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This essay is the first
in a series of articles
to be published by the
New England Mathematical
Association on specific
topies which it is hoped
will be of use to
teachers and of interest

to students.

The mathematics and discussion in this essay should be well
within the ambit of a good senior school mathematics student
undertaking a higher level course. The more difficult mathematical

arguments are indicated by heavy rulings down the adjacent margin.

While many of the topics are not directly on the syllabus some
have been chosen in the hope that they will provide useful and
interesting extension material- Others combine several
different syllabus areas and are designed to illustrate the
intimate comnections and fruitful interplay existing between
seemingly unrelated topies, which serves to give mathematics its

coherence and power.

Considerable space has been devoted to physical examples of
simple harmonic motion. It seems a sterile and useless exercise
to undertake the study of a topic in applied mathematics without
first acquiring a 'physical feel" for the situvation being
modelled and some appreciation of its importance. For this reason
I would urge that students and teachers encounter in the 'flesh!'

as many manifestations of the situation that they can.
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Open questions have been left throughout the essay and I
hope these will be pursued vigorously as will any others that
may present themselves. Mathematics is as much the creation

of questions as it is the answering of them.

February , 1975’ B. S.

The cover depicts simply constructed apparatus suitable

For illustrating some of the examples discussed in the essay.



A Short Essay on Simple Harmonic Motion

B. SIMS

(Embodying a talk given to sixth form students at the Northern
Rivers Mathematical Association's Winter School Mathematics on

the 3rd of August 197u4)

1. FORMAL DEFINITION'AND THE MATHEMATICAL FROBLIM

Any quantity =, depending on t, whose variation with t is retarded
by a second rate of change directly proportional to the quantity

itself is said to vary Simple Harmonically.

Expreased symbolically =x varies simple harmonically if it satisfies

the Differential Equation

% = -kx (where k > 0 is a constant of proportionality)

ceese1)
Here, and throughout, the dot denotes differentiation with respect

2 - 3
to t, so % is the second rate of change {gEEJ while the minus sign

represents retardation.

[1) is known as a 'differeni’sl equation' as it expresses a
relationship between x and some of its derivatives, in analogy with
a 'quadratic' equation wich relates x and its quadrature (square).

Other differential equations would be x = ax, X = g]

Usually we require x, x to satisfy an initial condition. Mathematically
then, the problem is to determine as much as we can about those
functions x = x{t) which satisfy
¥ = -kx (k>0)
and =(0)
%x(0)

a

b {(where a, b are specified constants) ...2)
In more general problems of this type it often proves impossible to
determine explicitly what the functions x are (as we shall see this

is not the case here), however even without knowing the solution we
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can often deduce many properties which such functions must
have. Our Ffirst results typify this procedure. (That such
arguments are expected of students is exemplified by Question
8 of the 1974 paper B.)
Lemma: If x varies simple harmonically then kx* + v2 is a

constant, where v = X.

Proof: Let £(t) = k¥’ + v° then f
so v = x = <kx and f = 2kxv - 2kxv = 0. Hence, as a consequence
of the Mean Value theorem, f is a constant as requirved. {§§

Jkx % + 2 vVvbut v =%

Note: This result is often 'deduced' from the erroreous formula

% = %‘E%‘ x2) , which to be valid requires %x to be a differentiable

function of x — an unwanted (and unwarranted) assumption.
Corollary: a function x varying simple harmonically is bounded,
i.e. there existe a constant A = 0 such that -A < x(t) < A for all
+. (The smallest such A is termed the amplitude of the Motion)
Proof. From above kx2 + vZ = ¢, a constant, so v2 = ¢ - kxZ.

Now the L.H.S., vZ, is positive whence ¢ - kx2 > 0 or x2 < %

- 9.- < /g 7 = /§.
and so //; € x 'K and taking A 3 proves the result. -]

Corollary: For a non-trivial funciion x varying simple harmonieally

1A

(i.e. x ¥ 0) x and v are never simultaneously zero.
Proof. This follows immediately from the above corollary, for

if x and v are simultaneously zero then c dcx? + vZ2 = 0 and

Even if we find a function x satisfying 2),we would still be in

so A = 0, whence x = 0.

doubt as to whether there wasn't yet another possible x lurking
undiscovered, hence the following theorem is of practical

importance.



