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1. Introduction. Throughout X is a Banach 8pace which is ammned 
not to be Sdmr. That is, X has weakly convergent seqpenw that 
are not norm convergent. Recan that X has (weak) n o d  structure 
-3 whenever C is a (weak compact) bounded mmex mb& of X with 
diam C > 0 then rad C < diam C where 

dime := sup{l~z - yll : x, y E C )  
and radC := inf sup{llx - ~ [ l  : y € C). 

z f  C 

It i~ d h w n  that X fails weaknormalstructureif andonlyif 
there exists a sequence (3,) in X with x, 0 and diamE{z,)~=l 
(= diam (X,]F=~) = 1 and dist ( x , + ~ ,  E ~ ( X ~ ) ~ , )  -, 1. 

m* (zn), rado (x,) a d  lim, llxnll all @ to 1, 
where 

diam, (x,) := lim diam { x k ) g ,  
n 

and rad, (s,) := inf{limsup 11% - z,ll : x E ? 5 ( x n ) L l )  
n 
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are, respectively, the asymptotic diameter of (x,,) and the asymptotic 
radius of (x,) in E {x,,)$, . 

See [3] for details and the relevance of wealc normal structure to fixed 
point theory of nonexpansive mappings. MJe now review some uniform 
conditions. 

As in Maluta [9] we define N(X) by 

rad C 
SUP {- : (2 

is a bounded convex non-singleton non-empty subset of X )  . 

This is the reciprocal of Bynum's ilormal structure coefficient, N ( X ) ,  
defined in [I.]. X is said to have uniform normal structure if N(X) < 1. 

Also, put 

W.C.S. ( X )  := sup { d 2 a ( ~ ~ 7 ~ )  : x , , ~ O , x n f + O  . 1 
This is the reciprocal of the weali convergent sequence coefficient de- 

fined in [I]. It can be checlied that diam, can be replaced with diam in 
the definition. 

Since rad, (y,,) < rad{yn)F=, for any sequence (y,) it follows that 
W.C.S. ( X )  5 R(x) .  

Of course if N(X) < 1 or w.c.s.(S) < 1 the11 X has weak normal 
structure. 

Maluta [9] introduced 

C limsup dist (n:,,+l, E {xr,);=,) 
D ( X )  := sup 

diam { x , ) ~ = ,  

(x,,) is a bounded iloilconstailt secluence in X)  

She showed that diam can be replaced with diam, (for noilconvergent 
sequences (x,,)), that D(X) 5 N(s), and also that D(,Y) = 1 whenever 
X is not reflexive, thus giving that uniform normal structure implies 
reflexivity. 

Prus [ l l ]  showed that w.c.s.(X) = D ( S )  if S is reflexive, the main 
argument being that in general w.c.s.(S) < D ( S ) .  He also obtained 
that w.c.s.(X) is the reciprocal of 

inf {diam, (z,) : z,, 30, Ilx,ll + 1) 
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Here also diam, can be replaced with diam. 
Recently several non-uniform conditions have been studied. Tan and 

Xu [12] introduced property P : 

w 
liminf 112, - 211 < diam {x,),"==, if x, - x 

and (2,) is nonconstant. 

By extracting appropriate subsequences this can be seen to be unaltered 
if lim sup is used instead of lirninf and, on normalizing, is equivalent to: 

If llxnll + 1 and xn  SO then diam{~,),"=~ > 1. 

We say that  X has asymptotic P if the above (again equivalent) con- 
ditions hold with diam replaced by diam, (with the proviso that the 
sequence is nonconstant) . 

In section 2 the main results are that P is equivalent t o  a condition 
introduced in [13] by Tingley (subsequently known as WO),  and that  
asymptotic P is the GGLD of [dl. We also give other equivalents of 
these conditions, some involving indices of noncompactness and others 
more closely related to the original definitions of w.c.s.(X) and D ( X ) .  

