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ON NON-UNIFORM CONDITIONS
GIVING WEAK NORMAL STRUCTURE

BRAILEY SIMS AND M. SMYTH

ABSTRACT. Several non-uniform conditions sufficient for weak normal
structure have recently been introduced. We show that some of these are
in fact equivalent and also utilize them in applications towards a 3-space
property for weak normal structure, thereby improving on earlier results.

1991 Mathematics Subject Classification. 4TH10.

1. Introduction. Throughout X is a Banach space which is assumed
not to be Schur. That is, X has weakly convergent sequences that
are not norm convergent. Recall that X has (weak) normal structure
if whenever C is a (weak compact) bounded convex subset of X with
diam C' > 0 then rad C' < diam C' where

diam C := sup{||lz — y|| : z,y € C}
and radC := inf sup{||z —y| :y € C}.
zeC

It is well known that X fails weak normal structure if and only if
there exists a sequence (z,) in X with z, — 0 and diamco {z,}32,
(=diam {z,}32,) =1 and dist (41,0 {2k }}=,) — 1.

In particular diam, (2,), rad, (z,) and lim, ||z,|| are all equal to 1,
where

diam, (zn) := limdiam {z }3Z,

and rad, (z,) := inf{limsup ||z — z,|| : z € 0 {2, }32,}
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are, respectively, the asymptotic diameter of (z,) and the asymptotic
radius of (z,) in o {2 }5%.

See [3] for details and the relevance of weak normal structure to fixed
point theory of nonexpansive mappings. We now review some uniform
conditions. _

As in Maluta [9] we define N(X) by

4 radC C
P diam C °
is a bounded convex non-singleton non-empty subset of X} .

This is the reciprocal of Bynum’s normal structure coefficient, N(X),
defined in {1]. X is said to have uniform normal structure if N(X) < 1.
Also, put

rad, (z,)

w.c.s. (X) = sup{ c i, —— 0,1, A 0} .

diam, (z,)

This is the reciprocal of the weak convergent sequence coefficient de-
fined in [1]. It can be checked that diam, can be replaced with diam in
the definition.

Since rad, (yn) < rad {y,}2, for any sequence (y,) it follows that
w.cs. (X) < N(X).

Of course if N(X) < 1 or w.c.s.(X) < 1 then X has weak normal
structure.

Maluta [9] introduced

limsup dist (241,06 {Tk}peq) |
diam {z,}3%,

(z,) is a bounded nonconstant sequence in X }

S

She showed that diam can be replaced with diam, (for nonconvergent
sequences (), that D(X) < N(X), and also that D(X) = 1 whenever
X is not reflexive, thus giving that uniform normal structure implies
reflexivity.

Prus [11] showed that w.c.s.(X) = D(X) if X is reflexive, the main
argument being that in general w.c.s.(X) < D(X). He also obtained
that w.c.s.(X) is the reciprocal of

inf {diama (ln) Ty _w_>07 “ln” - 1}
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Here also diam, can be replaced with diam.
Recently several non-uniform conditions have been studied. Tan and
Xu [12] introduced property P :

liminf ||z, — 2| < diam {z,}32, if z,—>z

and (z,) is nonconstant.

By extracting appropriate subsequences this can be seen to be unaltered
if lim sup is used instead of liminf and, on normalizing, is equivalent to:

If |zn]| = 1 and z, -0 then diam {z,}2%, > L.

We say that X has asymptotic P if the above (again equivalent) con-
ditions hold with diam replaced by diam, (with the proviso that the
sequence is nonconstant).

In section 2 the main results are that P is equivalent to a condition
introduced in [13] by Tingley (subsequently known as WO), and that
asymptotic P is the GGLD of [4]. We also give other equivalents of
these conditions, some involving indices of noncompactness and others
more closely related to the original definitions of w.c.s.(X) and D(X).

Section 3 is concerned with problems of a 3-space nature:

Given X = Y @ Z , where Z is finite dimensional, what conditions
on Y give weak normal structure for X7 In [8] an example is given of a
space X that has weak normal structure even though the direct £2 sum
X @, R fails this property. We ask what properties of Y sufficient for
weak normal structure are inherited by X. It is shown that asymptotic
P, as well as P with appropriate conditions on the projections, are such
conditions.

2. Some Banach Space Properties. We state below some Banach
space properties which are then related to P and asymptotic P. Two
of these properties involve indices of noncompactness; the others have
appeared in the literature before and are discussed below.

In each case the inequality holds whenever (z,) is a weak null se-
quence in X that is not norm convergent.

