
Journal of Nonlinear and Convex Analysis 
Volume 2, Number 1, 2001, 129-138 

UNIFORM NORMAL STRUCTURE AND RELATED NOTIONS 
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Dedicated to Professor Ky Fan on his 85th birthday 

ABSTRACT. Let X be a Banach space, let 4 denote the usual Kuratowski measure 
of noncompactness, and let kx ( E )  = supr  ( D )  where r ( D )  is the Chebyshev 
radius of D  and the supremum is taken over all closed convex subsets D  of 
X for which diam ( D )  = 1  and 4 ( D )  2 E .  The space X is said to have 4- 
uniform normal structure if kx (E) < 1  for each E E ( 0 , l ) .  I t  is shown that 
this concept, which lies strictly between normal structure and uniform normal 
structure, implies reflexivity. Hence such spaces have the fixed point property for 
nonexpansive mappings. Related concepts in metric spaces are also discussed. 

Our objective in this note is to introduce a 'noncompact' extension of the concept 
of uniform normal structure and discuss some of its properties and related notions. 
We begin some standard definitions and a brief review of the general topic. 

Let X be a Banach space; let C denote the collection of all bounded closed convex 
subsets of X ;  let C, denote the collection of all weakly compact convex subsets of X ;  
let A denote the collection of all admissible subsets of X. Thus A is the collection 
of all sets of the form 

B = niErB (xi; Ti) 

where B (xi; ri) denotes a closed ball centered at xi E X with radius ri 1 0, and I 
is some index set. 

The Chebyshev radius r (K)  of K E C is the number 

r (K) = inf {sup {llx - yll : x E K))  . 
YEK 

A Banach space is said to have normal structure if r (K)  ldiam (K)  < 1 whenever 
K E C and diam (K) > 0. It is well-known that if a weakly compact convex subset of 
a Banach space has normal structure, then every nonexpansive mapping T : K + K 
has a fixed point. ( T  is nonexpansive if IIT (x) - T (y) 1 1  5 llx - yll for each x, y E K.) 
Thus Banach spaces which have normal structure have the weak fixed point property 
(weak-FPP). If the space is reflexive we refer to this as the FPP. 

We now list the standard normal structure coefficients of X. The first was in t re  
duced by Bynum in 1980 [8]. These are called, respectively, the normal structure 
coeficient, the weak normal structure coeficient, and the admissible normal struc- 
ture coeficient of X. 
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N (X) = sup {r (K)  ldiam (K)  : K E C and diam (K)  > 0) ; 

Nw (X) = sup {r (K) ldiam (K)  : K E C, and diam (K)  > 0) ; 

Na (X) = sup {r (K)  ldiam (K)  : K E A and diam (K)  > 0) 

X is said to have unzform normal structure (UNS) if N (X)  < 1. This concept, 
which is a strengthening of the concept of normal structure, was introduced by Gille- 
spie and Williams in 1979 ([lo]) and it serves as the basis for this entire discussion. 
Notice that weak unzform normal structure (w-UNS) and admissible uniform normal 
structure (a-UNS) can be defined analogously. Gillespie and Williams proved that 
if a Banach space X has UNS then every bounded closed convex subset of X has 
the fixed point property for nonexpansive mappings, and they raised the question 
of whether every such space is reflexive. This question was answered affirmatively, 
and independently, by Bae [3] and Maluta [17]. 

While the above coefficients are natural in a Banach space environment, the third 
requires only a metric setting. It  is well known (e.g., [4]) that for any hyperconvex 
metric space H, 

Na (H) = 112. 
We now list some well-known facts about normal structure coefficients. Through- 

out we only consider the case dim X = m. 

1. It  is easy to see that in general, I/&' 5 N (X) 5 1 - dx ( I ) ,  where dx is the 
usual modulus of convexity of X ([17]). 

2. N (e,) = N (L,) = max {2-llpl 2(l-p)/p) for 1 < p < m; in particular N (ez) = 

N (L2) = I/&'. 

4. Fix X 2 1 and let XA denote the space e2 renormed as follows: For x E e2, set 

l ~ l A  = max {llx112 1 X IIxlloo) 
Since 

11x112 5 Ixlx 5 X 11x112 
the spaces XA are reflexive, and it is easy to see that 

N (XA) = min {I,  A/&} . 
Thus 

XxhasUNS @ A < & .  
Karlovitz [12] observed that while Xa fails even to have normal structure, it does 
have the FPP. Later Baillon-Schoneberg [5] proved that XA has 'asymptotic normal 
structure' @ X < 2 ; hence XA has the F P P  in this case. Subsequently J. M. 
Borwein and B. Sims [7] showed that XA actually has the FPP, for all X 2 1. See 
also [16]. 

5. UNS + Reflexivity ([3], [17]), see section 2 for a proof. 
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6. Every k-uniformly rotund Banach space has UNS ([8], also see [I]). 

