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Abstract. Let C(X) denote the set of all non-empty closed bounded
convex subsets of a normed linear space X. In 1952 Hans R̊adström
described how C(X) equipped with the Hausdorff metric could be iso-
metrically embedded in a normed lattice with the order an extension of
set inclusion. We call this lattice the R̊adström of X and denote it by
R(X). We:

(1) outline R̊adström’s construction,
(2) examine the structure and properties of R(X) as a Banach space,

including; completeness, density character, induced mappings, in-
herited subspace structure, reflexivity, and its dual space, and

(3) explore possible synergies with metric fixed point theory.

1. Introduction

Throughout X ≡ (X, ‖ · ‖) denotes a real normed linear space. BX and
B◦X the closed and open balls of X respectively, and X∗ the dual space of
continuous linear functionals on X. C(X) denotes the set of non-empty,
closed, bounded, convex subsets of X.

In 1952 Hans Vilhem R̊adström [?] constructed a canonical isometric em-
bedding of C(X) equipped with the Hausdorff metric into a normed lattice
R(X) with the order an extension of set inclusion in C(X). While numerous
applications and extensions of R̊adström’s ideas are to be found in the liter-
ature, little seems known about the normed space structure of R(X) or its
relation to the structure of X. In this note we initiate such an investigation.

In the ensuing outline of R̊adström’s construction we follows the approach
found in Coppel [?], where the reader is referred for more details. For
those interested an alternative construction based on the support functional
representation of convex sets may be found in Hörmander [?].
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We begin the construction of R(X) by introducing an algebraic structure
into C(X).

For any A,B ∈ C(X), define λA := {λa : a ∈ A} ∈ C(X) and
their Minkowski sum A+B by A+B := {a+ b : a ∈ A, b ∈ B}.

While A + B is non-empty, bounded, and convex. it may not be closed
unless one of the sets is compact in, for example, the weak topology on X.

Example 1.1. Let X = `1, A = φ−1{1} ∩ 2BX , where φ ∈ X∗ is such that

(an) 7→
∞∑
n=1

(1− 2−n)an, and let B = BX .

Then ak := (1−2−k)−1ek and bk := −ek are sequences of elements in A and
B respectively, with ak + bk → 0, so 0 ∈ A+B, however, calculation reveals
that 0 /∈ A+B.

To overcome this, we introduce a new “addition” in C(X):

A⊕B := A+B ∈ C(X).

Observe that: A⊕B = A⊕B for any A,B ∈ P(X), and so ⊕ is associative.
In addition {0} is an identity for ⊕. In particular then (C(X),⊕) is a
commutative monoid.

The following perhaps surprising result is a key feature in the construction.

Proposition 1.2 (Order Cancellation Law - Brunn, 1889 [?]). If A,B,C ∈
C(X), and A⊕ C ⊆ B ⊕ C, then A ⊆ B.

In particular we have:

If A⊕ C = B ⊕ C, then A = B.

Thus, H := (C(X),⊕) is a commutative monoid with cancellation law.

Next we observe thatH can be embed into an abelian groupG (its Grothendieck
group) as follows,

Define an equivalence relation ∼ on H ×H by

(A,B) ∼ (C,D) ⇐⇒ A⊕D = C ⊕B.

Denote by [A,B] the equivalence class of the pair (A,B) and let G be the
set of all such equivalence classes.

Then
[A,B]⊕ [C,D] := [A⊕ C,B ⊕D]

is a well-defined binary operation on G, with respect to which G is an
abelian group; with identity 0 := [{0}, {0}] (= [A,A]) and inverses given
by 	[A,B] = [B,A].
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Further,
φ : H → G : A 7→ [A, {0}]

is an injective homomorphism, that is, G contains a copy of H, and x 7→
φ({x}) provides an embedding of (X,+) into G.

Remark 1.3. The construction of G from H mirrors the construction of
(Z,+) from (N∪{0},+), and the construction of (Q\{0},×) from Z\{0},×)
commonly found in introductory algebra courses.

As in these special cases, we avoid the cumbersome notation of pairs by
using C to denote both a non-empty, closed, bounded, convex subset of X
and its image φ(C) = [C, {0}] in G.

