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PROBABILITY

Brailey Sims

Department of Mathematics
The University of Newcastle

2/3 unit syllabus: (1) Random ezperiments,
equally likely outcomes,
probability of a given outcome.

(2) Sum and product results.

(3) Ezperiments involving successive outcomes
- iree diagrams.

3 unit syllabus: (4) Systematic enumeration in finite sample spaces
- permutations end combinations
- binomaial probabilities and the binomial distribution.

BASIC FORMALISM

EXPERIMENT —— QUTCOME
RANDOM EXPERIMENT

OUTCOME, which we cannot be certain of in

gdvance.

The possible outcomes form a set S known as the sample space.

Example. Experiment: Qut of two people Betty and Jim who will be alive in the vear
20017

Sample space ( = set of all possible outcomes) is
S = {BJ,B'J,BJ',B'J},

where B denotes Betty is alive, B’ denotes Betty is dead, etc.

A subset I of the sample space is termed an event.

Example: E = { B'J, BJ'} corresponds to the event that only one of our two people is
. alive in 2001.

An event is sald to occur whenever the outcome of our experiment is one of its elements.

Two events E and F are mutually exclusive if they cannot occur concomitantly. That
is, if as subsets they are disjoint; ENF = 0.
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Example: The event E = { B'J, BJ'}, that only one of our two friends are alive in 2001,
and the event F = {B'J'}, that both are deceased by 2001, are mutually

exclusive.

The union of two events, E U F, corresponds to the event that either the event E or the
event F occurred.

The intersection of two events, E N F, corresponds to the event that the event E and
the event F have occurred together,

Henceforth we will consider only experiments for which the number of possible outcomes
is finite. That is, the number of elements in our sample space, #8, is a finite number n.

With each event E (= subset of S) we wish to associate a number, p(E), the probability
of E, which measures the likelihood of that event occurring.

We require:
* 0 < p(E)
e p{S) = 1.

o I E and ¥ are mutually exclusive events; that is, ENF = 0,
then

P(EUF) = p(E) + p(F).
probebility of E or F

From this we immediately deduce the useful result:

Qmplcment of E

p(E) = 1 — p(E).
-~

d-pmbability of not E

We also see that all events have probabilities between 0 and 1. Intuitively, the larger the
probability of an event the more likely that event is to occur. In our context, p(E) = 0
means E cannot occur, while p(E) = 1 means that E is certain to occur.

Example: If each outcome of the experiment is equally likely to occur, then on average
.each outcome would occur one n’th of the time; that is, with probability 1/n,
and so in this case for any event E we would have

_ #E

P(E) = %—,

and we can readily confirm that for p calculated in this way the three require-
ments listed above are satisfied.



Note: For many experiments we would expect outcomes to be equally likely, for example
the number appearing on the upper most face of a dice after it has been rolled, however
in other situations, like our example of who is alive in 2001 {or whether a dropped brick
will crack, or remain unbroken), we would not expect the outcomes to be equally likely.

For two events E and I we have
p(FNE)
p(E)

where p(F given E) represents the probability of F knowing that E has occurred [or', the
conditional probability of ¥ given E].

p(F given E) =

In the case of equally likely outcomes this becomes;

p(F N E)
p(E)
_ #(FNE)/#S
F#E/#S
#(FNE)
#E

p(F given BE) =

as expected.

Strictly speaking the identity given above serves to define p(F given E), but in reality it
is often possible to assign values to p(E) and p(F given E) and hence calculate p(E N F).

Example: Michele buys 5 tickets in a rafle in which 20 tickets are sold. If one ticket is

drawn out for first prize and then another for second prize, what is the chance
that Michele wins both prizes.

Let W1 be the event that Michele wins first prize, and let W2 be the event
that Michele wins second prize, then

p(W1) = 5/20

and

(W2 given W1) = 4/19,

since there are 19 tickets remaining in the draw for second prize 4 of which are
Michele’s.