Theorem: There is at most one function x satisfying 2) ie a
function satisfying given initial conditions and varying simple

harmonieally is 'unique’.

Proof. Assume x and y are both solutions of 2. Then z = x - y

il

is such that 2 = % - § = ~kx + ky, as both x and y satisfy 1
“k(x-y)= -k=z
35 z is also varying simple harmonically. Fuprther

z(0) = x(0) - y(0) =a -a = 0 and

2(0) = %(0) - $(0) = b - b

0 as both % and y
satisfy the same initial conditions. Thus both 2 and % are
simultaneously zero at t=0, hence by the last corollary

z = 0, showing % = y and so only one solution is possible.
Though we have uncovered many properties a function varying
simple harmonically must have, one vital question remains
unanswerad. We have yet to prove that 2) has a solution,
that a function varying simple haﬁmonically exists. For
more complex situations, proving a solution exists is an
important, though often exrremely difficult, problem. In our
case however we can demonstrate the existence of a solution
simply by finding it. This can be done in a great variety
of ways, each illustrating an important technique. We

conclude this analysis by looking at a few of these.

Firstly, note that if x] and %, are solutions of 1) satisfying
xl(O) 1, }21(0) 0,
xp(0) = 0, %9(0) = 1 then

® = ax) +bxp is the required unique solution of 2)

It thus suffices to determine the two funetions x;, x3.
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Tt should be a familiar fact that many functions can be
represented as an infinite power series, for example

2 3 t n
= 2 2 2 Z
exp(z) =1 +z + 7 Tg tgy T g T for all real z.

one might therefore ask is x; of the form

x1(t) = ag +art + agt? + ...+ antn 4+ .... for an appropriate
choice of the coefficients ag, &y, ag, .... and similarly for

Xg.

Clearly x;{(0) = 1 requires that ap = 1, while if we assume the
derivative of x may be obtained from term by term differentiation
of the series (strictly, this requires proof and so at this

stage must be treated as a purely formal procedure ) x1(0) = 0

requires that a; = 0.

We avre thus led to seek values of ap, a3, .... such that
x1(t) =1+ ast? + a3t3 + ... antn + .... satisfies
x = - kx , or formally ‘ 0
(2ay + 3.2a3t + #.3a,t2 + 5.agtd + ... n(n—i)antn_ L |
- (- 2 _ 3 _ _ n-2 _

= ( kaot kast .ae kan—Qt wava) |
Equating coefficients of equal powers of t gives

_ _ k
2a3 = -k _ or az = - i§
3.2a3 = 0 or ag =20
= _ kap o X
ufaaq = -kap or &y T p—x % pay
5.435 = ~ka3 or ag = ggﬁ =0

etc.

It is now an easy exercise in mathematical induction to show from

what we have and the recurrence reluationship a_ = 5%5353 a o
obtained from equating the coefficients of t"~2 | that
. (-1 )7%°
2n n! -

on+1
and so we have, provided the series converges, and the above

formal operations are justified
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2 3
xl(t):l"]%tZ*t_l t“—]g-l o+ L
)2 (fRe)t 6
or x1(t) =1 - ( E?) + ( HT) - (“Ef) S

a series which should be recopgnised as that of cos At .
We are led to suspect that xj(t) = cos vkt the truth of
which is easily verified by dirvect substitution.

A similar argument (which it is left to the reader to
supply} leads to

% () :/i% [(/RE) - GRS, + ORDZ - (AL + .0

=J%-sin Ykt . 'Eﬂ
Since xp is necessarily differentiable, and so continuous,
it follows that for t near 0 we may proceed as follows,
from the lemma

dx 5
v = EEQ =4(1  kxp?)?

and since %,(0) = 1 > 0 , we must choose the positive sign
giving
. de

(1 - kxzz) < EE- = 1

t 3 dx t
or (1 - kxzz) a—g dt = dt = t
t
0 0

By the change of variable theorem the L.H.S. is l—siﬁdJExz

K
or Xp = J%' sin vkt

Similarly one derives x;(t) = cos vkt.
So far we only know that these forms of %] and xp are

valid for values of t near 0, however direct substitution

Alternatively, interpreting 1) as asking for a funmction

shows they are in fact the required solutions.

which when differentiated twice becomes - k times itself,
we may after a little trial and error find that x = C sin vkt

or C cos vkt are suitable solutions and so



x,(t) = cos /Kt

%, () 7}% sin /Kt .