7. If pk (0) := lirn,,o pX(r ) / r  < 112 then X has UNS, where px is the usual 
modulus of smoothness of a Banach space. Since X is uniformly smooth H pk (0) = 

, 0, this in particular implies that uniformly smooth Banach spaces have UNS. In 
fact, since it is known that pk (0) < 1 H X* is uniformly nonsquare + X is 
superreflexive, it follows that pk (0) < 112 + X is both reflexive and has UNS (see 
Prus [20] and Turett [21]). 

8. It is also known that Nw (X) is finitely determined for any Banach space X .  
That is, given E > 0 there exists a finite subset F of X with the property 

Nw (X) 2 r (conv (F) )  ldiam ( F )  1 (1 - E) Nw (X) . 
This gives rise to one of the fundamental open questions in the theory of Banach 
space geometry, namely: Is UNS a super-property? Equivalently, does UNS + 
superreflexivity? (See [I] for details.) 

9. Finally we mention that Maluta and Prus [18] have recently introduced a 
concept of k-uniform smoothness which is dual to k-uniform rotundity and shown 
that, although k-uniformly smooth spaces are superreflexive, they fail even to have 
normal structure. 

2. UNS AND REFLEXIVITY 

Here we give a proof that UNS implies reflexivity. This proof, which is based 
loosely on that given in [3], is found in [ l l ] .  We include the details because it is a 
modification of this approach provides the basis for our main result. 

Suppose X has UNS and let K! > K; > K: > . . be a sequence of nonempty 
bounded closed convex subsets of X. In view of Smulian's theorem we only need to 
show that this sequence has nonempty intersection. 

By assumption 

ko := sup {r (C) ldiam (C) : C E C and diam (C) > 0) < 1. 

Choose k E (ko, 1) , and for each C E C let 

A ( C ) : = { X E C :  11x-yll 5 kdiam(C) ,  V Y E C )  

= [nYEcB (y; k diam (C))] n C. 

Thus A (C) is a nonempty proper closed convex subset of C for each C with 
diam (C) > 0. In particular, diam (A (C)) 5 k diam (C) . Now set 

K; = c o n v ~ g ~ ~ ( ~ , O ) ;  

K; =EEEU~?A(K?); 
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Claim. For n = 1,2,.  we have d i a m  (KA) 5 k d i a m  (K;). To see this, let 
x, y E u,OO,,A (K:) . Then x E A (K:) and y E A (K:) for, say, n 5 p 5 q. Since 
K: C K:, both x,y E K: SO ((5 - yII 5 k d i a m  (K:) . 

We now have: 
K,O 3 K,O > K,O > > K; > . . .  
U U U U 
K,' 3 K,' 3 K,' 3 . . -  3 KA 3 . - .  

with d i a m  (KA) 5 k d i a m  (K:) , n = 1,2,.  . .. 
By repeating the above construction stepby-step, we obtain sequences of non- 

empty bounded closed convex sets that are nested as follows: 

K,O > K,O 3 K,O > . - .  > K; 3 

U U U U 
K,' 3 K,' > K,' 3 . - -  3 K; 3 - . .  
U U U U 

U U U U 
KT 3 K; 3 K? > . .  3 K,n > - - a  

U U U U 

Since d i a m  (KF) 5 k d i a m  (Kr-l)  5 - . . 5 kn d i a m  (K:) + 0, the diagonal se- 
quence { ~ , n + ~ )  has nonempty intersection by Cantor's theorem. But since K;+l C 
K;+~, n = l ,2 ,  - - -, 

0 x E nE=oKE+l + x E n:=oKn+, . 
Thus UNS implies reflexivity, but it is known that normal structure need not, 

see [9] where it is shown that every separable space can be equivalently renormed 
to have normal structure. In the next section we introduce notions that genuinely 
lie between UNS and normal structure and show that they entail reflexivity. 

3. NON-COMPACT UNS 

We now introduce an extension of the concept of UNS. Let 4 be the Kuratowski 
measure of noncompactness. Thus for a nonempty bounded subset A of X, 

4 (A) = inf {E > 0 : A C Uy=lAi with d i a m  (Ai) 5 E )  . 
In particular, 4 (A) 5 d i a m  (A) and satisfies the following properties. (Actually, 
property (iii) is not used in the sequel.) These properties also hold for other mea- 
sures of noncompactness as well as that of Kuratowski (see, [6] and [2]). 

(9 4 (3) = 4 (4. 
(ii) 4 (A) 2 0, and 4 (A) = 0 e+ 3 is compact. 

(iii) 4 (conv (A)) = 4 (A) . 
(iv) If A1 > A2 > A3 > -.- are nonempty, and if limn 4 (A,) = 0, then n~~=1Si, # 0. 
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Definition 1. For a Banach space X ,  the &normal structure coeficient is 

kx  ( E )  := sup { r  ( D )  : D E C, diam ( D )  = 1 and 4 ( D )  2 E )  

where E E [0, :I.].  

