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Introduction. We propoese a treatment of the definite integral which is substantially simpler than the
appreach adopted by the standard texts.

A student's first rigorbus {or perhaps not so rigorous) encounter with the definite integral should be
throngh a development which is, as far as possible,

(1) intustive, and

{ii) elementery and technically uneluttered.
At the same time, it should meet other, possibly conflicting, abjectives. It should

(iii) pield o clasy of integrable funetions which is adequate for most applications, and

(iv) ellow an easy passage fo the bosic properties of the integral . Here, we have in mind the “obvious”

properties of an area, and those properties necessary for the development of the integral calculus.

Whilst most working analysts use the Lebesgue integral, an overwhelming majority of elementary text-
books chooses to develop the Riemann integral. This choice is presumably based on the questionable view
that the Riemann theory, though often technically inadequate, is at least more elementary and accessible
than the Leshesgue theory. We will not debate this point here; rather we will present an integration theory
which is entirely equivalent to the Riemann theory (see the appendix) but which is unencumbered by many
of the intricacies inherent in standard treatments.

The real analysis we require is kept to a bare minimum. We do assume familiarity with the basic facts
about sequence limits, and in particular we rely heavily on the convergence of bounded monotonic sequences.
In addition, we need to be able to manipulate suprema and infima but only of real-valued functions of a real
variable, If we wish to show that continnous functions on compact intervals are integrable, we must, as in
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all other approaches, kuow that they are uniformiy continuvous.

Our method is the simplest formalization of the idea of estimating the area under a curve drawn on
graph paper by

(a) counting the number of squares contained in the area {a lower estimate) and

(b) counting the number of squares intersecting the area (an upp‘er estimate),
together with the observation that

{c} the error is reduced by further subdividing the rulings.

We find it convenient to use dyadic {rather than decimal) graph paper.

Notation. The n'* dyuadic partition of the real line R is the set of points z%: == k/2" for k = 0, £1,£2,....
We set IE: = [z5—! 5]

Let f:{a,b] = R be a bounded function defired on a compact interval. We shall identify [ with the
extension f: R — R obtained by setting f(z) = 0 for z outside [a, b].

For such a function we write
ME(fY=sup{f{z):z€TE} and m5(f) =inf{f(z):z e IF}.
These guantities enable us to define the n** upper sum of [ as
Uul1) = 5 32 MET)
k

and the nt" lower sum of [ as

La(f) =

ml,_

— Y " mk(f).
k

It is important to note that in both cases only a finite number of terms in the sum i3 non-zero.
When f or nis clear from the context, we may drop one or both from the notations above and simply

write x*, M%(f), L, and so on.

Fundamental facts. The sequences (U, (f)} and (L,,(f)) are respectively decreasing and increasing. Since

each is bounded, they must both converge.

Definitions. The upper D-integral of f isU(f) := lim Uy, (f) and the lower D-integral of fis L(f) := lim L.(f).
FLr=eQ n—oo
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Note that L(f) < U(f). We say that [ ir D-integrable if L{f) = U(f). The common value, which we
denote by f:f Jds the D-integral of f : [a,b) —R.

The following is obvious, but very useful.
Basic Criterion for D-integrability.

J is D-integrable if and only if nli‘rr;o [U,.,(f) - Ln(f)] = 0.

This should be compared with the usual eriterion for Riemann integrability [1,pp.242-3]. The funda-
mental advantage of our approach is that we need only consider ene sequence of partitions, which is quite

independent of the function f.

Fundamental properties of the D-integral. Simplified versions of well-worn arguments establish the
basic properties of D-integrals. The following is a reasonably complete list of properties, and the order
reflects an appropriate scquence when supplying proofs.
We assume that f,g, b : |e,b] — R are D-integrable.
{1) Rectangles have the correct area. If [e,d| C [, 8] then the characteristic function X[c,q] i3 D-integrable
and fbxlc,d] =d-—ec.
: b b b
(2) Linearity. H X € R then [+ Ag is D-integrable and f(f+Ag)=[f+A[¢.
a a a
(3) Products. fgis D-integrable.
{4) Quotients. f/g is D-integrz;ble provided that ¢ is bounded away from zero.

b
(5) Posstivity. If f has non-negative values then ff > 0.
a

b b
{6) Sandwich property. If f(z) < g(z) < h(z) for all z € [a,b], then [ f < [g<

a

h.