Moreover, if we define scalar multiplication by,

λ[A,B] :=

{
[λA, λB] : λ ≥ 0
[(−λ)B, (−λ)A] : λ < 0

then, after some tedious verification, we have:

Proposition 1.4. G with the operations defined above is a real linear space.

Remark 1.5. Since we identify C ∈ C(X) with [C, {0}] ∈ G, the expres-
sion λC may refer either to the scalar multiplication on C(X) or the scalar
multiplication on G. For λ ≥ 0 leads to no ambiguity as φ(λC) = λφ(C),
however, when λ < 0, φ(λC) = [λC, {0}] 6= [{0}, (λ)C] =: λφ(C).

Unless otherwise stated, λC will henceforth refer to the scalar multiplication
on G.

This suggest defining,

A	B : = A⊕ (−1)B

= [A, {0}]⊕ [{0}, B]

= [A,B]

Henceforth, we will mostly use the more suggestive notation A	X B for the
element [A,B] of G.

Remark 1.6. In some circumstances the subscriptX is necessary to identify
the space in which the elements of the equivalence class reside.
For example, if we have Y , a closed, strict subspace of X, then for any
A,B ∈ C(Y ) ⊂ C(X), the class A 	Y B is a strict subset of A 	X B.
However, when the space is clear from the context, we will simply write
A	B.

Due to the order cancellation law, the subset partial order on C(X) can be
extended to G by defining,

A	B ≤ C 	D ⇐⇒ A⊕D ⊆ C ⊕B,
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Proposition 1.7. The relation ≤ on G is well-defined, and makes G a
vector lattice.

The positive cone is G+ = {A	B : A ⊇ B}.

Remark 1.8. Despite the fact that G = C(X)	C(X), its positive cone and
C(X) do not coincide.

Further, G is a Kakutani space [?], indeed:

(1) u := BX is an order unit for G, as |A 	 B| ≤ nu, when n is any
integer larger than maxa∈A ‖a‖+ maxb∈B ‖b‖, and

(2) if A	B ≤ 1
nu for all n ∈ N, then A	B ≤ 0.

From these it follows that

‖A	B‖ := inf {λ ≥ 0 : |A	B| ≤ λu}
defines a lattice norm on G.

Calculation reveals that,

‖A	B‖ = H(A,B) := max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
,

where H is the Hausdorff metric on C(X).

G with this norm is a normed linear lattice (for a succinct account of normed
lattices the reader is referred to [?]).

We will henceforth refer to G with this structure as the R̊adström of X and
denote it byR(X). [R(X) is also variously known as a Minkowski-R̊adström-
Hörmander (MRH) space, or a Pinsker-Minkowski-R̊adström-Hörmander
(PMRH) lattice].

φ provides a monotone isometric embedding of (C(X),H) into R(X) and
x 7→ φ({x}) is a linear isometry from X into R(X).

1.1. Representation in a C(K) space.

By the Krein-Kakutani theorem [?], there is a monotone linear isometry
ψ : R(X)→ C(K) with ψ(R(X))) a dense subspace of C(K) and ψ(u) the
constant function 1, where K is a compact, Hausdorff topological space.
Specifically, K comprises the extreme points of the set of positive linear
functionals in BR(X)∗ equipped with the the weak∗ topology, and for all
x ∈ R(X), the action of ψ(x) is evaluation at x; ψ(x) = x̂|K .

1.2. Examples of R̊adströms.

There are (precisely) two elementary examples of R̊adström spaces, arising
from the two simplest real normed linear spaces; the trivial space 0 and R.

Example 1.9. R({0}) = {0}.
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Example 1.10. Due to the simplistic nature of convex sets in R,

R((R, | · |)) is isometric to `2∞, that is (R2, ‖ · ‖∞),
under the surjective, linear isometry:

ι : R(R)→ R2 : [a, b]	 [c, d] 7→ (a− c, b− d).

On the other hand we have:

Proposition 1.11. If dim X ≥ 2, then R(X) is infinite-dimensional.