Note that k X ( & )  is a decreasing function of E with k x ( 0 )  = N ( X ) .  Thus X has 
UNS if and only if k x ( 0 )  < 1 and has normal structure if k x ( l )  < 1. It will be 
useful to also note that if diam(D)  > 0 and E E [0, 11, 

k x ( & )  = sup { r  ( D )  l d i a m  ( D )  : D E C with 4 ( D )  1 E d iam ( D ) )  . 

From the introductory discussion, if X fails the weak-FPP then X contains a 
diametral set K .  That is, r ( K )  = d i a m ( K ) ,  hence 4 ( K )  = d i a m ( K )  and we have 
the following. 

Theorem 3.1. If a Banach space X has k X ( & )  < 1 for some E E (0 ,  I ) ,  then X has 
the weak-FPP. 

Definition 2. A Banach space is said to have 4-uniform normal structure (4- UNS) 
if for each E E (0 ,  I ) ,  k X ( & )  < 1. 

Our main result is the following. 

Theorem 3.2. If a Banach space X has 4-UNS, then X is reflexive. 

Proof. Suppose X has +UNS and let K! > Kg > K: > . . . be a sequence of 
nonempty bounded closed convex subsets of X .  It is enough to show that there 
exists a subsequence, (K:,), with n F I K : ,  # 0. As, if x E nF1K: , ,  then for all 

k ,  x E K t k  KE SO x E n E I K E  and, as before, the result follows by Smulian's 
theorem. 

Let 40 := limn 4 (K:) and do := limn diam ( K t )  . If 40 = 0 we are done by 
property (iv) of 4. Now, assume that 40 > 0 and necessarily do > 0 ,  then for all 
sufficiently large n we have 4(K:)  > 40/2do diam(K:). Let ko := k ~ ( 4 ~ / 2 d ~ )  and 
proceed to construct { K A ) ~ = ~  as in Section 2 but with ko in place of k .  Then, as 
before, we have 

diam(A(K:))  5 ko diam(K2)  and diam (K:) 5 ko diam (K:) , n = 1 , 2 , .  . -. 

Once again, if 41 := limn 4 (K:) = 0 we are finished. So assume both and so 
dl := limn diam (K:) are strictly positive. Then for sufficiently large n,  I$ ( K A )  > 
41/2dl diam (K:) . Let kl := k x ( & / 2 d l )  and proceed to construct { K : ) ~  n=l  as in 
Section 2 but with kl in place of k .  Then, 

diam(A(K;) )  5 kl diarn(K;) and diam (K;) < kl diam (K;) , n = 1,2,  - . . 
Continuing this process, either it terminates after a finite number of steps with 

one of the 4j = 0 ,  in which case we are done, or we obtain, as in Section 2, a doubly 
infinite collection of closed convex subsets (KA);  j = 0 , 1 , 2 , .  - ., n = 1 , 2 , .  . ., that 
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are nested as follows: 

and with 4j = limn 4 (K:) > 0, and SO dj = limn diam K i  > 0, for j = 0,1,2, .-.. ( '), 
It suffices to show that limj q5j = 0, as then we can extract Ki j  with limj 4 K i j  = ( . )  
0. Consequently, by property (iv) of 4, we have 0 # n z l K i j  n g l K &  and we 
are done. 

Now, suppose limj q5j > 0, then necessarily limj dj > 0, and so a := limj q5j/dj > 
0. Then, since a E ( O , l ] ,  for all sufficiently large j we have q5j/dj 2 a / 2  and so 
kj (= kx(4j/2dj)) 5 k := kx(a/4) < 1. Starting from a sufficiently large j, we can 

diam ( K A : ~ )  5 kj+m-l diam ~iTc-1 ( ) 
5 k diam (K:::::) 

Thus, limj diam = 0, and so limj dj = 0, a contradiction, as then we would 

have limj 4j = 0. 

Corollary 1. If a Banach space X has 4-UNS, then X has the FPP. 

Remark. An alternate definition for +-UNS could be: a Banach space is said to 
have +-uniform normal structure if for each E E (0 , l )  , 

k, := sup {r (D) ldiam (D) : D E C and 4 (D) 2 E )  < 1. 

However, this is equivalent to taking the supremum over all non-compact subsets 
in C. Thus, though the results of section 3 remain valid, it provides a less sharp 
constant than the definition adopted. Nevertheless this alternative definition, which 
will be explored in section 5, does make sense in a metric space setting where scaling 
is not possible. 