Section 3 is concerned with problems of a 3-space nature: 
Given X = Y $ Z , where Z is finite dimensional, what ~ondit~ions 

on Y give weak normal structure for X ?  In [8] an example is given of a 
space X that has weak normal structure even though the direct I: sum 
X $el R fails this property. We aslc what properties of Y sufficient for 
weak normal structure are inherited by X. It is shown that  asymptotic 
P, as  well as P with appropriate conditions on the projections, are such 
conditions. 

2. Some Banach Space Properties. We state below some Banach 
space properties which are then related to P and asymptotic P. Two 
of these properties involve indices of noncompactness; the others have 
appeared in the literature before and are discussed below. 

In each case the inequality holds whenever (x,,) is a weak null se- 
quence in X that  is not norm convergent. 

(1) liminf 1 1 ~ ~ ~ 1 1  < supnz l i m ~ u p ~ ~  11xn2 - xn(l .  
(2) liminf llxnll < Sep ({x~~):=~). 
(3) liminf 112,11 < l i m s ~ p , , ~  limsup, 11x, - x,,II. 
(4) limiilf 113:,,ll < (Y ({x,):=~). 
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Recall that if C is a bounded subset of X, 

S ~ P  (C) := sup{ inf 1 1  y, - y,ll : (y,) is a sequence in C )  and 
I , #  m 

cu (C) := inf{d : C has a finite cover of subsets of 

X of diameter at  most d), 

which are, respectively, the separat,ion and Kuratowski indices of non- 
compactness. 

Of course the above properties can be restated replacing liminf wit,h 
limsup and can also be normalized in a way similar to that for P. 

Condition (1) is WO and represents a weakening of the Opial condi- 
tion (see [lo]): 

If x,>O and z # O  then l i m s u p ~ J z , , ~ ~ < l i m s u p ~ ~ x - x , , 1 1 .  

As noted in [13], WO can be restated as follows: If x, 0, (x,, ) a non- 
constant sequence, then there exists x E EG {x,,)?!~ so that lim sup llxnII 
< limsup 112 - x,11. 

Condition (3) is an asymptotic version of WO and is called GGLD in 
141, where it is shown to be distinct from WO. Combining this with the 
following proposition establishes that asyn~ptotic P and P are different 
Banach space properties. We also note that the space considered in [4] 
which separates P from asymptotic P has the Opial property, so that 
whereas Opial implies P, it doesn't imply asymptotic P. The example at  
the end of this section separates asymptotic P from w.c.s .(S) < 1. 

PROPOSITION 2.1. Condition (1) is equivalent to P and the other con- 
ditions are equivalent to asymptotic P. 

Prooj. Clearly (1) + P. To show the converse we use a techiliclue due 
to Landes [7]. 

Suppose X has P ,  x,, E A-, llxn 1 1  -+ 1, .c,, 5 0, but limsupl1 I(.xn, - 
xnll 5 1 for all m. 

We construct a subsequence (y,, ) of (a,, ) as follows: 
y1 = XI. If yl..  . . . yk have been selected. the11 yk+1 = .I.,,, is chosen 

so that 
JJxL.,, - y311 5 1 + 1/k for all j I k (possible by the conditioll on (x , , ) ) .  
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Thus, for each k, 

((yk+l - yjI) 5 1 + 1/k for a11 j 5 k. 

Now put zc = & yk+l+ & y1. Clearly zk 5 0 and llzkll - 1. Also, 
if m > k, 

Thus, diam { z , ) ~ = ~  5 1, contradicting property P. 
To establish the remainder of the proposition we first note that  (2) =+ 

(3) =+ asymptotic P and (4) =+ asymptotic P are clear. Also, (2) =+ (4) 
follows from the fact that a ( C )  2 Sep (C)  for any set C .  It remains to 
show that asynlptotic P + (2). 

