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Polynomials are among the most elementary functions studied. Despite
this (or perhaps because of it) they play a prominent and fundamental role
in mathematics. A study of polynomials is therefore important; it also
provides, along with Euclidean geometry, an opportunity to illustrate the
logical development of mathematical theory, typical of more advanced modern
mathematics, but all too often missing from school treatments of the subject.
This article provides a summary for such a development which is not far from
that suggested for 4-Unit Mathematics students in New South Wales.

A polynomial of degree n ‘over F” is an expression of the form
oz)=ap+ a1z + azz 4o+ anz™,
where ag, a1, G2, ..., G, are elements of F with a, # 0.

For us, F' will be one of

I C Q C R C C
ring of field of field of field of

integers rational real complex
numbers numbers numbers

However, if one so wished, the thrust of the study could also be illustrated by

taking F to be a finite ring, ¢.g. the integers modulo 4, or a finite field, e.g. the
integers modulo T.

If p = p(z) is 2 polynomial over F; and F; C Fj, then by allowing values
from F, to be substituted for z, we obtain a function from F, to F. This is
how we will regard polynomials, and as we shall se¢; the choice of domain F5
determines much of what can be said about p. :

We can divide polynomials over' Fj by the usual process of long division.
In particular, for a € F;, we may divide p(z) by z — a to obtain

p(z) =(z —a)q(z) + R,

where the quotient ¢{z) is a polynomial over F; of degree one less than that of
p(z), and the remainder R is an element of F.

Putting z = a, we see that

p(a)=0+R=R.
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Thus we have arrived at the following
Remainder Theorem: The remainder from dividing p(z) by z — a is pla).

For example, taking p(z) = z* — 2z + 22 — 3 and a = 1, the division of
p(z) by z — a may be set out as follows:

23 - 22 - ¢ 1+ 1 +«— quotient

:1:—1) o' — 22% + 022 + 22 — 3 «— p(z)

— 2% 4+ 0z + 2z — 3

—$3+$2
- 2 4+ 922 — 3
— 22 + =z
z — 3
z — 1

= 2 « remainder = p{1)

Soa:4—2z3—i—2m——3=(,.":—1)(:1:3—32-:c+‘1)—2.

From the remainder theorem it follows that = is a root of p, that is o(r) = Q,
if and only if p can be factored as: :

p(z) = (2 —r)g(z),
a result known as the Factor Theorem.

By repeated application of this we see that a polynomial of degree n can
have at most n roots.

This naturally raises questions concerning the actual number and types of
roots a given polynomial has. To discuss these, let us begin by recalling the
following theorem.
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The Fundamental Theorem of Algebra*: When F, = C every polynomial has
a root, and consequently, by repeated application of the factor theorem, every
polynomial of degree n has precisely n roots (repeated roots being counted
according to their multiplicity).

In one sense, this provides a complete answer to the last question; however,
it leaves open questions such as: When does a polynomial over Z, Q, or R have
integer, rational, or real roots, respectively. The fact that the complex numbers
C cannot be replaced by R, for example, in the Fundamental Theorem of Algebra
is amply demonstrated by the polynomial p(z) = #* +1 which has no real roots.

Note: For a polynomial over @, so far as roots are concerned, by multiplying the
polynomial by the least cornmon multiple of the denominators of the coefficients,
we may, without loss of genera.hty, assume the polynonnal to be over Z. For

example, -24 — l—:c3 92? + 4z has the same roots as 3z* — 423 — 24z% + 48z.

Polynomials over R

Let p(z) be a polynomial over R. If zis a complex root of p(z), then p(z)=0
50

0=0=p(z)=ay+ar1z+azz2 +---+ anz™
= ag+ a1Z 4 02 + o0+ anF"
(as the coefficients are real). Thus Z is also a root of p(z).

That is, for polynomials with real coefficients, unreal complex roots always
ocecur in conjugate pairs. It follows that p(z) may be factorized as

p2) = (2 — 1) (2 = )z~ )z = F) -+ (2 — 2)( — ),

where 71, ..., 7m are real roots and there are an even number of unreal complex
roots z;, Tz?, cvey Zhy Zks occurmg as conjugate pairs.