Proof. This is best derived as a consequence of stronger results discussed
later in the paper. Most succinctly by an appeal to Corollary ??. Alter-
natively one can first establish that R(R2) is infinite dimensional, then use
Theorem ?? to embed R(R2) into R(X). Infinite dimensionality of R(R2)
follows via a routine calculation to establish the linear independence of

{co{(0, 0), (x, y)} ⊂ R2 : ‖(x, y)‖ = 1, x, y ≥ 0} ⊂ R(R2),

where co designates the convex hull. �

Further,

Proposition 1.12. R(X) is separable if and only if X is finite-dimensional.

Proof. If X = Rn, then the set P of polytopes whose extreme points with
rational vertices forms a countable dense subset of C(X). The set of equiva-
lence classes of the form A	B, where A,B ∈ P , is therefore countable and
dense in R(X).

Otherwise, if X is infinite dimensional, by an appeal to Theorem ?? we
may assume without loss of generality that X is separable. In which case X
admits a Markushevich basis (en, e

∗
n) with ‖en‖ = 1 and ‖e∗n‖ ≤ 2 [?]. For

any nonempty subset I of N, define

CI = co{en : n ∈ I},

here co designates the closed convex hull.
Calculation reveals thatH(CI , CJ) < 1/2 if and only if I = J . From this and
the observation that the subsets of N have cardinality that of the continuum
it follows that R(X) is not separable. �

2. Rådströms as normed linear spaces

Extending proposition ?? we have;

Theorem 2.1. If dim X ≥ 2, then R(X) is incomplete.
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Proof. Suppose R(X) is complete. Define

Cn(X) := {C ∈ C(X) : ‖C‖ ≤ n} and

Rn(X) := Cn(X)	 Cn(X).

By the Blaschke Selection Principle [?], Cn(X), and hence Rn(X), are com-
pact. Additionally,

R(X) =
⋃
n∈N
Rn(X).

By the Baire Category Theorem, some Rn(X) has a non-empty interior.
Thus, BR(X) is compact, so by Proposition ??, dim X < 2. �

As a consequence, if dim X ≥ 2, then R(X) is not reflexive and, from the
Krein-Kakutani represention, neither is its completion. Loosely speaking
this means that R(X) inherits few of the geometric properties that X may
enjoy.

We have already seen that R(X) contains a subspace isometric to X, and
this is indeed the only subspace wholly contained in C(X).

Other subspaces include,

RFD(X) := {A	B ∈ R(X) : span(A), span(B) are finite-dimensional},
RK(X) := {A	B ∈ R(X) : A,B are compact},
RwK(X) := {A	B ∈ R(X) : A,B are weakly compact},
Rw∗K(X∗) := {A	B ∈ R(X∗) : A,B are weak* compact}.

RFD(X) is dense in RK(X), and

RFD(X) ⊆ RK(X) ⊆ RwK(X), also RwK(X∗) ⊆ Rw∗K(X∗).

Further, as might be expected, the subspace structure of X is mirrored in
R(X), indeed;

Theorem 2.2. Suppose Y is a subspace of X, not necessarily closed, then
R(Y ) is isometrically isomorphic to a closed subspace of R(X). Moreover,
if Y is dense in X, then this subspace is the entirety of R(X).

We delay the proof of theorem ?? until Section ??.

3. Induced operators

For T : X → Y a Lipschitz continuous map between normed linear spaces
X and Y the Lipschitz constant is

CL(T ) := sup

{
d(Tx, Ty)

d(x, y)
: x, y ∈ X and x 6= y

}
.
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Define,
ρT : C(X)→ C(Y ) : C 7→ coT (C),

then ρT is also Lipschitz continuous with CL(ρT ) = CL(T ).

Further, if T is linear then, taking the convex hull is superfluous, ρT is
additive and positive scalar-homogeneous, and we can extend it to a map
from R(X) to R(Y ) by defining

ρT (A	B) := ρT (A)	 ρT (B).

The following proposition readily follows from the definitions.

Proposition 3.1. Suppose X, Y and Z are normed spaces and suppose
T : X → Y and S : Y → Z are bounded linear operators, then:

(1) ρT is a well defined linear operator,
(2) ρT is bounded with ‖ρT ‖ = ‖T‖.
(3) ρT is monotone.
(4) For any k ∈ [0,∞), ρkT = kρT .
(5) ρIX = IR(X)

(6) If T is an isomorphism, then ρ−1T = ρT−1 .
(7) If T is an isometry, then ρT is an isometry.
(8) ρST = ρSρT .