The final conclusion from any of these approaches is that

the unique solution of 2) is

x(t) = a cos vkt + 2 gin Mt
g cenes 3)
or = val ¢ E?sin ( Vict + E) (why?)

k

Thus a typical "space-time" curve for a quantity varying simple

harmonically is

¢!
A

> ¢

Since the curve reproduces itself after a time T = QH/VE has
elapsed we speak of T as the period of the variation, and v = %—as the
frequency (since %-complete executions of the motion are made

in one unit of t).

Conversely, of course, any quantity x given by 3. is varying simple

harmonically.
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Geometrical Representation of Simple Harmonic Motion

If a point P moves
with uniform speed
around a circle of
radius a, as
illustrated (i.e. OP
sweeps through a
constant angle of w

radians per unit of

] time ), then after t
“xmacos &

units have elapsed

XOP = 8 = wt and so
the shadow (projection)

P' of P onto the line

OX is at x = a2 cos @ =
a cos wt., We thus

conclude that the

position of P' varies simple harmonically along 0X with period
T = %? (which, as expected, is the time needed for P to
complete one revolution of the cirele). The circle is often

termed the cirele of reference, and we have shown:

The projection of a point, moving with wiiform speed around

a eircle onto a straight line varies simple harmonically.

When the variable t in 1) is time as in the above discussion,

and as will be the case throughout the pemainder of this

essay, we say the quantity x exrecutes Simple Harmonic Motion.

It was from the view point of a circle of reference that
simple harmonic motion was first (and extensively) studied
in the late 17th and throughout the 18th centuries, and

is often still so examined in modern physics courses.
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8o far we have examined (and answered) the purely mathematical
questions posed by a quantity x varying according to the law

X = =kx

For this to be of interest to the applied mathematician

(or theorvetical physicist) we must establish the

occurrence of natural quantities which vary simple harmonically.
The next section presents elght diverse examples of such

instances.
2. PHYSICAL REALIZATIONS OF - SIMPLE HARMONIC MOTION

(a) Our first examples of observed simple harmonic motion

are direct consequences of the previous geometric

interpretation

During a revolution of one of Jupiter's satellites (the order of
10 days) the relative motion of the Earth and Jupiter is negligible,
further all the solar systems motions occur, at least
approximately, in the same plane (the plane of the ecliptic),
thus a terrestrial astronomer sees the moons of Jupiter
executing simple harmonic motion across the face of their
parent planet. We find a similar situation when we observe

a binary star system whose orbital plane is edge on to

us (as is approximately the case for the ¢ Centauri

system - centred around the solar system's nearest stellar
neighbour , where both components move in simple harmonic motion

about their common centre of mass). 4

T
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{(b) The following hypothetical example formed a

sub-part of the 1973 Level I mechanics question.

Consider an object dropped into an evacuated

shaft "drilled" through the earth, and passing

through its centre.

dens&g

So the particle will execute simple harmonic motion with
JunGp
——5—-t

1

X RE cos

R, and %

X E

From Newton's law of
universal gravitation
it follows that the
force on such a
particle is

Gm (%-ﬁ p x3)

<2
- uﬂ%pm "
= -mx, by Newton's Force Law.
—ungp %

(since at t = 0 the object is at

= 0) and period /é%}.