Bl

b b
(7) Absolute values and the triangle inequality. | f| is D-integrable and | f f| < [ 1f].
¢ d b
(8) Restrictions. If |c,d| C [a,b] then IXic,q) is D-integrable over [¢,d] and [ f:= f IXtea) = | SX(ea-
c [ a

b [ h
(9) Additivity over intervals. If ¢ € |a,b], then [ f= [7+ [ /.
a a c
The proofs present few problems but we would like to give a Havour of what is required. First, we
prove an easy result.

Praof of (1]. There are at most two I%’s on which M* and m¥ differ.

3



It follows that

d=—ec=-2""" <L <U, <d—c+2'""".

Take limits to obtain the desired conclusion.
We now show how to establish one of the more “difficult” resnlts.

Proof of {8). By linearity and the boundedness of the functions, it is no loss to assnme that J and g have

non-negative valies, We examine the n*® upper and lower sums. Observe that

ME(fa) < ME(f)M*(g) and m*(fg) > m*(f)m*{g).

So if f{x) £ F and g{z) < G for all z € [, b], we obtain

0 < M*(fg) - m*(fg) < M*(f)M*(g) — m* (f)m*(g)
=[M*(1) — m*( 1) M*(g)+[M5 () — m* (g)] m* (1)
< [MF(1) = m* ()]G + [M*(g) - m*(g)] .
Hence

0 < Un{fg) — Ln(fg) < G(Un(f) ““Ln(n) +F(Un(!7) "'Ln(g))‘

Our basic criterion now yields the result.

Classes of D-integrable functions. Step-functions, monotonic functions and continuous functions may be
shown to be D-integrable by using streamlined versions of the standard proofs of the Riemann integrability

of suel fuctions.

Further developments. The integral calculus may now be developed, via the Fundamental Theorem
of Galculus [an easy consequence of (1),(6),(8) and (9)] without further reference to partitioning. Certain
csoteric resulis, like the integrability of fog when g is D-integrable and f is continuous, and the Pundamental
Theorem that f: "= f(b) = f(a), ever when f'is not piecewise continuous, may be proved with the aid of
dyadic partitious, but we feel that these are inappropriate in a first treatment,
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APPENDIX. The equivalence of the D-integral and the Rlemann Integral.

We recall a standard criterion for Riemann integrability [1,p.242]. The function [ : [8,8] = R s
Riemann integrable if and enly if for every € > 0 there is o partition = of |a, bl such that U, (f) ~L.(f) <e.
[Here Uz (S} aud L (f) denote the upper and lower sums of f relative to the partition 7.}

Since dyadie partitions of the line yield partitions of [a,b], it is clear that D-integrability implies
Riemann integrability.

Conversely,  suppose f jab] - R is Riemann integrable. Fix ¢ > 0 and let
m:={a=py <p <..< pn=D>} be a partition of [a,b] for which U, () — L:(f) <e.

Let § = min{p, = pr—; : 1 £ r < m} and choose an integer n with i < e M IF C [p_1,p,),
it is clear that the oscillation of f on I,’f cannot exceed the oscillation of f on [p,_,,p,]. Now, at most

m +1 < 2(b—a)/é of the I}'s fail to fall into this category. So if M = sup{|f(z)| : z € [a, b]} we obtain
Usl S} = Lalf) SU(f) = L (S) + [2(b—a) /6] 2M be < K ¢,

where Ji is a constant independent of n.
This shows that U, (f) — L, (f) — 0 and we conclude that f is D-integrable.

It is clear that the D-f: J and the R—f: S have the same value,
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