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THE RAINBOWANGLE .......... B.Sms

The University of New England

Appearing in the Scientific American April 1977 is an article by
Professor Nussenzveig discussing *‘the theory of the Rainbow” [1). In
“The Amateur Scientist’ section of the July 1977 issue of the same
magazine a simple experimental set-up is described by means of which
many of the phenomena considered in Nussenzveig’s article can be
investigated [2]. It occurred to me that these articles could form the basis
of a special praject for senior high school students, particularly if a more
quantitative mathematical study is possible for some of the material. It is
the purpose of this note to demonstrate that this is indeed the case, at
least for the determination of the rainbow angle for the primary bow of a
monochromatic Cartesian rainbow. For what follows the first section of
Nussenzveig's article [pp 116-1 191 would be useful background.

Since the rainbow originates from the redirecting of the sun’s rays by
water droplets in the air (Fig. 0), we begin by examining the interaction
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ABrepresents a ray of light from the sun. 1
CD represents the apparent rainbow. \ -F;'
EFrepresents the horizon ‘\ "

Fig. 0 N

of a ray of light with a single “*spherical’’ droplet. Observing that the
path of such a ray will lie in the plane containing the incident ray and the
centre of the droplet, we see that the ray’s path in this plane will be as
illustrated in Fig. 1; and if we take, as our standard of length, the
droplet’s radius, the defining parameter of any particular ray is the
impact parameter p, equal to the perpéndicular distance from the
droplet’s centre O to the direction of the incident ay.

The object of our preliminary investigation is the angle 6, as a function
of p. Light of the “primary bow’’, due to an incident ray with this
particular impact parameter, would come to an observer from a direction
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making this angle with the direction of the incident light? Of course, the
actually observed primary rainbow is the cumulative effect over all
possible values of the impact parameter {that is, values of p between 0
" and 1).

We assume that the refraction of a light ray entering or leaving the
spherical droplet at a given point, and the reflection of a ray from a point
on the droplet’s surface, would be the same if the spherical air-water
interface were replaced by a flat interface coincident with the sphere’s
tangent plane at that point. Since the tangent plane is perpendicular to
the radius through the point of contact, this assumption makes the
application of the laws of reflection and refraction particularly simple.

[

Al represents an incident ray.
RE represents an internally reflected ray.
EH represents an emergent ray: the incident ray's contribution to the primary rainbow.
I8 represents a reflected ray,
RG represents a transmitted ray.
DCisrelated to a secondary rainbow.
The rainbow angle is shown at V.

: Fig. 1
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Referring to Fig. 1, we note that the angle 8, is related to 6,, by Sneli’s
law, sin 85/8in 8y = r, LD
where r, the refractive index, is a parameter depending only on the nature
of the two media and the frequency of the light (for air-water and
frequencies in the visible range r 2 1.333). It is the variation of r with
frequency (dispersion) which causes the bow for different frequencies to
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appear in slightly o__.erent directions, giving the rainbow its spectacular
colours.
Since O = OR, AORI = 8,,. By the law of reflection: angle of
incidence eguals angle of reflection,
therefore AOER = By (OF = OR)
and so, applying Snell’s law to the emergent ray at £ we see that this ray
makes an angle of 85 with the line through O and E. Thus, the path of the
ray is symmetric about the line through OR, on which the incident and
emergent rays produced meet at V,
Now, B, = 240VI (angles measured in degrees)
=  2(%0 - AVIF) (triangle IVF),
while AVIF = AOIV + &A0IF = 8; + A0IF,
50, 8y = 2090 - 8 — 20IPF).
Since, A0IF + 8,y = ARIF = 90 -8, (triangle FIR),
we have, A0IF = 50 — 28,,
and therefore 8, = 2(28,, —8y). ... 2)
Combining (1) and (2), we find that
B, = 2(2 sin™ (sin (8g/7) — 8g);
from the right-angle triangle /X0 we have
sinfg; = p, (O = 1)
50, as a function of p we have
8 (p) = 2(2sin™ {(p/r) —sin” p). e (3
For r = 1.33, a graph of 8, versus p is given in Fig. 2.

The effect of the droplet in producing the primary rainbow is to turn
the light ray’s direction of travel through an angle of (180-8,(p)) known
as the rainbow angle. Rays contributing to the primary rainbow reach
an observer from those directions which make an angle with the
direction of the incident light less than §,_,,, the maximum value of 8, (p),
0<p<l.

Since d8,/dp = 2/ (P=p*) - 1/\/{1 —p*) = 0,
whenp = pyp = V4 - /32086, forr = 1.33 and

6£0.86) = 42.5,
while at the two extremes 8(0) = 0, and 8(1) & 14.9,
we have 0., =425,

The primary rainbow angie therefore lies between 180° and 137.5°.

To determine the intensity of this backward directed light at each angle
between 0 and 8,,, (and hence the precise location of the primary
" rainbow) is a more difficult problem. Variations with p in the ratio of
reflected to transmitted light at each of the interfaces on the ray's path,
as well as the **density’’ of rays for a given angle of emergence, must be
taken into account. A complete answer is only possible using wave-
particle theories of light. See Nussenzveig’s article for a qualitative
account.
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Neglecting the first effect, since each value of p cusresponds to an
incident light ray, the proportion of rays emerging at angles 8, between 6,
and 8, + A8 equals the *length”’ of the set

{p:8 < 68(p) € 8:+A86}
where 8; (p) is given by (3).

Thus, if /(8) denotes the intensity of light emergent with angle 8., we
. have I(8) AD 2 kx‘length’ {p : 8, € 6,(p) < 0:+A8},

k being a proportionality constant, which for suitable units of intensity
we can take equal to 1. This approximate identity becomes more nearly
exact the smaller the magnitude of AB.

Hence,
pg(eu + Aﬂ) —p|(60) f0f0€33< Br(l)

D0 + AB) = (8o} + pa(60) — pa(8s + Afy)

for 8,(1) € 6o < 0,0
where p, (0) is the inverse function of 6, (p)on 0 < p € py (= 0.86),
and p, (8) is the inverse function of 8, (p}onpy < p < 1.
Dividing the above expression by A8, and then taking the limit
as A@ — 0, we have
{ dp|/dﬂu f0r0<90<9,-(1)

dplldﬂu —dp;/dﬂu fof Gr(l) € eo < Bm“.

While it is difficuit to obtain an explicit expression for f{8.), we note
that as 8, —~ 8,,,, dp./d8,—~ * anddp,/d6,—> — =
so I(8,) = o . See Fig. 2.

rese = |

X(Bo}

Fig. 2
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The intensity is therefore “‘infinitely”’ greater at 6,,, than at other
angles and so the primary bow will be observed in a small angular region
about 8_,,.

The rainbow angle for the primary bow is therefore 180 ~ 8,,. = 137.5.
The result is in good agreement with observation,

The secondary rainbow could be treated by similar, though more
tedious, arguments; in which case it is the minimum, not the maximum,
value of 8, which proves significant.
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ADDENDUM. While repeating the experiments described in Walker’s article [2), 1 tried
replacing the water drop by a water filled, thin walled, glass *‘bubble’” of about 2 cm.
diemeter blown at the end of a piece of glass tubing. This gave good results for the primary
and secondary rainbows. L fact the bows could easily be projected onto a screen with a
pin-hole in it through which the light beam is projected.
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