(c) Resonant L-C circuits (the basls of tuned radioc receivers etc.)

o e 4 o e i ol

capacitor { e

- e

-

B

e

A
+

current

Battery =
b [
I

L. inductance
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When the switch is in position A the capacitor charges, electrons
flowing from the + plate and onto the - plate. When the switch
is changed to B all the electrons on the - plate are attracted to
the + plate and flow through the inductance L (which has the
effect of slowing down the speed of their passage) to it,
ultimately creating an excess of electrons on the once + plate,
at which stage the situation is reversed and electrons flow back
in the‘opposite direction. The electrons continue to oscillate
back and forth in this way creating @ current I in the wires which
may be shown to vary according to the differential equation

P Cx

Thus I varies simple harmonically with respect to time at a freguency

1 (84
of /T

(d) Oscillations of the Simple Pendulum
The distance of the bob from 0 is &8
(see diagram) so the acceleration of

the bob is (28) 28

i

-g sin B, by Newton's

Force Law. BSo if 8 is sufficiently

small {(less than .1 radians, ~ 5°)
that we have sin 6 = 8 this becomes
H = -%-B. The variation in 8 is
approximately simple harmonic of

period 27 /& .

E
This motion was the first studied by Galileo (1564-1642) in

the famous episode of the chandelier in Pisa Cathedral. So in a
real sense simple harmonic motion was the first type of motion
studied in the sense of "modern' science. Just as it was the
fipst hitherto unknown heavenly motion examined by Galileo through

the newly discovered telescope (example(a)). An observation which
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contributed greatly to the decreasing prestige of aristotelian
cosmology, clearing the way for the growth of science as

we know it today.

Apart from the rather hypothetical hole through the earth,
all the examples considered so far have failed to yield us an
example of a physical (massive) particle which is itself executing
simple harmonic motion. To achileve this we would require a force
varying proportionately with distance (since the R.H.S5. of 1) must
by Newton's Force Law, F=ma=m;, equal the force applied to the

particle at position x.)

A large class of forces behaving in precisely this way was
first discovered by Hooke (1635-1703) and announced to the world

in the form of a latin cryptogram, ut tensio sic vis.

These are the forces arising from the deformation of
'elastic' bodies such as strings, springs, wires etc. and formed
the object of a more intensive study by Young (1773-1829). Hooke

found experimentally that t:~ force needed to extend an elastic body

by a modest ammount ® is directly proportional tec x, a rule known

as Hooke's Law, ie F = kx (where the proportionality constant k
depends on the nature of the elastic body under consideration and

is closely related to its Young's Modulus.)

X
- -

R o a3

~
A molecular justification of Hocke's Law is possible, however

it is far too complicated to consider here (see Kronig Textbook
of Physics pp 116-118 for a brief account.) We will content

ourselves with the empirical result.

The existence of such forces allows us to give a number of

examples of simple harmonic motion in the form of vibrating systems.

% extension is proportional to force
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(e) A Horizontal Spring System (see diagram)

1f when in equilibrium m is at 0,

ke

rictionipis Suwr acé
[

I
acting on m, F = -kix - kgx where the second term is due to the

upon displacement from O by an

- o amount x we have, for the force

'compression' of spring 2, and in this case the proportionality
constants k; and kp are known as the spring constants of springs

1 and 2 respectively.
So mx = -(k; + ka)x, whence x = a cos / kitko £ (where m 1is

m
initially displaced by an amount a and then released) and m

executes simple harmonic motion of period 2“4{;%?
1782

(For a brief discussion of the Simple Harmonic properties of the
motion of such a system when the mass is vibrating on the surface
along a line perpendicular to that of the springs see the author's
note ‘'a need for tensioﬁ' in the Mew England Mathematical Associa-
tions News Letter Volume 1, Number 1).

Note: In the above example, and in several of the subsequent ones
(try to identify them yourself) it has been assumed that the masses
of the springs are so slight compared to m that their contributions
to the dynamics of the system can safely be neglected. The case of
"heavy" springs is quite difficult requiring a careful analysis of

the energies of the system and will not be congidered.

{(£) Small amplltude Vibprations of a loaded light vertical spring.
At the equilibrium pesition 0,
mg = k(L - &) where £ is the
unstretched length of the spring.

m is pulled down a distance a
(where a S L - £, see Section 3)

O-- and released.
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Then, at any peint x of the subsequent motion

mg - k(L + x - &)
[mg - k(L - 2)}] - kx

£l

m¥

-kx, as the term in square brackeis

is zero from above,

So m executes simple harmonic motion., What is its amplitude

and period?

