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 CIRCULAR MOTION {Part 1)

B. Sims
The University of New England

This is the first part of a two part article on circular
moton. The second part will be included in Vol 7 No 3.

Prelude

Throughout we shall be concerned with vector quantities;
quantities which have both a ‘“magnitude™ and a
“direction”. [For example: force, velocity (the magnitude
of which we call “speed’™), acceleration and, as we shall
see, position}. A vector quantity changes if either its
magnitude or its direction is changed. This observation lies
at the heart of our analysis of circular motion, where it is
directions rather than the more familiar case of
magnitudes which undergo change. A vector quantity may
be conveniently represented by an arrow pointing in its
direction and with a length equal to the magnitude.
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For circular motion, all the vector quantities of interest to
us are constrained to have directions lying in a common

plane and so may be described in either of the following
ways *

(1) By specifying the magnitude (length) and the angle the
arrow makes with a given direction. [This requires us to
specify a “sense of rotation” for measuring the angle —
conventionally we take anticlockwise as the positive sense
and measure in radians.]

given direction

(2)By specifying the components of the vector with respect
to a given set of cartesian axes (see diagram below).
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These two representations are related. If we agree to denote
vector quantities by underlining with a tilde () [for
example: a for acceleration, y for velocity, f for force] and
for the vector quantity ] write ! for its magnitude [thusv
will denote speed] and L. Ly, 91 respectively forthe x and y
components relative to the given set of axes and the angle
made with the given direction, which for convenience we
take to be the positive x-direction, then we have-
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I,= Isin§ -
1= Sty o+ 12y i
and -
sin 0 =1y/! from which 0y is uniquely determined.
cosfy =L.f1

Note also that the slope of the arrow is tan 8; =ly/lx,
so two vectors | and n will be:

perpendicular if lyflx = _nx/“y;
parallel if Ixﬂy = “x/"y;
in which case they wili have the same direction when
I, and ng (equivalently ly and ny) have the same sign
and oppositely directed when Ix and n, have opposite signs.
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2
. KINEMATICS OF CIRCULAR MOTION
Position as a vector quantity
If we take a given direction and a given point O, then the
position of any other point P in the plane is uniquely

specified by the arrow (position vector) with tail at O and
head at P,

#1

2K
.
If the distance between O and P is r, then the position

vector has magnitude r and will make an angle 8 with the
given direction.

Choosing O as the origin of our set of Cartesian coordinate
axes and the given direction for the positive x-direction we
see that the components of the position vector are

x-component = r cos 8,
y-component = r sind

and that these components are respectively the x and y
coordinates of P relative to our axes.

C
i1 the point P moves with time, then in general both r and 8
will vary as functions of the time t; that is

=r(t) and 6= 6(1).

The time rate of change of 6, é, is termed the angular
velocity of P about O, sometimes denoted by . [Here, as
elsewhere “‘dot” denotes differentiation with respect to t,

*»
thus 9= 99 3
dt

Simj]arl.y t—‘:’ ) is the angular acceleration of P about O.

Note: Both the angular velocity and angular acceleration
depend on the choice of O but unlike the position vector
do not depend on our choice for the given direction
provided it remains fixed throughout the motion.

[EXERCISE: For a point P constrained to move on a circle,
show that when O is chosen to be the centre of the circle

the angular velocity is twice that when O is a point on the
circumference ]
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Hencefarth we restrict our attention to motion in a circle
and for simplicity take for its centre the origin O. Under
these assumptions the position vector of the moving

particle has r equal to a constant (the radius of the circle
of motion) and so
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The velocity vector
The velocity vector v must be directed tangentially to the
circle of motion (otherwise our particle would have a

radial component of velocity and so move off its circular
path) — see diagram — and has a magnitude (speed):

ds, d :
v=lgl= [ = ol = |

(here 3 is arc length on the circle measured, in the sense of
rotation, from a fixed point of the circle to the moving
particle)
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[Note: the absclute value signs are nécessary in case the
particle is rotating in the opposite gense to our chosen
sense of rotation in which case w = & would be negative.}

These results may also be obtained by differentiating the
components of the position vector to obtain those of the
velocity.

x-component of velocity is
vx=:'c=g}(rcosﬂ)=—rsin X

y-component of velocity is

vy=)'r=%-t(rsinﬂ) = rcos@ .