Suppose S has asymptotic P and x,, E X. llxn 1 1  -+ I ,  xn  5 0. 
Suppose Sep ( { ~ , ) r = ~ )  5 1 and E > 0. 

Let P2 ({X,,)F=~) denote the set of two ele~nent subsets of { x , ) ~ = ~ .  
we define A, B 2 P2 ({x,)?=~) by 

Since AU B = P2 ({x,)?=~), Ramseys Theorem implies that there exists 
a subsequence (y,) of (2,) wit11 

P2 ({yn)r=l)  C A or P2 ( { ~ n ) r = ~ )  C B.  
But S ~ P  ({zl,)F=l) 5 1 , so P2 ( { ~ n ) r = ~ )  2 B and diam {Y,),",~ 5 

1 + €. 

Repeated application of this process together with a diagonalization 
will produce a subsecluei~ce ( 2 , )  of (x,) with diam, (2,) 5 1, a contra- 
diction. 

In [4] a uniform version of GGLD is also introduced. l i e  relate this 
condition to w.c.s.(X) below. 
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With D[(x,)] := lim sup, lim sup,, llx, - x, 11 [4] defines 
p (X)  := inf{D[(:c,)] : l/x,,ll -+ 1, xn  -% 0). 

By adapting the arguments used in t,he proof of the above proposition, 
we have the following. 

PROPOSITION 2.2. The following are equal: 
(1) l/w.c.s.(X) = inf{diam, (z,) : x, SO, llxnI) -+ 1) 

(2) p ( X )  
(3) inf{Sep ({x,):=~) : z, 5 0, 112,,11 -+ 1) 

W 

(4) i n f { ~  ({xn):=l) : xn + 0, / [ r n l l  -+ 1) 

It is easily checlied that. the uniformizatioil of WO is the same as the 
unifornlizat,ion of GGLD. Thus the uiliformization of all the properties 
considered in proposition 2.1 is w.c.s.(X) < 1. 

It should be mentioned that that the equality of (1) and (3) was not,ed 
in [ll]. 

We now recast P and asyinptotic P in a manner sinlilar to the original 
definitions of w.c.s.(X) and D ( X ) .  

PROPOSITION 2 . 3 .  T l ~ e  following is equivalent to P: 
If x, -% 0, (x,,) noncoi~stai~t,  tlien 

lim sup rad (m { x , ) ~ = , , )  < d i m  { x , ) ~ = ~  
k 

Similarly asy~nptot~ic P can be r e ~ r i t t ~ e i l  as: 

7Aj rad (C~{X? , )?=~)  
If z, --+ 0, x,, f ,  0, then liinsup 

k dial11 {x,, 
) < 1. 

We notje that the left. halld side of the last inequality is equal t,o 

lim supk rad (m {x,):=~). 
diani, (x,, ) 

U' Proof of proposition 2.3. Suppose S has property P and r , ,  - 0. 
diam { r , , ) ~ . ,  = 1 but lim supk rad (a { x ~ , ) ? = ~ )  = 1. Now 
0 E E{x, ,}~=~ for all k and so supk>,,, / ( x ~ I I  > rad (F5 { ~ k } r = ~ , ) ,  
giving lirn sup /Izk 1 1  = 1, contradicti71~ P. 
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Conversely, suppose X satisfies the first statement in the proposi- 
tion and that x, % 0 and diam { x , ) ~ = ~  = 1. We now show that 
limsup 11x,11 < 1, and conclude that X has property P. 

Indeed, we have lim supk rad (a {x,):=~) < 1. Thus there exists a 
sequence (yk) with yk E ~ { x ~ , ) ~ = ~  and E > 0 SO that 

Thuslimsup, (Iyk-x,II < 1 - ~ f o r a l l  k .  ~ u t  y k A ~ a n d s o  by theweak 
lower semi-continuity of the mapping x H lim sup, 112-x, 1 1 ,  lim sup J(x, ( 1  

< 1 - E < 1, completing the proof. - 
The equivalence involving asymptotic P is proved in a similar way, 

using the observation made below the statement of the proposition. 

