfer closed valued and inf ey u(clG(x))=0. Then (., G(x)
is nonempty if and only if the mapping clG is a generalized metric KKM mapping.

Proof. If ¢/G is a GMKKM mapping, it follows by Theorem 2.1 that the family
{clG(x): x € X} has the finite intersection property. Note that inf,cy u(c/G(x))=0.
This implies that (0, ., ¢/G(x)# @ by Lemma 4.1 and the same is true for the family
{G(x):x€ X} by Lemma 2.4. On the other hand, if (o, ¢/G(x)#0, it is, of course,
a GMKKM mapping. O

As an application of Theorem 4.2 we have the following noncompact version of
Fan’s best approximation theorem for set-valued mappings in noncompact hyperconvex
spaces. This extends Theorem 2.9.

Theorem 4.3. Let M be a hyperconvex metric space and X € oA/ (M) be a nonempty
subset of M. Suppose F:X — /(M) is a set-valued continuous mapping such that

inf A({¥ € X: (1 F(») £ (6 FON D =0,
Then there exists xo € X such that d(xg, F(xo))= inf.cx d(x, F(xp)).

Proof. By following the proof of Theorem 2.9, we know that the mapping G : X — 2%\
{0} given by

Gx):={yeX:d(y,F(») <d(x,F(y))}

for each x € X is a GMKKM mapping with nonempty closed values as F is continu-
ous. By the assumption we have inf,cy p(G(x))=0. It follows by Theorem 4.2 that
MNyex G(x) # 0. Take any point xo € [,y G(x). Then it is clear that d(xg, F(xo)) <d(x,
F(x¢)), for all x€ X, which implies that d{(xq, F(x¢))= inf,cx d(x,F(x)). O

As an application of Theorem 4.3 we also have the following noncompact version
of a fixed point theorem which extends Theorem 3.3 of Kirk and Shin [15].

Theorem 4.4. Let X € #(M) be a subset of a hyperconvex metric space M. Suppose
F:X — o (M) is a set-valued continuous mapping with nonempty closed values such
that

(1) infrey p({y €X: (0. F(¥)) (. F(y))})=0; and
(2) for each x € X with x & F(x), there exists z€ X such that d(z, F(x))<d(x,F(x)).
Then F has a fixed point in X.

Proof. By Theorem 4.3, there exists xo € X such that

d(xg, F(x9))y= inf d(x,F(xq)).
xeX

Then xp is a fixed point of F by the same proof of Theorem 3.5. [
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5. Applications to saddle points and Nash equilibria in game theory

In this section we use our generalized metric KKM principle in hyperconvex spaces
to give some applications to the existence for saddle points, intersection theorems and
the existence of Nash equilibria in game theory.

Theorem 5.1. Ler X € .o/ (M) be a nonempty compact subset of a hyperconvex metric

space M. Suppose X X X — (—oc,+0<) satisfies

(1) for each fixed y e X, Y(x,v) is lower semicontinuous in x; and for each fixed
x€X, y(x,y) is hyper O-generalized quasi-concave in y;

(2) for each fixed x € X, W(x,y) is upper semicontinuous in y, and for each fixed
X EX, Y(x,y) is hyper O-generalized quasi-convex in x.

Then  has at least one saddle point in X x X, i.e., there exists (xp, vo) €X x X such

that

inf Y(x, v) = Y(xg, vo) = mi xy)=0.
max inf W(x, ¥) = (xo, yo) min sgg Wi(x, y)

Proof. By our assumptions, i satisfies all the hypotheses of Theorem 2.8 and it follows
that there exists xo € X such that

sup ¥ (xp, y) < 0. (5.1)

yex

Let A(x,y)= —(x, ) for each (x,y)€X x X, then 2: X x X — (—2c,+o¢) is a map-
ping which also satisfies all hypotheses of Theorem 2.8. By Theorem 2.8 there exists
yo € X such that

sup 4(x, yo) <0. (5.2)
xcX

By combining Egs. (5.1) and (5.2)

max min y(x, y) = Y(xo. yo) = min su 5 y)=0,
TEX xEX VX y) = (o yo) ex )Seg V(% y) =0,

thus completing the proof.

Tn what follows, we establish an intersection theorem and the existence of Nash
equilibria in hyperconvex metric spaces. We use the following notation: Given a
Cartesian. productX = [Ti- X; of topological spaces, let X/ = [T, X; gnd let piiX —
X; and p': X — X' denote the natural projections; write p;(x)=x; and p'(x)=x'. Given
X, ) €X$ we let (}’iaxl) = (x17 e Xid, }"i,xi—la O 5xl1)'

The next theorem is a hyperconvex version of Fan’s intersection theorem in [9].