(1) iminf ||z,|| < sup,, limsup,, ||zm — zx||-

(2) liminf ||z,]| < Sep ({zn}3%4).

(3) liminf ||z,| < limsup,, limsup,, ||z, — Z,||-

(4) liminf |2,]] < o ({zn}2%;).
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Recall that if C is a bounded subset of X,

Sep (C) := sup{ igf |¥n — Ym|l : (yn) is a sequence in C} and

a(C) :=inf{d: C has a finite cover of subsets of
X of diameter at most d},

which are, respectively, the separation and Kuratowski indices of non-
compactness.
Of course the above properties can be restated replacing liminf with
limsup and can also be normalized in a way similar to that for P.
Condition (1) is WO and represents a weakening of the Opial condi-
tion (see [10]):

If 2,—0 and z#0 then limsup|a,| < limsup |z~ 2,

As noted in [13], WO can be restated as follows: If z, =0, (z,) a non-
constant sequence, then there exists » € € {z,}5%, so that limsup ||z,||
< limsup ||z — ]|

Condition (3) is an asymptotic version of WO and is called GGLD in
[4], where it is shown to be distinct from WO. Combining this with the
following proposition establishes that asymptotic P and P are different
Banach space properties. We also note that the space considered in [4]
which separates P from asymptotic P has the Opial property, so that
whereas Opial implies P, it doesn’t imply asymptotic P. The example at
the end of this section separates asymptotic P from w.c.s.(X") < 1.

ProrosiTION 2.1. Condition (1) is equivalent to P and the other con-
ditions are equivalent to asymptotic P.

Proof. Clearly (1) = P. To show the converse we use a technique due
to Landes [7].

Suppose X has P, x,, € X,
zp|| <1 for all m.

We construct a subsequence (y,,) of (x,) as follows:

y1 = x1. If y1,...,yr have been selected, then yr4; = =, is chosen
so that
|zm — yj|l <14 1/k for all j < k (possible by the condition on (x,)).

lzn|| = 1, @, =0, but limsup,, |[xm —
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Thus, for each k,
lye+1 —yill €1+ 1/k forall j<k.

Now put zx = k_k+1'yk+1 + ;%yl. Clearly zx — 0 and lz&|l — 1. Also,
ifm >k,

m k 1 1

llzm = 2|l = Hm—-i-lym“ - mykﬂ - (m —— ma1 Jull
k 1 1
= |lm(ym+1 — Yr41) + (m - m—H)(ym+1 -yl
k 1 1 1

< — _
S S e e B | S )

=1.

Thus, diam {z, }50-; < 1, contradicting property P.

To establish the remainder of the proposition we first note that (2) =
(3) = asymptotic P and (4) = asymptotic P are clear. Also, (2) = (4)
follows from the fact that «(C) > Sep (C) for any set C. It remains to
show that asymptotic P = (2).

Suppose X has asymptotic P and z, € X, |z,|| — 1, z, —0.
Suppose Sep ({z,}5%;) <1 and € > 0.

Let Py ({z,}3%,) denote the set of two element subsets of {z,}22 ;.
We define A,B C P, ({z,}32,) by

A={{an.omt € Po({2a}72)) t |lon — 2mll 2 1+ €},
B := {{xna‘rm} € P ({Tn}zil) : ”xn - l'mH <1+ 6}.

Since AUB = P ({2,}%2,), Ramseys Theorem implies that there exists
a subsequence (y,) of (z,) with
Py ({yn}iz) €A or P ({yn}32,) € B.

But Sep (_{I”}n 1) < 1 ) 80 P2 ({y"}?f:l) g B and diam {yn}?;x S
1+e

Repeated application of this process together with a diagonalization
will produce a subsequence (z,) of (z,) with diam, (2,) < 1, a contra-
diction. 0O

In [4] a uniform version of GGLD is also introduced. We relate this
condition to w.c.s.(X) below.



14 BRAILEY SIMS AND M. SMYTH

With D(z,)] := limsup, limsup,, ||z, — zm] [4] defines
B(X) := inf{D[(z,)] : [|za]| = 1,20 — 0}.
By adapting the arguments used in the proof of the above proposition,
we have the following,.

ProrosITiON 2.2. The following are equal:
(1) 1/w.c.s.(X) = inf{diam, (2,) : 7, — 0, ||zn|| — 1}
(2) B(X)
(3) inf{Sep ({z2}7L1) : 20 — 0, [lzall — 1}
(4) inf{a ({2a}321) 1 20 =0, [J&n]l — 1}

It is easily checked that the uniformization of WO is the same as the
uniformization of GGLD. Thus the uniformization of all the properties
considered in proposition 2.1 is w.c.s.(X) < 1.