Armed with these notions we now return to the proof of ??.

3.1. Proof of Theorem ??.

Proving that the embedding of R(Y ) into R(X) is closed is surprisingly
non-trivial. We first need a lemma:

Lemma 3.2. Suppose C ∈ C(X) and BX ⊆ C. Suppose further that Y is a
subspace of X and M > 0 satisfies C ∩ Y ⊆MBY . Then the inequality:

inf
y∈C∩Y

‖x− y‖ ≤M inf
c∈C
‖x− c‖

holds for all x ∈ Y .

Proof. Fix x ∈ Y . Assume without loss of generality that x ∈ Y \C and fix
c ∈ C.

Consider the set I = {λ ∈ R : λx ∈ C}. Then 1/‖x‖ ∈ I and I is bounded
above by 1, since x 6∈ C. Define µ = sup I ∈ (0, 1).

Consider the ray λµx+(1−λ)c : λ ≥ 1. Suppose for the sake of contradiction
that this ray intersected with the open unit ball B◦X for some λ ≥ 1. Since
µx is in the boundary of C, we have λ 6= 1. But then µx lies on the interior of
the line segment from c ∈ C to λµx+ (1−λ)c ∈ B◦X ⊆ int C, so µx ∈ int C,
which is a contradiction. Therefore,

‖λµx+ (1− λ)c‖ ≥ 1
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for all λ ≥ 1. In particular, consider λ = 1
1−µ > 1, then

1 ≤
∥∥∥∥ 1

1− µ
µx+

(
1− 1

1− µ

)
c

∥∥∥∥ =
µ

1− µ
‖x− c‖ =⇒ ‖x− c‖ ≥ 1− µ

µ
.

Since µx ∈ C ∩ Y ⊆MBY , we have µ‖x‖ ≤M . Therefore,

inf
y∈C∩Y

‖x− y‖ ≤ ‖x− µx‖ =
1− µ
µ

µ‖x‖ ≤M‖x− c‖.

Taking the infimum over c ∈ C yields the result. �

Proof of Theorem ??. Let φ : Y → X be the inclusion map. By Proposition
??, the induced operator ρφ : R(Y )→ R(X) is a linear isometry.

If Y is dense in X, it may be shown, for all C ∈ C(X), that

ρφ((C ⊕BX) ∩ Y ) = (C ⊕BX) ∩ Y = C ⊕BX ,
and hence ρφ is surjective.

We proceed to show that ρφ(R(Y )) is closed in R(X). Suppose a sequence

An 	X Bn = ρφ(An 	Y Bn) ∈ ρφ(R(Y )) converges to A 	X B ∈ R(X).
By adding sufficiently large multiples of BX to A and B, we may assume
without loss of generality that BX ⊆ A,B. Choose some M such that
A ∩ Y,B ∩ Y ⊆MBY .

By Lemma ??,

sup
x∈Bn⊕(A∩Y )

inf
y∈An⊕(B∩Y )

‖x− y‖ = sup
b∈Bn

sup
a′∈A∩Y

inf
a∈An

inf
b′∈B∩Y

‖b+ a′ − a− b′‖

≤M sup
b∈Bn

sup
a′∈A∩Y

inf
a∈An

inf
b′∈B
‖b+ a′ − a− b′‖

≤M sup
b∈Bn

sup
a′∈A

inf
a∈An

inf
b′∈B
‖b+ a′ − a− b′‖

= M sup
x∈Bn⊕A

inf
y∈An⊕B

‖x− y‖

≤M‖(An 	X Bn)	X (A	X B)‖.
Similarly,

sup
x∈An⊕(B∩Y )

inf
y∈Bn⊕(A∩Y )

‖x− y‖ ≤M‖(An 	X Bn)	X (A	X B)‖.

Therefore,

‖(An 	Y Bn)	Y ((A ∩ Y )	Y (B ∩ Y ))‖
≤ M‖(An 	X Bn)	X (A	X B)‖ → 0.