It may also be seen that the same method of proof yields that w.c.s.(X) 
is equal to 

sup {lim;up ( : x, 5 0, xn ++ 0 

maltiilg the conilection with P and asymptotic P clear. 
For completeiless we also relate P and asymptotic P to D ( X ) ,  first 

isolating a result that is obtained in [ll] with the following lemma. 

L E ~ N A  2.4. If x, 5 0, llxnll -+ 1, then for E > 0 there exists a subse- 
quence (v,) of (x,) SO that 

- dist ( y n t l ,  co{yk)l;.!,) > 1 - E .  

We note that by repeated application of Lemma 2.4 and a subsequent 
diagonalization, we can obtain a further subsecluence (z , , )  so that 

k ( nL k t " ' ) )  2 1. lim inf iilf dist ( ~ k + , , , ~ l ,  {z,),,=~ 
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PROPOSITION 2.5. P is equivalent to the following: If x, 0, (x,) 
nonconstant, then 

dist (zk+,+l, ~ { x , ) ~ ~ ~  <diam{zn)r=l  
k 

Asymtotic P is similarly characterized with diam replaced with diam, 
(assuming that x, f ,  0). 

Proof. We consider the case of property P. That of asymptotic P is 
proved in the same way. 

That the statement implies P follows from the observation preceding 
the proposition. Conversely suppose that x, -% 0, (x,) nonconstant, 
but 

- '+"I)) = diam { x n ) ~ ? l .  
dist (xk+,,,+l, co { ~ n ) , = ~  

k 

We show that, then lim sup Ilx, 11 = diarn { x , ) ~ ? ~ ,  contradicting P. In- 
deed, let n E N and E > 0. Then the above iinplies that there existts a 
k 2 n so that 

limsup dist (sk+,+1, Ei {n.,)k++"l\ I L = ~  I > diam {z,)r="=, cE/2 
m 

k+p Now. since 0 E CO{X,)?=~, there exists p E N and z E 5 {x,),=,, 
so that ))z1) < € / 2 .  But the above will then give an m 2 p so that 
lIxk+m+l)) > diam{x,)~=l - E and it follows that since n and E where 
arbitrary, lirnsup llx, 11  = diam { . T , , ) ~ = ~  . con~pleting the proof. 

The following example separates w.c.s.(S) < 1 from asymptotic P. 

EXAMPLE 2 . 6 .  Let X = (!? + Cj 9 l4 . . . ),. By consiclering the usual 
unit vector bases of !, . it is clear that IY.c.s.(S) = 1. We 1101~ show that 
X has asymptotic P. We will iise the well 1;nolvn fact that w.c.s.(&,) = 
2-'/p. 

W 
So, suppose that (.rn) is a sequence in X with JJxl ' JJ  + 1. z"  --, 0.  
We mill denote the natural projection onto the snbspace of S natu- 

rally identified with P,,, by P,, for 771 > 1. 
Since the projections are weal; continuous, P,,,(xn) 0 for fised m. 
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Firstly, suppose that there exists E > 0, m E N and a subsequence 
( x n i )  of ( x n )  SO that 

I(Pm(xni)((  > E for any i. 
Without loss of generality we assume that ( x n i )  is ( x n ) .  Now 

Without loss of generality we suppose that 1 1  Pm(xn)  1 1  and ] \ ( I -  Pln)(xn:~ 1 1  
converge to, say, cl and c2 respectively. 

Suppose that 6 > 0 . Since ( I -  P,)(xn) 4 0 , and II(I- P,)(xn)l( + 

c2 it follows that there exists a subsequence ( x n i )  of ( x n )  so that 

II(I - Pin)(xl") - ( I  - P m ) ( x n ~ ) J (  > c:! - 6 for i # j .  