U N I F O R M  NORMAL STRUCTURE 135 

4. &UNIFORM N O R M A L  S T R U C T U R E  

It is possible to formulate a concept which lies between UNS and $-UNS. It is 
not clear that this concept has much significance in a Banach space context but it 
does offer another possibility when extended to metric spaces. 

Definition 3. A bounded convex subset K of a Banach space has 6-uniform normal 
structure (6-UNS) if for each E > 0, 

k,  := sup { r  (H) l d i a m  (H)  : H C K, H convex, d i a m  (H)  2 E) < 1. 

The following facts are fairly straightforward. 

Proposition 1. A Banach space X has 6-UNS if and only if i t  has U N S .  
Proposition 2. Every compact convex subset of a Banach space has 6-UNS. 

Proposition 3. If a bounded closed convex subset of a Banach space has 6-UNS, 
then i t  is weakly compact. 

The proof of Proposition 3 amounts to a routine re-working of the argument of 
the previous section. 

We begin with the relevant terminology and notation. Let (M, d )  be a metric 
space, and for A c M let 

cow (A) = n {B : B is a closed ball and A C B) . 

Also let A (M)  = {D C M : D = cow (D)) . Thus A (M)  denotes the collection of 
all admissible subsets of M. 

The Chebyshev radius r (D) of D E A (M)  is the number 

r (D) = inf {sup {d (x, y) : x E D))  . 
YED 

The family A (M)  is said to have normal structure (or to be normal) if for each 
D E A (M)  with d i a m  (D) > 0 it is the case that 

r (D) < d i a m  (D) . 

If there exists a constant c E (0 , l )  for which 

r (D) < c d i a m  (D) 

for each D E A (M)  with d i a m  (D) > 0 then A (M)  is said to have uniform normal 
structure. 

Finally, A (M)  is said to be compact [resp., countably compact] if every family 
[resp., countable family] of nonempty sets in A (M)  which has the finite intersection 
property has nonempty intersection. 

In this context the fundamental fixed point result for nonexpansive mappings is 
the following (see [19], [14]). 

Theorem 5.1. Suppose M is a bounded metric space and suppose A (M)  is  compact 
and has normal structure. Then  every nonexpansive T : M --t M has a fixed point. 

Using admissible sets it is possible to give metric space analogs of all the foregoing 
concepts. As before we use 
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Definition 4. A bounded metric space M is said to have b-UNS if for each E > 0,  

k, := sup { r  ( D )  l d i a m  ( D )  : D E A ( M )  and d i a m  ( D )  2 E )  < 1. 

Definition 5. A bounded metric space M is said to have 4-UNS if for each E > 0,  

k, := sup { r  ( D )  l d i a m  ( D )  : D E A ( M )  and 4 ( D )  2 E )  < 1. 

The principale results of this section are the following. 

Theorem 5.2. Suppose M is a bounded and complete metric space for which A ( M )  
has 4- UNS. Then A ( M )  is countably compact. 

Theorem 5.3. Suppose M is a bounded and complete metric space for which A ( M )  
has 6- UNS. Then A ( M )  is compact. 

Proof. By Theorem 5.2 A ( M )  is countably compact, and it is clear that if A ( M )  
has b-UNS then A ( M )  has normal structure. However it is known (Kulesza-Lim 
[15]) that if A ( M )  is countably compact and has normal structure, then A ( M )  is 
in fact compact. 

Proof of Theorem 5.2. The approach is similar to that of Theorem 3.1. Suppose M 
has 4-UNS and let Dy > D: > D! > . . - be a sequence of nonempty sets in A ( M )  , 
and let dl = limn4 (D:). We only need to show that ~ E ~ D Q  # 0. Since M is 
complete, if dl = 0 this follows from Cantor's theorem. Otherwise 4 (D:) 2 dl > 0 
for each n and by definition kdl < 1. Let 

and define 

A (D:) = hEKPB ( Y ;  kl d i a m  (D:))]  n D:, i = 1, 2,.  . .. 
Now let 

D: = cov uZ1 A (D:) , D: = cov uE, A (D:) , . a ,  D; = cov u,"=, A (D:) 

As before d i a m  (D:) 5 kl d i a m  (D:) , n = 1,2, - - 0 .  Now proceed to construct 
{ D ~ ) ~ = ~  as in Section 2 by replacing K with D and k with k l .  This gives 

d iam (D;) 5 kl d iam (D:) , n = l , 2 , .  - - 
where kdl < kl < 1. Now define d2 = limn 4 (D:) . 

By following the steps of the proof of Theorem 3.2 it is possible to conclude 
that nZ1 D: # 0 either via Cantor's theorem (inf d j  > 0) or by an application of 
property (iv) of 4. 

The approach of this section does not lead to the conclusion that +UNS of A ( M )  
implies compactness of A ( M )  because it is not clear that +UNS implies normal 
structure of A ( M )  . Indeed, compact sets in A ( M )  may consist entirely of diametral 
points. 
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