Thus An	XBn → A ∩ Y	XB ∩ Y , proving ρφ(R(Y )) is closed inR(X). �

Remark 3.3. When Y is a closed, complemented subspace of X, with
projection P : X → Y , it is straightforward to show ρP is also a projection,
and hence R(Y ) is complemented in R(Y ). This painlessly establishes a
special case of Theorem ??.
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It is worth noting that, in general, IR(X) − ρP 6= ρ(IX−P ).

3.2. The dual space of a R̊adström.

Each f ∈ X∗ induces a linear transformation ρf : R(X)→ R(R) = `2∞, so

φ = v ◦ ρf ∈ R(X)∗,

where v ∈ `21 =
(
`2∞
)∗
.

We refer to φ as a functional (on R(X)) induced by f .

In particular we have,

αf (A	B) := sup f(A)− sup f(B), here v = (1, 0),

ωf (A	B) := inf f(A)− inf f(B), here v = (0, 1),

=− α−f (A	B).

αf ∈ R(X)∗+, and every functional induced by f is a linear combination of
αf and ωf .

Theorem 3.4. φ ∈ R(X)∗+ is induced by f ∈ X∗ if and only if φ(Bker(f)) =
0.

Proof. The “only if” direction is clear.

Suppose f ∈ X∗ and φ ∈ R(X)∗+ satisfies φ(Bker(f)) = 0. Assume f 6= 0,
otherwise the result is trivial. We will establish that

ker φ ⊇ ker αf ∩ ker ωf

and hence φ is induced by f .

Suppose A	B ∈ ker αf ∩ ker ωf . This implies f(A) = f(B).

Fix x ∈ f−1{1} and let π : X → ker f be the bounded projection map
y 7→ y − f(y)x. Let M = sup{‖a− b‖ : a ∈ ρπ(A), b ∈ ρπ(B)}.

Suppose a ∈ A and n ∈ N. Since f(A) = f(B), there exists some bn ∈ B
such that |f(a)− f(bn)| < 1/n. Consider,

‖bn + π(a)− π(bn)− a‖ = |f(a)− f(bn)|‖x‖ ≤ ‖x‖/n→ 0.

Since ‖π(a)− π(bn)‖ ≤M , it follows that

a = lim
n→∞

bn + π(a)− π(bn) ∈ B ⊕MBker(f).

Therefore A ⊆ B ⊕MBker(f). Since φ ≥ 0, we have

φ(A	B) ≤Mφ(Bker(f)) = 0.

Applying the above argument to B	A yields A	B ∈ ker φ as desired. �

Corollary 3.5. If φ ∈ R(X)∗ satisfies 0 ≤ φ ≤ αf , then φ = aαf for some
a ∈ [0, 1].
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Proof. If f = 0, the result is trivial. Otherwise, 0 ≤ φ(Bker(f)) ≤ 0. By
Theorem ??, there exist a, b ∈ R such that φ = aαf + bωf .

Fix x ∈ f−1{−1}. Let C = co{0, x}. Then,

0 ≤ φ(C) = aαf (C) + bωf (C) = b ≤ 0.

Thus φ = aαf (C). Since 0 ≤ φ ≤ αf , we have a ∈ [0, 1]. �

Corollary 3.6. The set {αf : f ∈ SX∗} is a (lattice) orthogonal set.

Proof. Suppose f, g ∈ SX∗ . By Corollary ??, there exist a, b ∈ [0, 1] such
that

αf ∧ αg = aαf = bαg.

Therefore,

a = aαf (BX) = bαf (BX) = b.

This yields two possibilities: a = b = 0 and αf ∧ αg = 0, or αf = αg, and
hence f = g. �

This yields an orthogonal, and hence linearly independent, subset of R(X)∗

that is infinite when dim(X) > 1, proving Proposition ??.

The next result exposes the structure of {αf : f ∈ SX∗}.

Theorem 3.7. {αf : f ∈ SX∗} is a subset of the extreme points of(
R(X)∗+ ∩ SR(X)∗

)
, with equality if and only if X is finite-dimensional.