So the probability that Michele wins both first and second prize is

4 5 1
= iven W1)p(W1) = —. — = —.
p(W1NW2) p(W2 given Jp(W1) 5 30 10

Tree diagrams are a useful tool in analysing these type of situations, where events are
decomposed into mutually exclusive ‘subevents’.

Example: If we denote by W that Michele wins and by W' that Michele losses then a
tree diagram for our previous example of a raffle is:

first prize second prize

W

W

T

— | bt oy

W

—
o

it
w

w!

Using this we can readily determine the probability that:
(i) Michele does not win a prize.

(ii) Michele wins at least one prize.

(iii) Michele wins exactly one prize.

Each ‘stem’ of the tree represents an event, and to determine the likelihood of
- that event we simply multiply the probabilities on each of its ‘stages’, thus

(i) the event Michele does not win a prize corresponds to the bottom stem

and so 15 1-4
Michele d twl ) = —. =
p(Michele does not win a prize) 55 15’

then



(ii)
p(Michele wins at least one prize) = 1 — p(Michele does not win a prize)

15 14
20 19’

and

(iii)
p(Michele wins ezactly one prize)
= p(Michele wins first prize only) + p(Michele wins second prize only)
= p(Wl)p(W given W1) + p(W_l)p(WZ given W1)

9 15 18 &5 15

20 107w 1w T 3%

Note: This example is a simplified form of a question in the 1987 2/3 unit
paper, which in turn is similar a question in the 1992 paper.
Two events E and F are independent if
p(F given E) = p(F).

or equivalently, if

p(FNE) = p(F)p(E).
That is, if the likelihood of F' ocergring is not affected by knowing that E has occurred.

Exercise: Although it is not apparent from the definition, show that independence is
symmetric in E and F. That is, show that if p(F given E) = p(F). then
p(E given F) = p(E)*.

Example: Suppose we draw one card from a normal deck of playing cards.

Let
A be the event that an ace is drawn,
and let
R be the event that a red card (heart, or diamond) is drawn.

Assuming each of the 52 cards is equally likely to be drawn, we have

p(A) = 4/82 1/13,

Il

" while
p(A given R) = 2/26 = 1/13.

So drawing an ace and drawing a red card are independent events.

* While optional this exercise is probably the only real mathematics in the section.
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Note: This seems to conflict with our intuitive idea that two events are independent if
they are not causally connected, although the latter is of course often the reason for our
assuming events to be independent.

Example: If statistics indicate that 20% of people in Betty and Jim’s age group will have
died by 2001 then, in the absence of any other information, it is reasonable to
suppose that

B = the event that Beity is dead by 2001 = {B'J, B'J'}

has a 1 in 5 (20%) chance of occuring. That is,

Similarly -

p(3) = p{{BJ, B'T}) =

]

and if we assume Betty's and Jim’s deaths are independent evenrs™, then the
probabilities for our earlier example would be;

— = 1 1 1
i 7! — B - .- =
BT p( l'].]) 5 5 23
1 4 4 -
pHB'J) = 55 = 55 [plJi=1~piT;’
4 1 4
B = 2.2 = —
PBIY = 5 5 = 5>
4 4 18

From this we deduce, for example, that;

probability only one will be alwve n 2001

= p({B'J, BT'})

= p({B'J}u{BJ})

= p(B'J) + p(BJ")
4 4 8
55737
Similarly,
probability at least one will be alive in 2001

= p({B'J, BJ', BJ})

= p(B'J) + p(BJ') + p(BJ)
4 4 16 24

95 " 95 " 95 ~ 25"

* Can you think of circumstances under which this might not be an appropniate assumption?
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Example:

Note: This last probability could have been calculated more efficiently using;

probability at least one will be alive in 2001

= 1 — (probability neither are alive by 2001)

=1 — p(B'J')
_ 1 24
- 25 25 °

(1990 2/3 unit paper) Two dice are tossed, and the maximum of the two
uppermost faces is recorded as a score.

(1) Find the probability that a score of 1 is recorded in a single throw of the
two dice.

(ii) Find the probability that the scores 1, 1, 1 are recorded in three tosses of
the two dice.