From which we see that

x-component of position
y-compoenent of position *

cosf - _
sin B

v,
X=
Yx

50 v is perpendicular to the position vector (that is,
tangentially directed) and has magnitude

v=%r)% +v;" =\/rT§2(sin26+coszﬂ) = rlé‘

If w, and consequently v is constant, then the particle
moves about the circle with uniform speed and we have the
important special case of uniform circular motion.

Acceleration

Since the direction of the velocity changes with position
(and consequently with time if our particle is to move at
ail) an acceleration must be present. Indeed, if our particle
possessed mass and were not accelerating, then it could not
be subject to any external force and so, by Newtons first
law: Every body continues in its state of rest, or of uniform
motion in a right line, unless it is compelled to change that
state by forces impressed upon jt; the particle could not
continue to move in a circular path. The components of the
acceleration vector a are obtained by differentiating those
of v.

x-component of acceleration is

a =y
- gt(wr sin 6 5)

= —r{cos t’i)é2 —r(sin 6)6

Similarly,

y-component of acceleration is

a, = —r(sin 3)3-2 + {cos 6)F .

3
In the case of uniform circular motion (8 is constant and
so 8 = 0) these reduce to
= a2
a, =- r{cos )0
and

a, =—r(sin B)éz

S0 q _sinf . y-component of position

a, x-component of position.

a, cos @

Thus, in this case, the acceleration vector is parallel, but
oppositely directed (a, has opposite sign to r cos 8, the
x-component of position), to the position vector, That is,
for uniforrn circular motion the acceleration is directed

radiafly inward and has magnitude
a= \A;-@+ a%@ =\/|"2 cos28 54 + rkinZg 54
= 1f)2

=rw?,

For general circular motion, besides
radial component of magnitude r
component of the acceleration with

is inwardly directed
, there i3 a second

an x-component equal to —r(sin 9)5
and

a y-companent equal to r{cos )8

From which we deduce that this is 2 tangentially directed
compenent of the acceleration of magnitude r lﬁ , T times
the angular acceleration.

Summarizing we have:

Acceleration: _ Inwardly directed radial component of
magnitude rcs%, Tangential component of magnitude r |§]

Tt iy
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These expressions can also be deduced by considering a
vector diagram showing the velocity at time t, y(t) and at a
subsequent time t + &t and considering limits as 6t + Q

v{tist)

0
From the diagram we see that:
Ch'_ange in tangential component of v is
' w(t+ 5ty cos 88 —v(f) = v(t+ 6t) —v(t)
Change in radial component is
v(t+ 8t)sin 80 = v(t+ 8t) 60
(as, to first order terms, cos 86 == 1 and sin 50 = 56)

and so,

Tangential component of acceleration is

Limit v(tHdt)—v(ty = d
§t+0 Bt 4t (1))
= d .
at (16
=
Radial component is

i)
Lishit v(1+6¢) 99
imit  v(t+6t) 5t

= 40 - yx 8
Steo v(.t) 5 (tfyx @

= r62.

In what follows we will restrict our attention to the case of
uniform circular motion, however in the abhsence of this
simplification we remark that a sometimes useful
expression is

B = d (‘éraz)
de

which leads to a “first (energy) integral.”

DYNAMICS OF UNIFORM CIRCULAR MOTION

As we have already noted, in order that a massive particle
execute circular motion it must be acted on by an extemnal
force. By Newton's second law: The change of mation is
proportional to the motive force impressed; and is made in
the direction of the right line in which that force is
impressea}- and the expression for acceleration derived in
the last “section we have that, a particle of mass m
constrained to move uniformly in a circle is subject to a
centrally directed force of magnitude

3

: 7
F = mif? =mre?® = mv*=
r

This applied force is known as the centripetal force (‘centre
seeking’), The reaction to this force, felt at the centre
(“Pivot’) is sometimes termed ‘“centrifugal force”
(“centre fleeing").