Remark 3.8. As mentioned in Section ??, R(X) embeds densely in the
space of weak∗ continuous real functions on Ext(R(X)∗+∩SR(X)∗). Theorem
?? characterises this set explicitly in the case where X is finite-dimensional.
One can additionally show that, in this case, the map

SX∗ → Ext(R(X)∗+ ∩ SR(X)∗) : f 7→ αf

is a norm to weak∗ homeomorphism. Therefore, if X is finite-dimensional,
R(X) embeds densely into C(SX∗).

We delay the proof of Theorem ?? until the end of the paper. Meanwhile,
we introduce two subspaces of R(X)∗:

Σ :=

α ∈ R(X)∗ : α =
∑

f∈SX∗

cfαf

 ,

where only countably many of the scalars, cf , are non-zero,
and

Σ⊥ := {ψ ∈ R(X)∗ : ψ is orthogonal to αf for all f ∈ SX∗} .
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Theorem 3.9 (Structure theorem for functionals).

R(X)∗ = Σ ⊕ Σ⊥,

where ⊕ denotes direct sum.
Moreover, φ = ψ +

∑
f∈SX∗

cfαf ≥ 0 if and only if ψ ≥ 0 and cf ≥ 0 for all

f ∈ SX∗.

Proof. We wish to express any φ ∈ R(X)∗ in the form φ = ψ+
∑

f∈SX∗
cfαf ,

where ψ ∈ Σ⊥ and the coefficients cf are 0 in all but countably many cases.
By expressing φ = φ+ − φ−, we may assume without loss of generality that
φ ≥ 0.

For any f ∈ SX∗ , Corollary ?? guarantees there exists cf ∈ [0, ‖φ‖] such
that cfαf = φ ∧ (‖φ‖αf ). Note that cf is the largest multiple of αf that
remains less than φ.

Since the collection {cfαf : f ∈ SX∗} is orthogonal and each element is
positive and less than φ, we have

φ ≥
m∑
k=1

cfkαfk , for all finite subcollections {f1, . . . , fm} ⊆ SX∗ .

By applying the functionals to BX , we see that for any n ∈ N, only finitely
many ck can exceed 1/n. This implies that only countably many of the ck
are non-zero.

Consider the series
∑

f∈SX∗
cfαf . Regardless of how it is ordered, the partial

sums of the norms of its terms never exceeds ‖φ‖. Hence it is absolutely
convergent, and well-defined.

Let ψ = φ −
∑

f∈SX∗
cfαf ≥ 0 and fix g ∈ SX∗ . By Corollary ??, there

exists some d ∈ [0, 1] such that ψ ∧ αg = dαg. Thenφ− ∑
f∈SX∗\{g}

cfαf

 ∧ (αg + cgαg) = ψ ∧ αg + cgαg = (d+ cg)αg.

But then (d+ cg)αg ≤ φ, so by the construction of cg, we must have d = 0.

Thus ψ ∈ Σ⊥, as required.

Uniqueness of the representation follows from Corollary ??.

Lastly, note the final claim is a direct consequence of the construction of the
unique representation of an arbitrary positive element. �

Proposition 3.10. For φ ∈ R(X)∗+,

φ (RFD(X)) = {0} =⇒ φ ∈ Σ⊥.
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Proof. Fix f ∈ SX∗ . Let x ∈ f−1{1} and L = co{0, x}. By Corollary ??,
there exists some c ∈ [0, 1] such that

φ ∧ αf = cαf

0 ≤ c = cαf (L) ≤ φ(L) = 0.

Thus, φ ⊥ αf . �

However, the converse is demonstrably false; indeed, for X = Rn, with
n ≥ 2, and µ Lebesuge measure,

φ : R(X)→ R : A	B 7→
∫
BX∗

αf (A	B) dµ(f),

is in Σ⊥+.

3.3. Proof of Theorem ??.

We say A 	 B ∈ R(X) is subcompact if there exists some compact K ∈
C(X) such that |A 	 B| ≤ K. Note that any C ∈ C(X), considered as
the pair C 	 {0}, is subcompact if and only if C is compact. The set of
subcompact pairs in R(X) forms a subspace, and is denoted by RsK(X).

Our proof of theorem ?? will make use of the following proposition, a proof
of which may be found in Coppel [?].