(i) Find the probability that a score of 6 is recorded in a single throw of the
two dice.

The experiment consists of tossing two dice and the set of possible outcomes
(sample space) is

{(11 1)3 (11 2)1 T (1~6)~
(21 1), (21 2): T (?‘6)
(61 1): (61 2)7 T (636)}

We suppose that all 36 outcomes are equally likely (justified if we assume that
in a toss of the two dice the number appearing on the uppermost face of one
dice is independent of that appearing on the other, and that any one of the six
faces of a dice is equally likely to be uppermost; that is, the dice are ‘fair’),

(i) Let S1 be the event that a score of 1 is recorded in a single throw of the
two dice. Then

81 = {(1, l)}

and
p(S1) = 1/36.

(i) Assuming the outcome of one toss is independent of the result of other
tosses we have

p(scores 1, 1, 1 are recorded in three tosses of the two dice} = (1/36)°.
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Strictly speaking we are here considering a new experiment; three tosses of the
two dice, and new sample space consisting of ordered triplets of ordered pairs of
the numbers 1, 2, 3, 4, 5, 6; for example, ((1, 3), (2, 5), (5, 5)), of which there
are (36)° in all. Our event, scores 1, 1, 1 are recorded in three tosses of the two
dice, corresponds to just one point, ((1, 1), (1, 1), (1, 1)), of the sample space.

(ili) Let S6 be the event that « score of 6 is recorded in u single throw of ihe
two dice. Then

56 = {(6. 2), {6, 3)’(3 4), (6, 5)
6), (4,

(5 5 ), (3, 6), (2, 6), (1, 6)}

and so

p(S6) = 11/36.

In general we may attempt to calculate probabilities in this way; by decomposing our event
into suitable subevents and applying the rules found above. This frequently requires us to
‘count’ (enumerate) the elements in large indirectly prescribed sets {(events).

ENUMERATIONS

We examine selecting r objects from n. and the application of these ideas to probability.
The ‘selection’ of r objects from n may be:

with or without replacement — depending on whether or not an object once selected
is available for reselection.

ordered or unordered — depending on whether or not the order (first, second, third,
-} in which the objects are selected is important.

This leads to four ‘types’ of selection. Deciding which appropriately describes a given
situation is often the most difficult task.

Example: The number of teams of 11 players that can be chosen from a pool of 25
cricketers equals the number of ways of making an unordered selection of 11
objects from 25 without replacement.

The number of three digit numbers containing only odd digits equals the num-
ber of ordered selections with replacement of 3 objects from 5.
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The following table summarizes the number of ways r objects can be selected from n in
each of the ‘four’ cases.

with without
replacement replacement
ordered n’ " P,
1.
. " n
unordered * (r)

Example: The number of different cricket teams which can be formed from a pool of 25
players is (f? = 4,457,400, a truly uninteresting number.
There are 5° = 125 three digit numbers containing oniy odd digits.
Example: (1990 3/4 unit paper) Three identical blue marbles and four identical vellow
marbles are arranged in a row.

(1) How many different arrangements are possible?

(ii) How many different arrangements of just five of these marbles are possible”

(1) Each arrangement corresponds to a selection of three distinct (that is, without
replacement) positions, to be occupied by the blue marbles, out of the seven
positions in the row. Thus there are (;) = 35 possible arrangements.

(ii) Our arrangement may be any one of the following mutually exclusive possibil-
ities.

It may contain 3 blue marbles; and, by reasoning similar to that for (i).
there are (g) such arrangements, or

it may contain 2 blue marbles; there are (,5,) such arrangements, or

it may contain 1 blue marbles; there are (5

©) such arrangements.

Thus in this case the number of different arrangements is

5 5
(3)+(9>+G) = 5.4.3/3-2.145-4/2.1+5= 25.

* while not part of the syllabus, the more adventurous of you might like to contemplate
why the answer here is (“+:"1).

T The alternative notation "C; was once common, though it should now be considered
obsolete.




Example:

(1992 3/4 unit paper) Five players are selected at random from four sporting
teams each consisting of ten players numbered 1 to 10.

