
MEAN LIPSCHITZIAN MAPPINGS

KAZIMIERZ GOEBEL AND BRAILEY SIMS

Abstract. Lipschitz self mappings of metric spaces appear in many branches

of mathematics. In this paper we introduce a modification of the Lipschitz

condition which takes into account not only the mapping itself but also the
behaviour a finite number of its iterates. We refer to such mappings as mean

Lipschitzian. The study of this new class of mappings seems potentially inter-

esting and leads to some new results in metric fixed point theory.

1. Introduction.

Lipschitz conditions have significant ramifications in many branches of mathemat-
ics. In particular, they often reflect regularity of self-mappings of metric space.

Let (M,%) be a metric space and let T : M → M be a mapping. We say that T
satisfies a Lipschitz condition with constant k ≥ 0 if for all x, y ∈M

(1.1) % (Tx, Ty) ≤ k% (x, y) .

Obviously such a mapping is uniformly continuous on M . Mappings satisfying
(1.1) with k < 1 are called strict (or Banach) contractions and those with k = 1
are said to be nonexpansive.Mappings satisfying (1.1) with any k are generally
called lipschitzian. We shall also refer to these as mappings of class L(k) or more
generally of class L if k is not specified.

For any Lipschitzian mapping T there exists a smallest possible k such that (1.1)
holds. This smallest k is refereed to as the Lipschitz constant for T and in what
follows will be denoted by k% (T ), or simply k(T ) when the underlying metric is
clear from the context.

Two metrics % and d on M are said to be equivalent if there exists two constants
0 < a ≤ b such that for all x, y ∈M ,

ad (x, y) ≤ % (x, y) ≤ bd (x, y) .

Clearly, any mapping T which is lipschitzian with respect to a given metric % is
also lipschitzian with respect to any equivalent metric d. The respective Lipschtz
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constants k% (T ) and kd (T ) satisfy the relation

(1.2)
a

b
k% (T ) ≤ kd (T ) ≤ b

a
k% (T ) .

For any two lipschitzian mappings T, S : M →M we have

k (T ◦ S) ≤ k (T ) k (S) ,

in particular, for the iterates of T ; Tn, n = 0, 1, 2, · · · , we have

(1.3) k
(
Tn+m

)
≤ k (Tn) k (Tm) and consequently k (Tn) ≤ k (T )n .

The inequalities (1.2) and (1.3) regulate the possible growth of the sequence of Lips-
chitz constants for the iterates of T . However, the Lipschitz constants of a mapping
may behave in various ways. If T is a strict contraction then, limn→∞ k (Tn) = 0.
If T is nonexpansive which means k (T ) ≤ 1 then its powers, Tn, are also all non-
expansive. Even when k (T ) is large, it may happen that k (Tn) < 1 for certain
n > 1. Also, the Lipschtz constants kd (T ) relative to different equivalent metrics,
d, may vary substantially within the limits set by (1.2). However, there exists a
constant defined by

k0 (T ) = lim
n→∞

(kd (Tn))
1
n

which, in view of (1.2), is independent of the selection of metric d within the class
of all equivalent metrics to %. One can show (see for example [GK]) that,

k0 (T ) = inf
n
kd(Tn)

1
n = inf {kd (T ) : d equivalent to %} .

There are several subclasses of lipschitzian mappings that discussed in the literature.
Of particular interest to us is the subclass of uniformly lipschitzian mappings. These
are mappings characterized by the fact that

(1.4) sup {k (Tn) : n = 1, 2, 3, · · · } <∞.
It is readily seen that a mapping, T , is uniformly lipschitzian if and only if it is
nonexpansive with respect to some equivalent metric. Indeed, if for some equivalent
metric d we have, kd (T ) ≤ 1 then kd (Tn) ≤ 1 and (1.2) implies that k% (Tn) ≤ b

a
for n = 1, 2, · · · . On the other hand if T is uniformly lipschitzian then it is
nonexpansive with respect to the equivalent metric defined by

d (x, y) = sup {r (Tnx, Tny) : n = 0, 1, 2, · · · } .