Proposition 3.11. φ is an extreme point of mathcalR(X)∗+∩SR(X)∗ if and
only if φ is a lattice homomorphism.

Proof of Theorem ??. It is straightforward to verify, using Theorem ??, that
αf is an extreme point in R(X)∗+ ∩ SR(X)∗ , for all f ∈ SX∗ . One can aslo

verify that any other extreme points in R(X)∗+ ∩ SR(X)∗ must lie in Σ⊥.

Suppose first that X is infinite-dimensional. Define Φ to be the subset of
R(X)∗+ ∩ SR(X)∗ containing the annihilators of RsK(X). By Proposition

??, Φ ⊆ Σ⊥. It is straightforward to verify that Φ is a weak∗ compact face
of R(X)∗+ ∩SR(X)∗ , and hence by the Krein-Milman theorem, we need only
establish Φ 6= ∅. However, this can be seen by noting that RsK(X)+ is a
face of R(X)+, and that int RsK(X)+ 6= ∅, then applying the Hahn-Banach
Separation Theorem.

Otherwise, suppose X is finite-dimensional and

φ ∈ Σ⊥ ∩ Ext(R(X)∗+ ∩ SR(X)∗).

Fix any f ∈ SX∗ . Then

0 = (φ ∧ αf )(BX) = inf
{0}≤A	B≤BX

φ(A	B) + αf (BX 	A⊕B).
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In particular, there exists Af 	Bf ∈ R(X) such that

φ(Af 	Bf ) < 1/2

αf (Af 	Bf ) > 1/2

{0} ≤ Af 	Bf ≤ BX .
Let U(f) = {g ∈ SX∗ : αg(Af 	 Bf ) > 1/2}. Note that for C ∈ C(X), the
map g 7→ αg(C) is the support function on C. Therefore g 7→ αg(Af 	 Bf )
is a difference convex function on a finite dimensional space, and hence is
continuous. Thus U(f) is open, and the set of such sets forms an open cover
of SX∗ . Using compactness, there exist f1, . . . , fm ∈ SX∗ such that

m⋃
k=1

U(fnk
) = SX∗ .

Let

A	B =

m∨
k=1

(
Afnk

	Bfnk

)
.

We claim that A	B ≥ BX/2. Suppose this claim is false. Then there exists
some point x ∈ (B ⊕ BX/2) \ A, and g ∈ SX∗ such that g(x) > g(a) for all
a ∈ A.

Choose some nk such that g ∈ U(fnk
). Then

αg(Afnk
	Bfnk

) > 1/2

=⇒ αg(A	B) > 1/2

=⇒ g(x) ≥ αg(A) > αg(B ⊕BX/2),

which contradicts x ∈ B ⊕BX/2. Thus A	B ≥ BX/2 as required.

By Proposition ??,

φ(A	B) = max{φ(Afnk
	Bfnk

) : 1 ≤ k ≤ m} < 1/2.

However, we also have

φ(A	B) ≥ φ(BX/2) = ‖φ‖/2 = 1/2,

which is a contradiction. �

4. Some possible synergies with metric fixed point theory

For C ∈ C(X), we have seen how a nonexpansive map T : C → X induces a
nonexpansive map

ρT : C(C) ⊂ R(X)→ R(X),

where C(C) := {A ∈ C(X) : A ⊆ C}.

The fixed points of ρT are the invariant sets for T and the lattice minimal
elements of Fix(ρT ) are the minimal invariant sets of T .

Thereby, opening the possibility of transferring:
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(i) the structure of fixed point sets to the family of (minimal) invariant
sets of T ,

(ii) algorithms for approximating fixed points to ways of approximating
invariant set,

(iii) results concerning approximate (ε-) fixed point sets [Bruck et al] to
matching results for invariant sets.

Set valued mappings

A multifunction τ : C ∈ C(X) → 2X taking nonempty closed bounded
convex values can be regarded as a mapping

T : C := { {x} : x ∈ C} ⊂ R(X)→ R(X) : {x} 7→ τ(x).

Further, if H(τ(x), τ(y)) ≤ ‖x − y‖ then T is nonexpansive, allowing us to
exploit results from the theory of single valued mappings and suggesting the
possibility of Leray-Schauder type results in this context.
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