It should be mentioned that that the equality of (1) and (3) was noted
in [11].

We now recast P and asymptotic P in a manner similar to the original
definitions of w.c.s.(X) and D(X).

ProOPOSITION 2.3. The following is equivalent to P:
If x, =50, (x,) nonconstant, then

limsup rad (co{2,}3,) < diam{z,}3%,.
k

Similarly asymptotic P can be rewritten as:

rad (C_6{$7l}7o10=k)> < 1.

If xn—w**(L Tp A0, then limksup< dianl{l‘n}iik

We note that the left hand side of the last inequality is equal to

lim sup, rad (€0 {z,}32,)

diamg (z,,)

Proof of proposition 2.8. Suppose X has property P and 2, — 0,
diam {z,}5%, =1 but limsup,rad (¢o{z,}°2,) = 1. Now

0 € to{x,}32, for all k and so supys,, |zk|| > rad (€6 {z¢}22,,).
giving limsup||z.|| = 1, contradicting P.
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Conversely, suppose X satisfies the first statement in the proposi-
tion and that 2, =0 and diam{2,}3%; = 1. We now show that
limsup ||z,|| < 1, and conclude that X has property P.

Indeed, we have limsup, rad (6 {z,}22,) < 1. Thus there exists a
sequence (yx) with yx € €0 {x,}°2, and € > 0 so that

sup lye — z|| = sup ||yx — znl| <1 - €.
zem{z,l}:‘;k n>k

Thus lim sup,, ||yx—2a|| < 1—e€for all k. But yx —— 0 and so by the weak
lower semi-continuity of the mapping x — lim sup,, ||z—z,||, limsup |lz,||

< 1-—¢€ <1, completing the proof.
The equivalence involving asymptotic P is proved in a similar way,
using the observation made below the statement of the proposition. O

It may also be seen that the same method of proof yields that w.c.s.(X)
is equal to

sup {limsup (rad (co {xn}"zk)> C Ty =0, T, A 0} ,
k

diam {z,}22 ,

making the connection with P and asymptotic P clear.
For completeness we also relate P and asymptotic P to D(X), first
isolating a result that is obtained in [11] with the following lemma.

LEMMA 2.4. If2, =50, |2, — 1, then for e > 0 there exists a subse-
quence (y, ) of (z,,) so that

dist (yns1, @ {yetic)) 2 1~ <.

We note that by repeated application of Lemma 2.4 and a subsequent
diagonalization, we can obtain a further subsequence (z,) so that

liminf (inf dist (z44ms1,{za}5E7)) 2 1.

n=
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PROPOSITION 2.5. P is equivalent to the following: If z, — 0, (z,)
nonconstant, then

lim sup (limsup dist (Tg4m+1, TO{T, ﬁl”,?)) < diam{z,}5%;.

k m

Asymtotic P is similarly characterized with diam replaced with diam,
(assuming that z,, / 0).

Proof. We consider the case of property P. That of asymptotic P is
proved in the same way.

That the statement implies P follows from the observation preceding
the proposition. Conversely suppose that z, — 0, (z,) nonconstant,
but

lim sup (lim sup dist (Ti4m+i, €O {Tn fiL"f)) = diam {z, }5 ;.

k m

We show that then limsup ||z,| = diam {z,}$%;, contradicting P. In-

deed, let n € N and € > 0. Then the above implies that there exists a
k > n so that

limsup dist (Tr4m+1, 66{.1:,1}{“;2’) > diam{z,}32, — €/2

n=1
m

Now, since 0 € To{z,}>,, there exists p € N and z € @0 {z,} 12
so that ||z|| < €/2. But the above will then give an m > p so that
|Tk+ms1] > diam{z,}32, — € and it follows that since n and e where
arbitrary, limsup ||z, || = diam {2, }3%,, completing the proof. [

The following example separates w.c.s.(X') < 1 from asymptotic P.

EXAMPLE 2.6. Let X = ({, & (35 {4 T ...),. By considering the usual
unit vector bases of ¢, . it is clear that w.c.s.(X) = 1. We now show that
X has asymptotic P. We will use the well known fact that w.c.s.({,) =
2=/,

So, suppose that (z") is a sequence in X with ||2"|| — 1, 2™ =-0.