There are more classes and a variety of modifications of Lipschitz condition based on
the following observation. For any two points x, y ∈M we have six distances involv-
ing the points and their images under T ; % (x, y) , % (Tx, Ty) , % (Tx, x) , % (y, Ty) ,
% (Tx, y) , % (x, Ty) . The Lipschitz condition is an inequality between two of them;
namely % (x, y) and % (Tx, Ty) which implies nice behavior of the mapping including
uniform continuity. Many authors have proposed and considered other inequalities
involving some or all of the six of the distances. Very often these conditions do not
imply continuity of mapping under consideration and lead to artificial situations.
Theese conditions are not the subject of this paper.

Basic facts and further details concerning lipschitzian mappings and related metric
fixed point theory can be found in the following [GK1], [GKKWA], [KWASB]
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The aim of this paper is to study a class of lipschitzian mappings described by the
behaviour of a finite sequence of their iterates. We propose a definition of mean
lipschitzian mappings, give examples and develop some basic theory, in particular
their metric fixed point theory.

2. Basic definitions and facts.

Let α = (α1, α2, ..., αn) be a multi-index satisfying α1 > 0, αn > 0, αi ≥ 0, i =
2, ..., n−1 and

∑n
i=1 αi = 1. The two coefficients α1, αn, which for technical reasons

are assumed to be strictly positive, will be called the initial and the final indicies
respectively, the number n shall be referred to as the length of the multi-index α.

Definition 1. A mapping T : M →M is said to be α−Lipschitzian for the constant
k ≥ 0 if for every x, y ∈M we have,

(2.1)
n∑
i=1

αi%(T ix, T iy) ≤ k%(x, y).

When the multi-index α is not explicitly specified we will refer to such a mapping
as a mean Lipschitzian mapping.

For a given α and k we will denote the class of all such mappings on M by L (α, k) .
The smallest constant k for which (2.1) holds will be called the α−Lipschitz constant
for T and denoted by k (α, T ). Analogously to the classical case, we shall call T
an α− contraction , or α−nonexpansive, if (2.1) is satisfied with k < 1, or k = 1,
respectively.

For the special case of when the multi-index has length n = 2, the formula (2.1)
takes the form

(2.2) α1%(Tx, Ty) + α2%(T 2x, T 2y) ≤ k%(x, y).

In what follows, for the sake of simplicity and clarity of argument, we often present
results for multi-indices of length 2. In most cases, matching results for longer
multi-indices follow in similar a way so we will simply state the extension and,
where deemed necessary, provide hints concerning the proof.

Let us begin by listing some immediate consequences of the definition.

• Any α−lipschitzian mapping is also lipschtzian in the classical sense with

k (T ) ≤ k (α, T )
α1

.

• For any i = 1, 2, ..., n we have,

k
(
T i
)
≤ min

[
k (T )i ,

k (α, T )
αi

]
.
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Thus, for each α the class L(α, k) is contained in the class L. In practice, the above
two remarks mean that if the mapping T satisfies (2.1) then we have,

% (Tx, Ty) ≤ k

α1
% (x, y)

and for i = 1, 2, ..., n,

%
(
T ix, T iy

)
≤ min

[
(k (T ))i ,

k

αi

]
% (x, y) . ≤ min

[(
k

α1

)i
,
k

αi

]
% (x, y) .

• If T is lipschitzian then for any α, T is α−lipschitzian with

k (α, T ) ≤
n∑
i=1

αik
(
T i
)
.

• Each class L (α, k) contains all the lipschitzian mappings T such that
n∑
i=1

αik
(
T i
)
≤ k.

• If T is uniformly lipschitzian with sup
{
k
(
T i
)

: i = 0, 1, 2, ...
}
≤ k, then for

any α, T is α−lipschitzian with k (α, T ) ≤ k.