In the next issue, Dr Sims will take up the notion of the

dynamics of uniform circular motion to conclude the
article,
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CIRCULAR MOTION (Part 2)

B. Sims
*University of New England

This is the concluding part of the article which began in
Volume 7 No. 2,

DYNAMICS OF UNIFORM CIRCULAR MOTION

As we have already noted, in order that a massive particle
execute circular motion it must be acted on by an external
force. By Newton's second law: The change of motion is
proportional to the motive force impressed and is made in
the direction of the right line in which that force is
impressed, and the expression for acceleration derived in
the last secon we have that a particle of mass m con-
strained to move uniformly in a circle is subject to a
centrally directed force of magnitude

Ffmréz=mru72 =mv/r
o

This applied force is known as the centripetal force (‘centre
seeking’). The reaction to this force, felt at the centre
(“pivot™) is sometimes termed “centrifugal force” (‘centre
fleeing™).

APPLICATIONS

The importance of an analysis of circular motion is in the
great number and diversity of its applications, some of
which are outlined below. Historically circular motion was
one of the first motions to be studied. In Newton’s epoch
making Philosphisge  Naturalis Principia Mathematica
circular motion is given prime place. It is the first motion to
be examined after the statement of his general laws of
motion. Thus, as Propaosition IV Theorem IV (The 4th out
of 70 propositions) we find:

e centriperal forces of bodies, which by equable
wiotions describe different circles, tend to the centres of
the same circles; and are to each other as the squares of
the arcs described in equal times divided respectively
by the radii of the circles.

After proving this, Newton goes on to obtain 9 corollaries
the first of which reads:

Therefore, since those arcs are as the velocities of the
bodies, the centripetal forces are as the squares of the

velocities divided by the radii. *

~1, The Conical Pendulum.

We consider a massive particle suspended by a light string
{or rod) and moving in a horizontal plane - see diagram.

;, * Here, as elsewhere, Newton uses proportions, as at that
time “standard units” had not been introduced.

Resolving the tension T in the string into verticle and
horizontal components and balancing forces we have that

Tcos ¢ =mg and

T sin ¢ = centripetal force = mr w2

Thustan ¢ =r/h=rw? /g 0rw2=g]h

The period of this motion, the time required to complete
one complete revolution 2 7/ v, is therefore 2 W/ (h/g)

[Note: The period is independent of the mass m, and for
small amplitude motion (r <1) we may use the approx-
imation h =1 to obtain; Period = 2w/ (I/g)

The conical pendulum provides the principle underlying the
operation of governers (speed limiters) such as seen on ald
fashioned steam-engines and hidden inside many modern
pieces of machinery.

—L-—.—-ﬁ—-——-ﬂ- - e 4]

A decrease in the number of revolutions per second, (to/2m),
causes h to increase and so via the lever opens the throttle.
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and so the orbital period (planetary year) is

T=27/w =27/ /GM.

That is; T2 is proportional to 1%, a relationship which we
should recognise as Kepler's third Law of planetary motion
in the special case of a circular orbit.

We should also note that the orbital velocity is v =/ (GM/r)

A similar analysis applies to the Bohr model of a hydrogen
atom except that the centripetal force is supplied by the
Coulombic attraction ke2/r? and a “quantum effect” is
introduced by arbitrarily requiring that the angular
momentum of the electron (mvr) only assumes values
which are integral multipliers of some universal constant
(Flanck’s constant h).

Special case: telecommunications satellites.
In order that a satellite remain stationary ahove a given

point on the earth's surface it must have an orbital period
T of one day. Thus, if such a satellite orbits at a height h

| abaove the surface of the earth we have

T=27/[(R+h)*/GM] ,
where R is the radius of the earth and M its mass.

Since the gravitational attraction between the earth and a
body of mass m on its surface is GmM/R2 which also
equals mg we see that GM = gR2. Substituting this in the
expression for T and rearranging we obtain

h=( (eT? /47 2R) -~ 1)R  =05R

= 3180 Km (using R = 8360 km).

It is the fact that such satellites are restricted to a single
altitude which effectively limits their number if

“congestion™ is to be avoided.

4. Change in Gravity due to Latitude

Although the gravitational attraction of the earth on a body
on the surface is mg, the “effective gravitational force”
{as measured by the acceleration of falling bodies) varies
with latitude ¢. In general it is not directed toward the
earth’s centre and has a magnitude mgl, less than mg,

If we resolve mg into components myg sin ¢ paraliel to the
earth’s axis of rotation and mg cos ¢ perpendicular to the
axis, then we see that part of this last component is
necessary to supply the centripetal force needed to

"maintain the particle in the general circular motion of the

earth. This centripetal force has magnitude m(R cos ¢ ) w 2

where w is the angular velocity of the earth (2wradiansper

day).
fmemne  centripetal force
t ,
mgcos ¢
¥ mgsin ¢
mg mg!