Hence, every such polynormal of odd degree must have at least one real
root.**

* This is the only result we will assume rather than prove. It was first given a
satisfactory proof by the German mathematician Carl Friedrich Gauss in 1799. (At
least this was the claim made by the then 22-year-old Gauss. In fact the 1746 proof by
d’Alembert is in retrospect equally acceptable and perhaps more elementary.) While a
proof need not entail any mathematics more advanced than that assumed in this note,
it does require sophisticated and somewhat lengthy computations with complex-valued
functions of a complex variable.

** More delicate consideration leads to Descartes’ rule of signs for the numbers
of positive and negative roots of a polynomial over R. A study of this would provide
excellent extension material.




26 Brailey Sims

Noting that
(z—z)(z—-%) =2 —(z+ D)z + 2=
= z? — (2Re z)z + |z|*
is a guadratic over R, we see that every polynomial over R can be factorized as:

a product of
ple) = (a product of ) irreducible
linear factors (no real roots)
quadratics over R

Polynomials over 7Z or Q@
As noted previously, it is enough to consider polynomials of the form
p(2)=ao + a1z +azz® +--- + anz™,

where ag, @, @2, ..., @, are in Z, and a, # 0.

Suppose ‘g, where p,q are relatively‘ prime integers, and ¢ > 0, is a root of

pz), i.e.
2 k)
st al e 4.0, <.
g q q
So y
aog” +a1pg" " + azgp’a” P 4.t anp® = 0.
Since p is a factor of all but the first term it follows that p divides ag g™, and so,
since p and ¢ are relatively prime, p must divide ap. That is, when expressed with
lowest denominator, the numerator of any rational root of p(z) is a divisor of
the constant term qy. Similarly, a,, must be divisible by g, i.e. the denominator
of such a root divides the highest order coeflicient a,,.

In particular, we have
(1} The only possible integer roots must be + factors of the constant term ag.
Ezample: Show that p(z) = 2® — 22 — 3z + 1 has no integer roots.

Solution: The only possible integer roots are =+ factors of 1, and so ae +1 or
—1. By direct checking, p(1) = —2, p(—1) = 2. Neither of these are roots,
hence no integer roots exist.

(2) I a, and aqg are primes, the only possible rational roots are +1, +ag, +1/a,,
- tag/a,. So,

(3) When a,, ap = %1, the only possible rational roots are +1.
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E.g. Not only does p(z) = ¢ —2? —3z +1 have no integer roots ( see above)
it has no rational roots.

Note: If ag = 0, p factorizes as p(z) = zg{z), in which case 0 is a root and we
can apply the above considerations to the (n — 1)-degree polynomial g.

These results are not only of theoretical interest; they also provide useful
limits on the search for integer or rational roots of a polynomial.

Relationships among the roots
Let p(z) = ag + --- + an—12™ ! + 2™ (regarded as a function on C) be

factorized as
pz)=(z—m)z—ry) (2 —rn).
Then, multiplying ocut, we have
g edag=et —(r Foo b))t b (=) gy

Equating coefficients leads to the symmetric functions of the roots and their
relationships with the coefficients; in particular, the product of the roots is given
byry---rn = (=1)"ap and the sum of the roots is given by ry +-« - +r, = —an_1.

These relationships are a source of endless problems.
E.g. (NSW, 1987 HSC) Let the polynomial p(z) be given by p(z) = 2" — 1.

Let p # 1 be that complex root of p(z) = 0 which has the smallest positive
argument. Let § = p+ p? + p* and ¢ = p® + p°* + 6.

Show that § + ¢ = —1 and 6¢ = 2.