The above straightforward evaluations are sufficient for estimating α−Lipschitz
constants in simple situations, but do not exhaust all possible cases. Here are three
examples.

Example 1. Let α =
(

1
2 ,

1
2

)
, k = 2 and consider the class L

((
1
2 ,

1
2

)
, 2
)
. This class

contains all lipschitzian mappings satisfying
1
2
k (T ) +

1
2
k
(
T 2
)
≤ 2

but since k
(
T 2
)
≤ k (T )2 it contains all lipschitzian mappings with k (T ) satisfying

k (T ) + k (T )2 ≤ 4,

implying k (T ) ≤ 1
2

(√
17− 1

)
. In other words L

(
1
2

(√
17− 1

))
⊂ L

((
1
2 ,

1
2

)
, 2
)

Example 2. Let α = (α1, α2) and let T be α−nonexpansive. Then,

(2.3) α1%(Tx, Ty) + α2%(T 2x, T 2y) ≤ %(x, y)

The above remarks give that

(2.4) %(Tx, Ty) ≤ 1
α1
%(x, y) and %(T 2x, T 2y) ≤ min

[
1
α2

1

,
1
α2

]
%(x, y)

However, from (2.3) we also have,

α1%(T 2x, T 2y) + α2%(T 3x, T 3y) ≤ %(Tx, Ty)

Multiplying both sides of this by α1 and adding α2%
(
T 2x, T 2y

)
to both sides, yields(

α2
1 + α2

)
%(T 2x, T 2y)+α1α2%(T 3x, T 3y) ≤ α1%(Tx, Ty)+α2%(T 2x, T 2y) ≤ %(x, y).

But,
(
α2

1 + α2

)
= α1 (1− α2) + α2 = 1− α1α2. Consequently, we get

%(T 2x, T 2y) ≤ 1
1− α1α2

%(x, y),
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which is sharper then the basic estimate from 2.4. For example if α =
(

1
2 ,

1
2

)
we

get

%(T 2x, T 2y) ≤ 4
3
%(x, y)

better then the estimate %(T 2x, T 2y) ≤ 2%(x, y) given by 2.4.

Example 3. Consider as a metric space the unit ball B in the `1 space of all
absolutely summable sequences, x = (x1, x2, x3, ...), with the metric induced from
the usual norm ‖x‖1 =

∑∞
n=1 |xn|.

Let τ : [−1, 1]→ [−1, 1] be the function defined by

τ (t) =

 2t+ 1, if − 1 ≤ t ≤ − 1
2

0, if − 1
2 ≤ t ≤

1
2

2t− 1, if 1
2 ≤ t ≤ 1

.

Obviously for all t, s ∈ [−1, 1]

|τ (t)− τ (s)| ≤ 2 |t− s| and |τ (t)| ≤ |t| .
Define the mapping T : B → B by,

Tx = T (x1, x2, x3, ...) =
(
τ (x2) ,

2
3
x3, x4, x5, ...

)
.

Then,

T 2x = T 2 (x1, x2, x3, ...) =
(
τ

(
2
3
x3

)
,

2
3
x4, x5, x6, ...

)
.

and

‖Tx− Ty‖ = |τ (x2)− τ (y2)|+ 2
3
|x3 − y3|+

∞∑
k=4

|xk − yk|

≤ 2 |x2 − y2|+
2
3
|x3 − y3|+

∞∑
k=4

|xk − yk| ≤ 2 ‖x− y‖ .

Similarly,∥∥T 2x− T 2y
∥∥ =

∣∣∣∣τ (2
3
x3

)
− τ

(
2
3
y3

)∣∣∣∣+
2
3
|x4 − y4|+

∞∑
k=5

|xk − yk|

≤ 4
3
|x3 − y3|+

2
3
|x4 − y4|+

∞∑
k=5

|xk − yk| ≤
4
3
‖x− y‖ .

Observing that both estimates are sharp we see that k (T ) = 2 and k
(
T 2
)

= 4
3 .