(g) The Torsional Pendulum (and many similar devices, such as a

clock balance wheel).

The 'angular acceleration' of the bob

equals 8 and is proportional to the

torque T applied to it by the elastic

arm. We thus try to relate T to 8.

o
N

|
S

While we cannot give a rigorous
demonstration of the result we can at

least make it plausible.

Regard the flexible arm az made
up of a large number, N, of parallel

coherent elastic fibres as illustrated

\: i N e

i N

Then in a shell of radius r and thickness Ar there will be

approximately 2 Nr Ar fibres, where R is the radius of the arm.

. R .
: Peeling offsuch a - shell of fibres we see, upon flattening it out,
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that the effect of rotating the bob through 8 is to displace the

individual fibres as illustrated. From which we have

T cos o = E%%

and so the torque due to the
- shell is

A F T gin axr X 2ZNrAr
3% R
A% = 2mg tan o r? Ar
_J‘ % R
'ni"\l ! 2
CA - Zg p3
l_ql l ‘R—lﬁ“z- r 8 Ar as
';; = EE
l!l tan a 2. :

Now the total torque T equals
the sum of the torgues due to

each such shell,
- 2m 3 . .
T = IR fr° Ar which in
the limit as the number of

shells becomes infinite and

) <
L ==t -~ - % Ap + 0,gives a total torque of
¢ re J’ magnitude
mg /N R
p 3 2
component ef P producin J 2mg _mgR
. 3 Rz 8 dreg =0

tha torquwé. o
oppositely directed to 6.
So 8 = 1'= - 8 and the variation of 8 is simple harmonic. In
fact elementary dynamics of rotating bodies yields 8 =1-= —E%%?
where I is the moment of inertia of the bob, equal to mR%/Q, RB

being the radius of the bob. And so motion has period

L
Ly
B £

Compare this to (d) the case of a simple pendulum, noting that here
no assumption concerning the size of 8 has been made, only that the

mass of the arm is negligible.
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{(h) Consider an object sliding on the frictionless surface of a
convex curve as shown.

It can be shown that if the

y

shape of the slide, y = f(x)}, is
chaosen correctly the distance
along the slids from O to m varies

simple harmonically.

The actual curve required

turns out to be a eycloid, the

curve traced out by a point on
the circumference of a circle
(radius A/Q) rolling along under
the line y = A, arvesult first established by Huygens (1629-1695)
in order to improve the accuracy of clocks by using an isochronous
pendulum (ie a pendulum whose period is truely independent of the

amplitude of the swing).

The similar problem of asking for a curve y = £{x) so that
the vertical projection P' of the mass's position moves simple
harmonically turns out to have the same answer, viz. the curve is
a cycloid. However the corresponding question for the horizontal
projection P appears to have no simple answer. In fact without
modifying the problem to allow for collisions at a pair of
perfectly reflecting barriers at the upper extremities of the curve

no curve exists.

The examples should help to vindicate the importance attached
to simple harmonic motion both in physics and applied mathematics.
In each of the remaining four sections a specific problem

connected with simple harmonic motion is investigated.
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3. OVER- EXTENDED LIGHT VERTICLE STRINGS

Loy s o o
1‘ : Here the symbolism is the
I same as in(f) so mg=k(L-L)
k lJ ,e_ but A>L-2. For motion between
—Jl BR' E EF' we have
) .-
E———fp==— ———FE" mx =mg - k(L + x - L)
- ‘ = -kx. ie mgtion is
ne, . k
S h S ‘¢ iven by x = A Jct
o @ A eqvuibom'vm & Y GO Y m
1 and
132 - K (a2
| %~ A (%)% = ~ (A2 - %?), by lemma,
: % at x = -(L - &) we have
: fk [ 2
. ¥ = -/= /A -(L-2)
B——ﬁ¥“————t——-f-r m

- /i< 2,2
m
= -/ AZ _ —E%—- = Vg5 SaAY.