Theorem 5.2. Let Xi,....X, be non-empty compact sets in hyperconvex metric spaces
M; such that X; € /(M) for i=1,....n and let Ay, A>,..., A, be n subsets of X
(where, X = T]'_ | X;) such that:



W.A. Kirk et al. | Nonlinear Analysis 39 (2000) 611-627 625

(1) for each fixed x € X and for each i=1,....n, the set
Aix):={yeX: (y,x") € 4;}

is a nonempty and admissible set;
(2) for each fixed veX and each i=1,...,n, the set

A(v)y={xeX: (y.x")c 4}

is open.

Then [Y/_, 4; #0.

Proof. Define G: X — 2% by

G(x):=X\ ﬂ Al(x)

i=1

for each x€ X. Then G is not a metric KKM mapping. Indeed, by condition (1), for
each x € X there exists ¥y €X such that (y;,x')€ 4; for all i=1,2,...,n. This implies
xe ;. 4'(y), which means X C |J,..((/_, 4'(»)). Therefore (., G(y)=0 and
by Corollary 2.3, G cannot be a metric KKM mapping. Thus there exists a nonempty
finite subset {x(1),x(2),....x(m)} CX for which there exists w € co{x(1),...,x(m)}
with the property that w ¢ G(x(j)). i.e., we [/_,4'(x(j)) for all j=1,....,m. Note
that the set 4,(w) is admissible and x(j) € 4,(w) for all j=1,2....,m. It follows that
w € co{x(1),x(2),....x(m)} C Aw). Thus we have w € 4,(w) for all i=1,2,...,n, ie.,
we M A #0. O

As an immediate corollary of Theorem 5.2 we have the following existence of Nash
equilibria in hyperconvex spaces (see also [14, 26, 29, 36] and references therein for
details of the study in topological vector spaces).

Theorem 5.3, Let X|,....X, € /(M) be nonempty compact sets in a hyperconvex
metric space M. Let fy...., 1. be n real-valued continuous funcrions defined on
X =TI/_, X such that for each y € X and for each i=1,....n, the function x;— f;
(x;, V') is hyper quasi-concave on X;. Then there exists a point yo€X such that
f,(}o): maxy, cy; f,-(xl-,yg) f()l i=1,...,n

Proof. For any given £>0, define for each i=1,2,...,n,
Aj = {z eX: fi(z)> max fl-(xf,yi) — a} .
NEX;

It follows that for each fixed x € X, there exists v & X such that (y;,x')€ 4% for all
i=1,...,n and the set 47 is nonempty and admissible, by the hyper quasi-concavity
of the mapping x; — fi(x;,»") for each ycX. Also, for each y<X and for each
i=1....,n, we note that x € 4%(y) if and only if (y;,x') € A%, Further 4¢ is open by
the upper semicontinuity of the mapping '~ f;(x;, ) for each fixed x € X. Thus
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all the hypotheses of Theorem 5.2 are satisfied and so there exists x(¢)€ X such that
x(e) € (Vo Af. As X is compact, without loss of the generality, we may assume that
x(e)— yo€X as ¢ — 0F. The conclusion then follows by the continuity of f; for

i=1,2,...,n, and the proof is completed. [

Remark 5.1. By following methodology and arguments similar to those used by Fan
[12] (see also [29] and references therein for a more recent study), many variations
and generalizations of the results given in this paper can be established. Since the
ideas are busically the same as those used in Fan [12], we will not include further
discussion here. Finally, we point out that by using the notion of noncompactness
measure given in Section 4, we can also obtain noncompact versions of results in this
section. As the arguments are not particulurly difficult we will omit the details.

Remark 5.2. After this paper was written the authors became aware that in his forth-
coming paper “Fixed point theorems in hyperconvex metric spaces” Professor Sehie
Park obrains a theorem equivalent to our Theorem 3.1 using a different approach.
Also, an idea in Park’s paper can be expanded on to easily show that if xo in
Theorem 2.9 is not a fixed point of F then it must be a boundary point of X.
Similarly in Theorem 4.2. In Theorem 3.5, if F takes on compact values the con-
clusion still holds if for each x € Bd(X) with x & F(x) there exists z€ X for which
d(z, F(x)) <d(x,F(x)). An analogous conclusion holds in Theorem 4.4,
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