Also observe that from the definition of T repeating the argument above leads to the
same sharp estimate k

(
T i
)

= 4
3 , for all i ≥ 2. Thus, all the iterations of T have a

lipschitz constant greater than 1.

Now let α =
(

1
2 ,

1
2

)
. Using the above estimates we get

1
2
‖Tx− Ty‖+1

2

∥∥T 2z − T 2y
∥∥ ≤ |x2 − y2|+|x3 − y3|+

5
6
|x4 − y4|+

∞∑
k=5

|xk − yk| ≤ ‖x− y‖ .

Hence, despite having each iterate strictly expansive for some pairs of points in
B, T is

(
1
2 ,

1
2

)
−nonexpansive.
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3. Mean contractions.

Mean contractions are mappings T : M →M satisfying (2.1) with a constant k < 1.
The question is whether their behaviour is similar to that of classical contractions.
Is the classical Banach Contraction Principle, valid for α−contractions? The basic
answer is given in the following:

Theorem 1. Let (M,%) be a metric space and suppose that T : M → M is an
α−contraction, then there exists a metric d equivalent to % such that T is a classical
contraction with respect to d.

We present the (constructive) proof for multi-indices of lengths 2 and then give
some hints for the general case which only differs from the case n = 2 in some of
the technicalities.

Proof (for n=2). Let α = (α1, α2) and let T : M →M be an α− contraction with
constant k < 1.

If k < α1 then, from section 2, k%(T ) ≤ k
α1

, so T is already a contraction with
respect to the original metric and we may take d = %.

Now, suppose that k ≥ α1. We begin by observing that by adding α2% (Tx, Ty) to
both sides the basic inequality,

α1%(Tx, Ty) + α2%(T 2x, T 2y) ≤ k%(x, y)

can be rewritten in the form,

(3.1) %(Tx, Ty) + α2%(T 2x, T 2y) ≤ %(x, y) + α2% (Tx, Ty)− (1− k) % (x, y) .

Define d by,
d (x, y) = %(x, y) + α2% (Tx, Ty) .

It is readily seen that d is a metric on M and that d is equivalent to % with,

%(x, y) ≤ d (x, y) ≤
(

1 +
α2k

α1

)
%(x, y) =

α1 + α2k

α1
% (x, y) .

Now, from (3.1) we have

d (Tx, Ty) ≤ d (x, y)− (1− k) % (x, y) ≤

≤ d (x, y)− α1 (1− k)
α1 + α2k

d (x, y) =

=
k

α1 + α2k
d (x, y) .

Further, since α1 ≤ k < 1, we have k
α1+α2k

< 1
1+α2

< 1 and so, T is d− contraction.
�

Hints for the case n > 2. Again, rewrite the basic inequality,
n∑
i=1

αi%(T ix, T iy) ≤ k%(x, y)
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as,

(3.2) d (Tx, Ty) ≤ d (x, y)− (1− k) % (x, y)

where the equivalent metric d is defined by

(3.3) d (x, y) =
n∑
j=1

 n∑
i=j

αi

 %(T j−1x, T j−1y).

Then follow the steps from the proof when n = 2. �

4. Mean lipschtzian mappings with constant greater than one.

First observe that formulas (3.2) and (3.3) define a metric d on M regardless
of the size of the α−Lipschitz constant k and that this metric is equivalent to %
with,

%(x, y) ≤ d (x, y) ≤ b%(x, y),

where

b =

(
1 +

(
n∑
i=2

αi

)
k% (T ) +

(
n∑
i=3

αi

)
k%
(
T 2
)

+ ...+ αnk%
(
Tn−1

))
.

Since %(x, y) ≤ d (x, y) , for any k ≥ 1 we have from (3.2) that,

d (Tx, Ty) ≤ kd (x, y) ,

which implies the following.