(i) What is the probability that of the five players selected three are numbered
6 and two are numbered 87

(ii) What is the probability that of the five players selected at least four are
from the same team?

The total number of selections of five players from the 40 is (40).

The number of selections with three players numbered 6 and two players num-
bered 8 is ( ) ( ) the number of ways the three number 6's can be selected
from among the four number 6 players (one in each team) multiplied by the
number of ways the two number 8’s can be selected. So, the probability of such
a selection 1s o s

GG _ 1

(*) 27417

= (.000036.

The number of selections with at least four players from the same team is the
number of ways a team can be selected multiplied by the sum of the number
of selections with four from that team and one from one of the other three and
the number of selections with all five from the selected tezm So the probabilitv
of such a selection being made is

QER) +GE) _ 28 L,

= = 0.04
(%) 703
To see why the results tabulated above are correct note that:
T fa.ctors

= MXNXTNX-
number of number of
choices for choices for
first object second object

"Pr=nx{n-1)x:--x{n—-141)

——

r factors
n!

T (n=r)’
10



where m! is m factorial equalto m x (m—1)x (m —2) x--- x 3 x 2 x 1.

While each unordered choice of r distinct (as will be the case for selection without replace-
ment) objects from n can be ordered in TP = r! ways, so "P. = (';) x 7l or

()=
r) 7
(n —r)ir!

_n(n-n-=2)-(n—r+1)
r(r—1)r —2).--3-2-1

n!

Historical note: The ‘P’ in "P, comes from an old meaning of the word permutations
as the ways of selecting from a larger group. Similarly the ‘C” in the archaic notation "C,
for (") comes from the old meaning of combination as a group chosen from a larger one
without regard for order.

The ideas behind these derivations underlie the solution of many other problems.

Example: (1990 2/3 unit paper) A box contains 8 red and 11 green marbles. Three
marbles are randomly selected one at a time and without replacement. What
is the probability that the selection 1s

green, Ted, green

in that order?

There are 1° Py equally likely ways of making an ordered selection of 3 objects
(marbles) from 19 (= § + 11) without replacement, of which

11 % 8x10

number of number of  number of

choices for choices for choices for- - -

first green  first red  second green
marble marble marble

correspond to a selection of green, red, green in that order.

Thus the required probability is

11 x & x 10 _ 11 x 8 x 10 015
19 p, T 10x18x17T T

11



Problems involving the ‘ordered’ arrangements of n objects around a circle can be reduced
to the arrangements of n — 1 objects in n — 1 places by fixing one of the original n objects.
Thus there are "' P, _; = (n — 1)! such arrangements.

Example: (1986 4 unit paper) A committee of 4 women and 3 men are to be seated at
random around a circular table with 7 seats. What is the probability that all
the women will be seated together.

To count the number of arrangements with the women seated together, consider
the women as forming a ‘block’. There are *Py; = 4! arrangements of the 4
women within the block and 3! arrangements of the 4 objects; 3 men and the
block of women, around the table. Thus there are 4! - 3! arrangements with the
women seated together. Altogether there are 6! arrangements of the 7 people
around the table. Hence, the probability of the women sitting together is

4!. 3! 1

a! 5

Selecting r distinct objects out of n without regard to order is the same as choosing the
n —r objects to be left out of the selection, so we have

ny n
r)  \n-r/
a fact which is easily confirmed algebraically.

Another useful fact comes from the observation that making an unordered selection of r
objects out of n without replacement can be broken into two mutually exclusive events by
first choosing a (favorite) object and then considering those selections which include the
chosen object and those which don’t. In this way we obtain Pascal’s identity

Y=o+ 00
yd \

number of ways if number of ways if
chosen object is chosen object isn’t
in the selection in the selection

an identity which provides an effective way of tabulating the numbers () known as Pas-

cal’s triangle.
R 012 3 4

0 1

1 11

2 1 21

3 1 3 3 1
4 1 4 6 41



In the expansion of the binomial (a + b)" the coefficient of e 74" is (7), since when
multiplying out we get an a®~7b" by selecting r of the n factors to contribute a b to the
product and letting the remaining n — r factors contribute an a, and this selection can be
done in (:) ways. Thus we have the binomial theorem:

(a_l_b)n — an+ (T)a"_lb—i- (:)an-—-zb'l_*_“__*_ (:)an—rbr_'_'__"‘._bn'

For this reason the number (:) is sometimes referred to as a binomial coefficient.