Again we assuine that ( x n * )  = (XI". Now for q E N 

Thus, 

diam, ( x n )  2 ((diam, (P , ( x" ) ) )~  + ( C Z  - 6 ) 2 )  112 

2 (22/mc: + (c? - 6 ) 2 ) 1 / 2  since W.C.S. ( & )  = 2-lim. 

Thus, since 6 was arbitrary, 

1 / 1 1 1  1 diam, (2'" ) (2- ci + c;) 112 

= ((2"/" - l )c? + c: + c;) 112 

- - ((2?/"' - + 1 ) 1 / 2  

> 1 (since cl 2 E > 0) 



18 BRAILEY SIMS AND M. SMYTH 

and the result is obtained. 
Otherwise, if our original supposition does not hold, IIPna(xn)ll -+ 0 

for any m. 
Then for any n,  yn := (IIPln(xn)II)~=l E En,  l l ~ / ' " J J g ,  -+ 1 and yn SO. 
Thus, since w.c.s.(ln) = 2-'I2. we have diam, ( Y ' ~ )  1 2lI2. 
But since I ( 1  P, (xn)  I (  - 1 1  P,,,(xP:t 1 1  I L 11 Pm(xn)  - P m ( ~ P ) I I ,  it follows 

that 1 1  yn - yPlle2 5 ( )xn  -xPllx- and so cliam, (xn)  2 2'1" 1, also giving 
the result. 

3. On a 3-space Problem. As in the introduction, suppose Y is a 
closed subspace of X and S = Y $ Z with Z finite dimensional. In [2] 
it is shown t,hat if Y has uniform ilormal structure t,hen X has normal 
structure (equivalent to weak normal structure in this case since X is 
reflexive). 

PROPOSITION 3.1. If IY has asyinptotic P the11 so does S 
IU 

Proof. Suppose r,, = yn + z,, is a sequence in X with I I T ,  ( 1  + 1, x,, --t 0 
and y,, E Y, 2, E 2. But then, since the linear projection onto Z is 
[weal;]continuous, z,, --% 0. Thus z,, -+ 0 since Z is finite dimensional. 
Then J l  y,, ( 1  -+ 1 and yn -% 0 giving diam, (y,) > 1 since I F  has asymp- 
totic P. Hence diarn, (x,,) > 1 since z,, -+ 0. 

The same method used in the above proof will also establish that 
w.c.s.(S) = w.c.s. (Y).  Since w.c.s.(S) 5 hr(A-), this strengthens the 
result of [2]. Clearly S is reflexive if aid only if I -  is. Coinbilling this 
with the results of Maluta aid Prus given ill tlle ilitrocluctioil, we also 
have an alternative proof of Propositioil 1 in [GI , that D ( S )  = D(Y) .  It 
still appears unlillowll whether #(I;) < 1 gives uniform normal structure 
for A' (alt,hough it is showil in [5] that super ilorinal structure carries 
across). 

PROPOSITION 3.2. If Y has propert?. P a i d  the projectioi~ oilto Y has 
norin 1 the11 S has P. 

PI'  
Proof. Suppose that Ilr,, 1 1  -+ 1. .r,, - 0 a i d  x,, = y,, + z , , ,  with y, E 
Y, zn E 2. Then, as in the proof of proposition 3.1, z , ,  + 0 wit11 
llynl( -+ 1, and y,, -% 0.  Thus, diain{y,,}r=l > 1, since I T  has property 
P. Now, since the projectioil on I' is of norm 1, 

1 < dian~{y, ,}r=~ 5 dianl{n.,,)?==, 
and so S has property P. 
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Since property P implies weali normal structure which implies the 
weali fixed point property (see [3]), the above proposition strenghens 
Theorem 2.3 of [12] (where it is shown that if Y has P and both projec- 
tioiis have norm 1 then S has tlle weali fixed point property). Lie also 
note tliat the conclusions of the last two propositions remain valid if Z 
is a Schur space, a possibility which is considered in [2]. 
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