Conclusion 1. Any α−lipschitzian mapping T : M → M with k (α, T ) ≥ 1 is
lipschitzian in the classic sense with respect to the equivalent metric d defined by
(3.3) with kd (T ) ≤ k (α, T ) .

In the setting of general metric spaces considered above not much can be said re-
garding the existence of fixed points for mappings with a Lipschitz constant greater
than one. The natural setting for such considerations are when M is a closed
bounded convex subset of a Banach space and % is the metric inherited from the
norm %(x, y) = ‖x − y‖. From now on we shall concentrate only on this case. t;
Thus, let X be a Banach space with norm ‖·‖ and let C be a nonempty closed
bounded convex subset of X. If C is compact then the celebrated Schauder fixed
point theorem ensures any continuous mapping T : C → C has a fixed point. If C
is noncompact, then Schauder’s theorem fails to hold in general.

For any mapping T : C → C let,

d (T ) = inf {‖x− Tx‖ : x ∈ C} ,

we refer to d (T ) as the the minimal displacement of points under T .

Various examples of lipschitzian mappings having strictly positive minimal displace-
ment may be found in [GK1]. The general result concerning the existence of such
mappings is due to P.K. Lin and Y. Sternfeld [LPKSY]



8 KAZIMIERZ GOEBEL AND BRAILEY SIMS

Theorem 2. For C as above and for any k > 1 there exists a mapping T : C → C
of class L(k) such that d (T ) > 0.

We may formalize this in the following way. Define the minimal displacement
characteristic for C to be,

ϕC(k) = sup{d(T ) : T : C → C, T ∈ L(k)}.
Then, the above theorem states that ϕC(k) > 0 for k > 0.

For simplicity we will take C = B, the unit ball of X, and write ϕ for ϕB . Obviously
ϕ is an increasing function for which it is known that: ϕ(0) = 1, limk→∞ ϕ(k) = 1,
ϕ(k) ≤ 1 − 1

k and there are spaces (referred to as extremal spaces) for which the
last estimate is sharp (infra).

By analogue, for mappings in the class of L(α, k) we define

ϕ(α, k) = sup{d(T ) : T : B → B, T ∈ L(α, k)}.
The following is readily obtained.

Theorem 3. For any multi-index α of arbitrary length we have ϕ(α, k) > 0, for
k > 1 and limk→∞ ϕ(α, k) = 1.

Proof. For k > 1 and any α of length n, we have from section 2 that the class
L (α, k) contains all classes L (l) such that

n∑
i=1

αil
i ≤ k

Let lk be the largest such l. Directly we get 0 < ϕ (lk) ≤ ϕ (α, k) and since lk tends
to infinity with k →∞ we see that limk→∞ ϕ (α, k) = 1. �

Note, we have not claimed that ϕ (α, 1) = 0. This will be discussed in the next
section.

The above properties and estimates for ϕ (α, k) are not exact. It was shown in
section 2 that the Lipschitz constants of all iterates of T can be greater than the
constant with respect to α. At present, an exact formulas for the characteristic ϕ (k)
is only known for a few spaces (infra) all of which are extremal; that is, for which
ϕ (k) = 1− 1

k . It is known for Hilbert and more generally uniformly convex spaces
that ϕ (k) < 1 − 1

k but the exact formula remains elusive. Analogous estimates of
ϕ (α, k) should depend not only on the space but also on the selected α. It seems
that no results in this direction are known.

To illustrate some possibilities we end this section with an example.