Repeated trials (Bernoulli trials).

Consider n independent repetitions (trials) of a random experiment which has two possible
outcomes, nominally ‘success’ and ‘failure’. Suppose the probahility of success is p and
that of failureis ¢ = 1 — p. We ask, what is the probability that precisely r of our n trials
are successful?

There are () ways the r ‘successful’ trials may be selected, each of which corresponds to
an event mutually exclusive of the others, and the probability of each such event occurring
15, by the independence of the trials, p"¢™ ™", since r have an outcome of success and n —r
must have an outcome of failure. Thus altogether

. C n
p(precisely r successes out of n trials) = ( )p q
T

A result known for obvious reasons as a binomial probability.

Example: (1990 3/4 unit paper) A multiple choice examination has 10 questions, each
with four possible answers only one of which is correct. What is the probability
of answering exactly six questions correctly by chance alone?

Here we take our experiment to be answering a question and deem its outcome
to be success if our answer is correct, which by chance alone has a probability
of p = % Thus, the probability of answering exactly six questions correctly;
that is, of having precisely 6 ‘successes’ out of 10 trials of our experiment, is

6 106 4
104 (1 1 _L = 104 3 = 0.016.
6 4 4 4 410

Exercise: ' In our current context what if anything is the significance of the identity,

n i 1 n Lt Sl n - n
1=(1-p+ p)"=(+p)" =¢ +(1)pq 1+(9)p2q P44 p™?

13
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I will conclude with a few challenges.

Exercise:

Exercise:

Exercise:

Exercise:

From among nine mathematicians, five of whom are analysts, a team of five is
to be chosen to go on an Antarctic expedition. What is the probability that the
team will contain at least two analysts?

[Answer: 121/1267)

In 10 tosses of a fair coin what is the probability of a run of five or more heads
occurring?
[Hint: Consider the mutually exclusive cases; the run starts on the first toss, on
the second toss, on the third toss, ---.

Answer: 7/647]

Here is one to think about (and inflict on your friends), allegedly due to Erwin
Schrédinger, one of the founders of quantum mechanics.

An ‘infinite’ deck of cards has;
2 cards with the number 1 on one side and 2 on the other side.
4 cards with the number 2 on one side and 3 on the other side.

8 cards with the number 3 on one side and 4 on the other side.
&c.

A card is drawn at random and held up so that player A can see only one side
and player B can see only the other side.

A player wins if the number on his side is smaller than the number on the other
side.

If A sees a1l heis sure to win. If he sees n > 1, of the 27! + 27 cards with
an n on them 2" have a larger number on the other side. Thus, A's chances of
winning are at least 2" /(277! 4 2") = 2/3. But, by exactly the same reasoning
this is also B’s chances of winning 7

(The car-and—goats flasco) The following question has caused considerable
consternation ever since it was asked and answered(?) in 1990 by Marilyn vos
Savant in Parade.

You are the contestant in a popular TV game show. One of three doors
hides a car (all three are equally likely) and the other two hide goats. You
choose Door 1. The host, who knows where the car is, then opens one of
the other two doors to reveal a goat, and asks whether you wish to switch
your choice. Say the host opened Door 3; should you switch to Door 27

, 14



Marilyn said yes, arguing that if the car is actually behind Door 1 (probability
1/3) then when you switch you lose; but if it is at Door 2 or 3 (probability 2/3)
then the host’s revelation of a goat shows you how to switch and win. So the
chance you win by switching is 2/3!

Many others have argued that with Door 3 now eliminated the other two are
equally likely, so there is no particular advantage in switching.

What do YOU think? [Be careful, it’s not even clear that there is a right answer.]