We first observe that p = cos(27/7) + isin(27/7) and that the seven roots
of 2" —1arel,p, p%, ..., p5. Then

9+qb:p+p2—|—---‘+p6:sumofroots——l::Oulzm_‘_l,_
and _
b6 = (p+p* +p*)(0* + 0° + %)
:p4+p5+ps+‘3p7+p8+pg+p1°
=3+p+p"+p +p +0° +p° (using p" =1)
=24+ (1+p+p" +0° +0* +0°" +0°)
=2 (as sum of the roots is 0),
as required.
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E.g. (NSW 1983 HSC) If «, f3, 7 are the roots of 2 +gqz+7 (r#£0),finda
polynomial with coefficients expressed in terms of ¢ and » whose Toots are o?,

B2, 7R
Now, r = o8y, ¢ = af + avy + B, and a+f+4v =0, and a polynomial
with roots a?, g2, 42 is:

(z - a®)(z - B%)(z — 4?) |
:.183"-((12 +ﬂ2+72)32+(a2ﬁ2+a272 +ﬁ272)$"—026272-

Further, *
(a+B+9)" =a® + 82+ 9% £ 2(af + ay + By).
So,
0=0a’+ 82 ++% +24.
Hence,
ol +B% 4% = —aq.
Also
| ¢ = (aff + ay + fv)?
=’ f? + oyt + 297 £ 2(a?By + afty + afy?)
=a’B + o’y + B2y 4 20By(a+ B + 4)
:a2ﬁ2+a272 +ﬂ2 2,
and '

7,2 — (Q!,B")’)z — 012/32‘}’2.
Thus a polynomial of the required form is

e 2gz% + ¢*z — 12,

The Calculus as a Tool for Studying Polynomials

The possibilities here are too numerous to do more than give a couple of
typical examples. h , ,

E.g. (NSW 1986 HSC) If (= — 1)*is a factor of p(z) = ag"+! +Bz™ + 1, find «
and f. ‘ : :

From the product rule for ajffer'entiation,'we see that (2 — 1) is also a factor
of p'(z), and-so —1 is a oot of both p(z) and p'(z). Hence

a+F8+1=0 (p(1) = 0)
and (n+1)a+nf =0 ('(1) = 0).

Solving these equations gives o = 7 and B =—(1+n).




The Algebra of Polynomials

E.g. For the polynomial

plz) = 2% — 3uz + v,

investigate the number of real roots for various values of u and v.

u > 04

u<(
u=190

( |v|>2u%
lo| = 2uf

Figure 1. Graphs of y = 2® — Suz + v
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Now, p'(z) = 3z% — 3u. Thus, if u < 0, p'(z) > 0 and p is (strictly)
increasing, so p(z) has one real root.

fu>0,p'(z)=0at z = +/4, so p(z) has local maximum and minimum
at these points. The values of p{z) at these points are

Fud +3ud fo= 20t 4o,
We see that there will tl-maae real roots if and only if these values are of opposite
sign; this is so if Ju| < 2u¥. There will be only one real root if the values have

the same sign, ie. if Jv]| > 2_u%. In the remaining case, |v| = 2u?, one of the
stationary values will be zero; this gives a double root.

We conclude that 23 —3uz +v has one real root whenever u < 0 or |u| > 21’.[,%,
two real roots (with one being a repeated root) when u > 0 and v = 2uf, and
three real roots if u > 0 and ] < 2uf.

If we take into account the signs of the roots, we find there are thirteen
cases.of polynomials of the form 3 — 3ug + v. Graphs of these are illustrated
in Figure 1.

a
4
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POLYNOMIALS |

(a} Write down the relations which hold between the roots o, # and + of the
equation
ar’ +bz? +ex+d=0, (a#0),
and the coefficients a, b, ¢ and d.
(b) Consider the equation 36z% — 12z% — 112+ 2 = 0. You are given that the
roots o, 8 and «y of this equation satisfy o = 3+ . Find a.

{c) Suppose the equation = + pz? + gz + r = 0 has roots \, z and v which
satisfy A = p -+ v. Show that p* — 4dpg - 8 = 0.