Thus the bob continues its vertical motion, however the only
force continuing to act is due to its weight as the string is now
relaxed, exerting no force on m. ie beyond EE' the motion is that
of a projectile fired vertically upwards with initial velocity vq,

in which case 1t continues to rise to a height of

2 2
(1 - _ Voo _ _ g K (a2 _D%E
(L~ %) 2g k om (a -TCT)

- dmg , kaZ
2 mg
: mg .
> A since A > _]-{for Vo to exist ,
ie motion is not simple harmgnic, the bob oscillating through a total
distance of A + Q%%_ + %%g‘- It is however periodic (see diagram.

on next page), of period greater than /égi. An interesting exercise is

to find this period in any specific situation of this type.
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LaEhy ad

!

b, MECHANICO-OPTICAL SIMPLT HARMONIC DEVICE

A uniformly rotating circular disk is viewed through a narrow

slit aligned to form a diameter of the disk.

Dravn on the disk is a curve whose

intersection with the slit performs

P i simple harmonic motion along the
7z N . .
’ \\ slit as the disk rotates. Thus
rl P?r't ' when viewed we see a point executing
O, . . .
j“&rve ] simple harmonic motion up and down
r ! ‘the =lit.
; ’
Vs Problem: find the appropriate
>
- curve to mmint on the disk.
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18. sttt curve

If v is to vary simple harmonically along

the slit with a period equal to the period

of revolution of the disk, T

we hz-ivre2 7 3;,‘..1 Ltne wr .
= R £ : on odhis K So §= EX
r R cos T t initially ™ +
= R cos 8- - councicdent
5 A Uat‘u 5“".‘

P(=, 4)

So the curve is locus of the point

P =
where p R cos 8 Rx

r ‘
a LY
] 2 2 - = =
o) — X ie ‘; tve = r R cos 8 2 +y2

2
or x% + y2 = Rx, (x-%)2+y2:-£1:‘-»

j

, ¥ = 0, radius —.

S0 the curve is a circle centre at x = 5

[\~

5. COUPLED SYSTEMS WITH MORE THAN ONE DEGREE OF FREEDOM

The example we will consider is illustrated below, a more
ambitious example might be the
body of a car riding on its
four springs (shock absorbers).
. The question we will seek to
c . _ _ answer is can the illustrated

: I : system vibrate in such a way

! x that both masses execute
simple harmonic motion of the

same period and what is this

period? Of course many other

Vg questions could be asked, and

answered, for example what is the general motion of such a system?
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Now the equations of wotion are

H

My force on M = -K{y - =)

m X

1
14

force on m K{y-x)- kx = —(K+k)x - Ky

and for simultanecus simple harmonic motion we want %= = a cos At
¥y = A cos At
to be a solution for suitably chosen values of A, a and A.

Substituting these into the equations of motion gives

- A2 4 cos At = —g% (A - a) cos At
A% a cos A - K (A - a) cos At - k cos At.
m K i K
Cancelling cos At and rearranging yields Eﬁ- - kzg A+ Foa-s 0
and
__i.(.A-l-EE-i-}i_kz)a:O
m m  m )

or as a matrix equation for 4, a

K ) K
m A v A i} o
LS Kek _ 42 a o
m m

But this equation will only have non-zero solutions for A,a

if, 7
K
det g - A% m
:O [ - - []
K Ktk o (ie the matrix is singular)
m m

and this is precisely the condition that A2 be an eigenvalue

of the matrix K K
M M
K Kik
m m
In precisely this manner eigenvalues enter in an important

way into advanced theories of mechanics.

Thus A2 is a root of

K

(32)2 - (ﬁ- e

P B Ky e By
m m mM

A straight forward argument shows this quadratic has two

positive (and therefore real) roots.
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We are therefore able to conclude that the sought after motion
is always possible (at least in theory) and can in general take
place at two distinct frequencies. (Why not four?) Perform these
calculations in a few specific (ie numeric) examples also determine
the ratio of A/é for these motions (what are you doing in terms of

the theory of eigenvalues?)

6. RESISTED (DAMPED) HARMONIC MOTION

In almost all the physical examples of simple harmonic oscillations
introduced in section 2 it can be observed that, due to the unavoidable

presence of frictional and other resistive forces, the motion dies out.