We will denote the natural projection onto the subspace of X natu-
rally identified with ¢,, by P, for m > 1.

Since the projections are weak continuous, P,,(2™) -0 for fixed m.
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Firstly, suppose that there exists € > 0, m € N and a subsequence
(z™) of (™) so that
|| P (2™)|| > € for any i.
Without loss of generality we assume that (2™) is (z™). Now
n|2 ny (2 nyn2
&™ I = [|Pm(a™) 1" + |(I = Prm)(=")]}
lz™ = &?||* = [|Pm(2™) = Pr(@?)|* + (I = Prn)(z™) = (I = Pr)(2”)]I".
Without loss of generality we suppose that || Py, (z™)|| and ||(I— Pn){(z™)||
converge to, say, ¢; and cp respectively.

Suppose that § > 0. Since (I— P, )(z") — 0, and ||(I - Py)(z™)|| —
¢z it follows that there exists a subsequence (z"+) of (z™) so that

(I = Pm)(z™) = (I = Po)(z")|| > c2 — & for i # j.

Again we assume that (z™) = (2"). Now for ¢ € N

sup [|a" ~a?||* = sup (|| Pm(a™) = Pr(a”)?
n,p>q n,p>q

HI = Pa)a®) - (= Pa)a)I)

> sup ||Pn(z™) - Pm(xp)HQ + (c2 — 6)2-
n,p>q

Thus,

diam, (2") > ((diam, (Pm(In)))Q + (co = 5)2)1/2

> (2™ 4 (¢ — (5)2)1/2 since w.c.s. (£m) = 274/™.
Thus, since § was arbitrary,

diam, (z") > (22/""0% + cg)l/2

=((2*/™ - 1)l + ¢ + )
1/2

= (¥ - )& + 1)V

>1 (since ¢; > €>0)

1/2
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and the result is obtained.

Otherwise, if our original supposition does not hold, ||P,(z™)|| — 0
for any m.

Then for any n, y" = (| Pr(a))3imy € Co, 37l — 1 and y" 0,

Thus, since w.c.s.(fy) = 2712, we have diam, (y") > 2/2.

But since | || Pn(z™)|| = || Pr(@?)|| | < |Pm(2™) = Pn(a?)||, it follows
that ||y" —y?|le, < ||]2™ —2P||x and so diam, (z™) > 21/2 > 1, also giving
the result.

3. On a 3-space Problem. As in the introduction, suppose Y is a
closed subspace of X and X =Y & Z with Z finite dimensional. In [2]
it is shown that if ¥ has uniform normal structure then X has normal
structure (equivalent to weak normal structure in this case since X is
reflexive).

ProrosITION 3.1. IfY has asymptotic P then so does X.

Proof. Suppose x, = y,+2, is a sequence in X with ||z,| — 1, £, — 0
and y, € Y, 7, € Z. But then, since the linear projection onto Z is
[weak]continuous, z, ~250. Thus z,, — 0 since Z is finite dimensional.
Then ||y,|| — 1 and y, — 0 giving diam, (y,) > 1 since ¥ has asymp-
totic P. Hence diam, (z,,) > 1 since z, — 0. O

The same method used in the above proof will also establish that
w.cs.(X) = wes. (Y). Since w.c.s.(X) < N(X), this strengthens the
result of [2]. Clearly X is reflexive if and only if ¥ is. Combining this
with the results of Maluta and Prus given in the introduction, we also
have an alternative proof of Proposition 1 in [6] , that D(X) = D(Y"). It
still appears unknown whether 1\7()’) < 1 gives uniform normal structure
for X (although it is shown in [5] that super normal structure carries
across).

ProrosiTION 3.2. IfY has property P and the projection onto Y has
norm 1 then X has P.

Proof. Suppose that ||z, | — L. x, 5 0and x, = y, + z,,, with y, €
Y, 2z, € Z. Then, as in the proof of proposition 3.1, z,, — 0 with
lyn|l = 1, and y,, —= 0. Thus, diam {y,}><,; > 1, since ¥ has property
P. Now, since the projection on Y is of norm 1,

1 < diam{y,, }22, < diam {2, }5%,
and so X has property P. O
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Since property P implies weak normal structure which implies the

weak fixed point property (see [3]), the above proposition strenghens
Theorem 2.3 of [12] (where it is shown that if Y has P and both projec-
tions have norm 1 then .X has the weak fixed point property). We also
note that the conclusions of the last two propositions remain valid if Z
is a Schur space, a possibility which is considered in [2].
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