Example 4. Consider the space c0 and its unit ball B. Let τ : R→ R be the
function defined by τ (t) = min {1, |t|} . For any given k > 1, let us consider the
mapping T : B → B,

Tx = T (x1, x2, x3, ...) = (1, τ (k |x1|) , τ (k |x2|) , τ (k |x3|) , ...) .
Then, T is lipschitzian with k (T ) = k and for all n = 1, 2, 3, ..., also k (Tn) = kn.
Moreover for all x ∈ B we have ‖x− Tx‖ > 1 − 1

k . Indeed, were the opposite
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inequality satisfied by any x = (x1, x2, x3, ...) it would imply that xi ≥ 1
k for , i =

1, 2, 3, ... which is impossible for x in c0. This proves that for c0,

ϕ (k) = 1− 1
k
,

so it is an instance of an extremal space as mentioned earlier. The space c0 is
isometric to the product of two c0 × c0 with maximum norm. The unit ball in this
setting is the product of two unit balls B. With this formulation, define the mapping
F : B ×B → B ×B by

F (x, y) = (y, Tx) .
It is lipschitzian with k (F ) = k, but the consecutive iterates of F behave in a
different manner than those of T . First we have

F (x, y) = (y, Tx) , F 2 (x, y) = (Tx, Ty) , F 3 (x, y) =
(
Ty, T 2x

)
,

F 4 (x, y) =
(
T 2x, T 2y

)
, F 5 (x, y) =

(
T 2y, T 3x

)
, ... .

and the consecutive Lipschitz constants for F are

k, k, k2, k2, k3, k3, k4, ... .

Consequently, for any α of length 2, F is of class L (α, k) . The minimal displace-
ment of F can be evaluated as follows:

‖F (x, y)− (x, y)‖ = ‖(y, Tx)− (x, y)‖ = max {‖y − x‖ , ‖Tx− y‖} ≥
≥ max {‖y − x‖ , ‖Tx− x‖ − ‖y − x‖} ≥

≥ max
{
‖y − x‖ ,

(
1− 1

k

)
− ‖y − x‖

}
≥

≥ 1
2

(
1− 1

k

)
.

Hence we conclude that for the space c0 and for all α of length 2,

ϕ (α, k) ≥ 1
2
ϕ (k) =

1
2

(
1− 1

k

)
.

5. Mean nonexpansive mappings on convex sets in Banach spaces.

The theory of nonexpansive mappings lies at the core of metric fixed point the-
ory. As above, the most common setting is that of nonexpansive self mappings of
nonempty closed bonded convex subsets of a Banach space.

In what follows X will be a Banach space and C a nonempty closed bonded convex
subset of X

If T : C → C is nonexpansive that is,

‖Tx− Ty‖ ≤ ‖x− y‖ ,
then for any z ∈ C and any ε > 0, the mapping Tε = εz+(1− ε)T is a contraction.
Since, in this setting, all contractions have fixed points and T = limε→0 Tε uniformly
on C, we have,

(5.1) d (T ) = inf {‖x− Tx‖ : x ∈ C} = 0.
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That is, all nonexpansive self mappings of nonempty closed bonded convex sets in
a Banach space have zero minimal displacement.

Whether this minimal displacement is achieved and so the mapping have a fixed
point depends on the (geometric) properties of the space X or the set C itself.

A substantial part of the theory is devoted to finding conditions under which the
infimum in (5.1) is attained for all nonexpansive self mappings of C. In other words,
conditions under which each nonexpansive self mapping has a fixed point. When
this holds we say that C has the fixed point property for nonexpansive mappings
(shortly fpp) and when this happens for all such C in X we say the space has the
fpp.

Mean α−nonexpansive mappings are defined by,

(5.2)
n∑
i=1

αi
∥∥T ix− T iy∥∥ ≤ ‖x− y‖ .

As was observed in the last section such mappings are nonexpansive with respect
to the equivalent metric,

(5.3) d (x, y) =
n∑
j=1

 n∑
i=j

αi

 ‖(T j−1x− T j−1y‖,

that is,

d (Tx, Ty) ≤ d (x, y) .

Several natural questions arise. Are α−nonexpansive mapping a uniform (or point-
wise) limit of mean contractions? Is d (T ) = 0 for such mappings? The answers
in general seem to be unknown. However, some partial results have been given in
([MJPGK]).