Thus the “effective gravitational force” has components

mg sin § and

mgeosg—m(Reosp)w? = m(g——-R&JZ)COS i

From which the “effective gravitational force” may be
computed. For exampie it has magnitude

mg1=m\/g2 —(lgRt.v.J2 ~R? w4)c052¢

effective g’
A

L

I latitude @

5. Further Miscellaneous Applications

A number of further situations, which involve circular
motion, are listed below along with a few brief comments
on some of them. You may like to try and analyse these
situations further. You should also try to think of other
examples to add to the list.

(i}  The action of a centrifuge.

(ii) The formatien of tides. In the earth-moon system
both planets move in nearly circular orbits about their
common centre of mass.



tidal buldges

At points on the earth’s surface the same distance from the
centre of mass as the earth’s centre the lunar attraction very
nearly equals the centripetal force needed to maintain them
as part of the earths circular path around the common
centre of gravity, However for points on the earth near the
moon the lunar pull is stronger and the required centripetal
force less. At points farther from the moon the reverse is
the case, the lunar pull is weaker and the centripetal force
greater. The nett effect at these points is a lowering of the
local value of g and the consequent development of tidal
bulges above them to maintain the pressure balance within
% oceans (at least this would be the case were it not for
me rotation of the earth about its axis which causes the
bulges to lag due to frictional type effects),

(iii) When an electrically charged particle moves with
velocity v through a perpendicular magnetic field of
strength B it experiences a force F of magnitude qvB
acting in a direction which is perpendicular hoth to the
particle’s velocity and the magnetic field (Biot-Savart
Law).

AN

magnetic {ield B

N

i

induced magnetic field
due

to the charge‘s motion

magnetic field B directed out of the page

Consequently, the particle can move in a circular path for
which
mvzlr =qvB or r=mv/(gB)

This effect is fundamental to the design and operation of
Cathode ray tubes, television picture tubes and cyclotrons.

EXERCISES.

1. A massive particle suspended by a “light” rod from a
pivet P, moves with constant speed in a horizontal
circle. If the rod has a length of 1 m and makes an
angle of 30° with the verticle from P to the centre
of the circle, find
(2) the time taken to complete one complete
revolution
(b) the speed of the particle.

If the speed of the particle is doubled, what angle wili
the rod now make with the verticle? (Use
g=9.8 mfsec?)

2. What is the maximum speed at which a car could

travel around a circular curve of radius 150 m if the
coefficient of friction between the tyres and road
surface is 0.6 (a typical value). What will the
maximum speed be if the coefficient of friction is
reduced by 10%.

3. A circular curve of highway is designed for traffic
moving at 80 km/hr. If the radius of the curve is
120 m at what angle should it be banked to the
horizontal.

4.  Given that Jupiter makes one revolution of the sun

every 11.87 years and that the radius of the earth’
arbit about the sun is 149 x 0% km determine the
radius of Jupiter's orbit.

5. What is the orbital period and speed of a satellite
moving in a circular orbit at an altitude of 250 km
above the earth. (Take the earth's radius to be
6371 km).

6.  Inthe Bohr model of a hydrogen atom the electron

moves in a circular orbit about the nucleus. If the
radius of the orbit is 5.3 x 10-1! m and the electron
executes 6.6 x 1015 revolutions per second, find
(a) the speed and acceleration of the electron

(b) the centripetal force needed to maintain the
electron in its circular path. (The mass of an electron
is9.1x 103! kg.)

7.  The acceleration due to gravity at the north pole is
g = 9.832 mfsecZ What is its “effective” magnitude g’
at
(a) the equator
(b) alatitude of 35°.

(The earth’s radius is approximately 6371 km.)

8.  Calculate the reduction in g due to the “tidal”
influence of the moon at the points on the earth’s
surface which are nearest and farthest from the
moon.

{Use: Lunar mass equals 0.012 that of the earth.
The earth’s radius is 6371 km.

The distance from the earth to the moon is
38x 104 km.}
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