If these forces are mainly due to air drag (as in the case of a
freely pivoted simple pendulum, mass on the end of a spring etec.)
then it is usual to take them proportional to the veleoecity but
oppositely directed (see Lush and Smith, p.178), anassumption which
is experimentally and hydrodynamically justifiable at least for
relatively low speeds. (For higher speeds the assumption that the drag
is proportional to the square of ithe velocity is often used.) 1In this
case the differential equation of motion becomes

mx = -kx - rk where r is the drag

coefficient.

We could apply arguments similar to those of section ) and
develop a theory along the same lines.

(Using an argument similar to that in the proof of the lemma
show that in this case kx? + vZ is a decreasing function of t.)
Instead however we will simply present a typical example of the possible
forms the solution x can have.
Hence, show this equation can have a solution of the form

X = Aedat cos At

for appropriate values of o and A  Also sketch a typical graph

of such a solution.
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How X = - aAe—at cos At - hAe_at sin At

-at

and # = a?fe cos At + 2urhe T sin At - lee_at Ccos At

So if % is a solution we must have, for all values of t

% cos At + 2agAm sin At - Am cos At = -k cos At + ro cos At + rX sin At

ma
This will certainly be true if we can find A and a so that
(me? - mA2 + k - pa) cos At
and (2aAm - ri) sin At  are both simultaneously zero

for all values of t.

From the last of wgich a = "/om >0, and then from the first
mA% =%k - ° unm.

/ 12
S0 A o= E_,ﬁ__liﬂ. provided r < 2Vik

ie provided the damping is sufficiently small.
What becomes of the solution if » 2 2Vuk ? (a solution does exist

and the corresponding motion is termed eritically damped.)

We therefore have established that under some restrictions
appropriate values of @ and ) can be found and so the equation has

a solution of the suggested form, a graph of which is given below.
ARTpSC
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If on the other hand the resistive forces are largely
frictional in origin, it might well be appropriate to assume
they are constant in magnitude but oppositely directed to the

sense of the motion.

As an example let us consider the motion of a mass resting

on a rough platform and oscillating on the end of a horizontal
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spring. Initially suppose the spring extended through a distance A

and then released.

o0 ;-*1,
FFIPTT P TP I AT 7y

F—-—*z
Q A

Under such assumptions the di fferential equation of motion would

be
mx = ~kx - sgn(%)F where F is the magnitude of the

frictional force and sgn is the function defined by

sgn(z) = 1 if z > 0O
0if z =0
-1 if 2z < 0 (Graph this function)
S0 mx = -kx - F whenever % > O
and mx = -kx + F whenever % < 0, O0Of course the motion will

cease whenever x and the net force on the body are simultaneously
zero, which from the laws of static friction, is the Ffirst
instance, tg, when %{tg} = 0 and k|x(tf)| < F. Thus motion will

only commence if kA>F, which we take to be the case,

Initially % < 0, s0o mx = -kx + F. If we change the

variable from x to y = x - F/k this becomes
my = -ky and so from our previous results, and the
initial conditions y = (A - F/k) cos g-t
or x = (A =~ F/k) cos J—t + F/k.

This will remain the equatioh of motion till % changes sign, ie
111 t = “f%-, by which stage the mass is at position x = -A + 2F/k.
The motion will only continue beyond this provided |2F - kAI > F.
Which will certainly not be the case if x > 0., (Why?)
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Should the motion continue, then the new differential equation
is mx = -kx - T and by a suitable change of variable

v = = + F/}c) coupled with the new initial conditions

x(ﬁ/g) = -A + 2F/k , i(“/g) = 0 we obtain

x = (A - BF/k) coSs /i-g-t - F/k.

This again remains the equation of motion till % next changes

sign at t =21r/% by which x = A - L+F/k.

similarly

Continuing in this way we can build up a graph of the mass's

motion, such as the one illustrated below.
' N mis-kx+F I ms =kax ~F

R

With the above example I will finish this short essay, not
because the topic is exhausted (far from it) but because I am,
leaving it to the readers to carry the discussion further and
to correct the many mistakes which I have undoubtedly committed
and which are the only features for which I can claim any

criginality.

University of New England,
Avmidale, N.S5.W. 235L.
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