The first observation is that (5.2) implies that the mapping Tα =
∑n
i=0 αiT

i is
nonexpansive. However, Tα being nonexpansive is much weaker than T being
α−nonexpansive, for instance, it does not entail the continuity of T. We leave
finding examples demonstrating this as an exercise for the reader.

The observation that Tα is nonexpansive and so d (Tα) = 0 does have some inter-
esting consequences. To illustrate this we repeat an argument from ([MJPGK]) in
the simplest case of multi-indices of length 2.

Lemma 1. If T : C → C is α−nonexpansive for α = (α1, α2) with α1 ≥ 1
2 , then

d (T ) = 0.

Proof. Let ε > 0. From the above observation, there exists a point z ∈ C such that

‖z − Tαz‖ =
∥∥z − α1Tz − α2T

2z
∥∥ ≤ α2ε.
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From the α−nonexpansiveness of T we have

α1

∥∥Tz − T 2z
∥∥+ α2

∥∥T 2z − T 3z
∥∥ ≤ ‖z − Tz‖
≤ ‖z − Tαz‖+ ‖Tαz − Tz‖
≤ α2ε+ α2

∥∥Tz − T 2z
∥∥

= α2ε+ (1− α1)
∥∥Tz − T 2z

∥∥ .
Thus,

(2α1 − 1)
∥∥Tz − T 2z

∥∥+ α2

∥∥T 2z − T 3z
∥∥ ≤ α2ε

and, since α1 ≥ 1
2 , taking x = T 2z we see that ‖x − Tx‖ ≤ ε, from which the

conclusion follows. �

This elementary argument leaves open the question of what happens for 0 < α1 <
1
2 ;

for instance, are there (α1, α2)−nonexpansive mappings with α1 < 1
2 for which

d (T ) > 0,? However, the situation in the limiting case of α1 = 0 is clear. Here,
T 2 is nonexpansive and no condition is imposed on T itself, in which case there are
known examples of discontinuous mappings with T 2 = I that have d (T ) > 0.

Actually the paper ([MJPGK]) contains a more general result:

Theorem 4. If T : C → C is α−nonexpansive for α = (α1, α2, ..., αn) with
α1 ≥ 2

1
1−n , then d (T ) = 0.

In ([MJPGK]) it is also remarked that the evaluation based only on the value of
the initial index, α1, is not exact. The following is an intriguing question.

Problem 1. For n = 2, 3, ... determine the set of all multi-indices α of lengths n
such that each α−nonexpansive mapping T : C → C has d (T ) = 0.

Investigations of this type seem to only be in a preliminary stage.

In all of the above we did not impose any special geometrical properties on the
Banach space under consideration. We shall conclude with some remarks concerning
the case when X is uniformly convex. Let us recall that a space X is uniformly
convex if its modulus of convexity

δX (ε) = inf
{

1−
∥∥∥∥x+ y

2

∥∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε
}

is strictly positive for all ε > 0.

Perhaps the best known result comes from ([GKWAK1])

Theorem 5. For any uniformly convex Banach space X, there exists a constant
γX > 1 such that for every nonempty closed bounded convex subsets C, all uniformly
lipschitzian mappings T : C → C satisfying sup {k (Tn) : n = 1, 2, ...} < γX have a
fixed point in C.

Exact values for γX are unknown, even for classical uniformly convex Banach
spaces such as `p and Lp. When H is a Hilbert space it is only known that√

2 ≤ γH ≤ π
2 . For a closer look at these considerations we refer the interested

reader to ([KWASB]).
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Since, any α−nonexpansive mapping T is nonexpansive with respect to the metric
d defined by (5.3) and d satisfies,

‖x− y‖ ≤ d (x, y) ≤ b ‖x− y‖ ,
where,

b (T ) =
n∑
j=1

 n∑
i=j

αi

 k
(
T j−1

)
it follows that T is uniformly lipschitzian with k (Tn) ≤ b. So, we have the following.

Conclusion 2. If X is uniformly convex, then each α−nonexpansive mapping T :
C → C with b (T ) < γX has a fixed point.
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