CAN NEWTON'S METHOD GO WRONG?
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"Lt us vecall that Newton’s Method is the iterative
“]',}bcedure for approximating a zero (or root) of the
fpaction f(x) according to the scheme
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in one of the more popular N.S.W. school text books
e finds the following statement: .

The key factor in applying this method is to
obtain a good first approximation. If this

1% first approximation is a good one, then it will
- " be certainly true that the next approximation
. 2 will be a better one, and so on.

¢ In actual fact, the number of decimal places

¢ of accuracy doubles with each successive

¢ application of Newton's Method. Thus, if

: one approximation is good to 1 decimal

- place, ten the next approximation is good to

~ 2 decimal places, and the follawing one will
be good to 4 decimal places, and so on.

As it stands this pale shadow of a partial truth is
_pompletely wrong. A correct statement, and probably
the one intended in the text, is as follows:
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“THEOREM: Provided f*is continuous at the zero x
I [that is, limit f{x)= I{xo)] and f{xo) £0
X%

and provided the initial estimate x, is sufficiently near
to x, (and this may have 10 be very near to x_ indeed),
the successive iterates produced by Newlon’s%lethod
will converge to X,- Indeed, given any positive number
€1, for X sufficiently near to Xg {the “nearness™
required depending upon €) we have
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PROOF: From the continuity of f’at X, forany x
sufficiently near x__ we have that f'(x) 18 0 and so we
may form x-f(x)l?‘(x). Nowﬁuch an x
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In the limit as x —X, this last expression becomes

— b I(x )=timit fO-fx,)
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Foxg) [fx)-f(x )] (definition of derivative)
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and 30 we conclude that
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In particular then, for all x sufficiently near X, We have
—FOYE] —x,

X—'XO

or [[x—f(x)/f'(x)) — Xo|¢ efxxg)

Thus provided x is chosen sufficiently near to Xo We
have

lxz—x0|= l[xl—f(xl)lf'(x!)] -xolc e}xl—xol

while
lx3—xul = I[xz—f(xz)lf' (x5)] —xolc e|x2~—x0|

<e?|x,—x |
Similarly, ‘
|x4—xol;, e|x3—x0 |<e3 lxl—xo I .

Repeating this argument (n—1) times establishes
the result.

Provided f satisfies the conditions of the theorem,
choosing € =110 and starting with Xy appropriately

near to x, we obtain an improvement in accuracy of
one decimal place at each iteration.®

* By further restricting {, for example by also

requiring ¥ 1o exist and be bounded in a neighbourhood
of X it is possible to guarantee a faster rate of con-
vergence leading to the doubling in precision claimed

in the text-book cited above. The proof is, however,
more complicated and so will not be considered here.
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Without assumptions on f such as those of the
theorem any of several possibilities can occur:

3} The scheme may converge, but possibly at a slower
rate than supgested by the theorein,

b) The successive itcrates may diverge away from the
Zero, no maiter how&amr initial approximation
may be. They may, af o oufse ﬁvenmally approach
some other zero of £, -2~ -

c) The successive iterates may “oscillate’ about the
zero without either approaching or receding.

To illustrate these possibilities with relatively
simple functions it suffices to consider power functions

of the form y =x& @7 o).

Each function has as its only zero x =0 and, as a
simplé calculation will show, for this class of funclions
Newton’s Method becomes

X = |la=1]x
n+l [T] n
Thus starting with an initial approximation x{ we have
as the nth iterate
n—I|

xl.
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a) For a a positive integer 21 is between Qand 1

—

a-—1

By choosing a large we may

make as near to 1 as we please, thus decreasing

the rate at which X, vonverges to 0. (Note‘ a1

fixed by the function and cannot be varied as the €
in the above theorem.) For example; starting with
x=1 it takes 4 successive iterations to improve the

accuracy of the estimate by one decimal place when
=2, while for @ =10 it requires 23 iterations, and this
would remain true no matter what the starting value.
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b) Choosing a=% we have a;a —2 and so the
sequence of iterates, iﬂ% 3..@5‘%‘;‘%5‘ SoPE LI

Xy = %) 1 Xy fails to converge to 0. For example

k.

with Xy = 1 we have

xz = -‘7, X3 = 4, X4= —8, XS = }6, x6 =-32

-

etc.

¢} To obtain a function which exhibits oscillatory
behaviour we choose a=1% and extend the function

= /X as an odd function to the whole of the real line
according to the formula
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and so the successive iterates will converge to Q. 0 =
The error after each iteratien i3|r"‘—I I that for the R — X fork <0
previous estimate. 3 Y A N e
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In this case %+ = —1 and so the iterates are alternat-

- ively +x, and -x,. Forexample with x
successive “apprommnlims to the zem,(l, .t n
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Newton s Method works well for a great many functlons
however, as the above examples itlustrate it is fallible and
care'must be exercised when applying it. For more com-
plicated functions the method can “misbehave™ in more

_ diverse ways than those suggested above; for example,
" 'the sequence of iferates may first appear to approach

' "azero before eventually diverging.-
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= 1 we have

A major problem with Newton’s Method is thic’

- difficulty in obtaining useful error estimates. .The .
_ . “half~interval method" is an altemat:%-procedure )
- which overcomes this deficiency. ¢ &!8208 70 =
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Approximation procedures are frequontly called for
in the application of Mathematics to real situations
(even more-so in the modern age of computers).
Develaping skill in their selection and use-is an nmport:mt
part of a mathernatlcal education. ~ :