(a) Suppose that k is a double root of the polynomial equation f(z) = 0.
Show that f'(k) = 0.
(b) What feature does the graph of a polynomial have at a root of multiplicity
27
(c) The polynomial P(z) = az” + bz® + 1 is divisible by (z — 1)*.
Find the coefficents o and &.
I R
(d) Let E(x) =1+m+5+g+§z.
Prove E(z) = 0 lhas no double roots.
(e} Consider the following statements about a polynomial Q(z).
i. If @(z) is even, then Q'(z) is odd.
. If Q'(z) is even, then Q(z) is odd.
Indicate whether each of these statements is true or false. Give reasons

for your answers,

) Let P(z) = 25 ~ E-)*z‘1 + 1. The complex number w is a root of P(z) = 0.
2

i. Show that iw and 1 are also roots of P(z) = 0.
w
it. Find one of the roots of P(z) =0 in exact form.
ili. Hence find all the roots of P(z) = 0.

3. Suppose that a and b are real numbers and d # 0. Consider the polynomial

P(z) = 2" + b2* 4+ d.

The polynomial has a double root at a.

1




(a) Prove that P'(z) is an odd function.

{(b) Prove that —a is also a double root of P(z).

2]

(¢} Prove that d = %c—

)
(d) For what values of b does P(z) have a double root equal to /3i?
)

(e) For what values of b does P(z) have real roots?
4. Consider the polynomial equation
o+ ax® + bl 4+ e+ d=0.

Where a, b, ¢ and d are all integers. Suppose the equation has a root of the
form ki, where k is real, and % # 0.

e

a) State why the conjugate —ki is also a root.

(

(b
(c
(d

Show that ¢ = k2a.

Show that ¢ + a2d = abe.

If 2 is also a root of the equation, and b = 0, show that ¢ is even.

5. Let f(t) = t* + ct + d, where ¢ and d are constants.
Suppose that the equation f(¢) = 0 has three distinct real roots, t;, t» and .

(EL) Find tl -+ tg + tg.
(b) Show that £ +¢2 + 2 = —2¢.

{c) Since the roots are real and distinct, the graph of y = f(t) has two turning
points, at £ = u and ¢ = v, and f(u).f(v) < 0. Show that

27d” + 4c® < 0.
6. Let z = « be a root of the quartic polynomial
P(z) =2*+ Az® + Bz’ + Az + 1,
Where A and B are real. Note that o may be complex.

(a) Show that a 0.

o




(b) Show that = = o is also a root of
Q(z) =$~+—,,+A(:c+—> -+ B.
z? z

1
(c) Withu =1z + o show that Q(z) becomes
R(u) =v*+ Au+ (B —2).

(d) For certain values of A and B, P(z) has no real roots. Let D be the
region of the AB plane where P(z) has no real roots and A > 0.

BM

A
2¢ -

The region D is shaded in the figure. Specify the bounding straight line
segment { and curved segment ¢. Determine the coordinates of T.

7. Find all roots of the equation
18z + 327 — 28z + 12 =0,
given that two of the roots are equal.
8. Let £ = a be a root of the quartic polynmomial
P(x)=z'4 Ar® 4 Bz’ + Az +1

where (2 + B)? # 442,




(a) Show that ¢ cannont be 0, 1, or —1.
1
(b) Show that z = — is a root.
o
(¢} Deduce that if @ is a multiple root, then its multiplicity is 2 and

4B =8+ A*

2 2
0. Let w = cos (g) + 7 sin (?ﬂ)

(a) Show that w* is a solution of 2° ~ 1 = 0, where & is an integer.
(b) Prove that

woAw? +wd +w! +wd +w w4 w? = -1,

(c) Hence show that

('ﬂ') (271’) (471’) - 1
cos g | cos | 5 Jeos o) =
10. Suppose that z7 =1 where z # 1.

{a) Deduce that

1 1 1
33+32+z+1+—;+j§+§=0-

1
b) By letting ¥ = z + — reduce the equation in (a) to a cubic equation in z.
~ q

A

(e ()2 (F) =5
cOs - cos 7 - —8

(c) Hence deduce that




