TIN CANS AND ALL THAT

(Dr. B. Sims, Department of Mathematics, University of New England, 2351)

Question 10 of Paper B in the 1974 Higher School Certificate Mathematics
examinations asked us to minimize the area of sheet metal required to
manufacture a tin can of given volume.

Treating a can as a circular cylinder with closed ends, we have from

figure 1:
r
A
(1) Area of sheet metal
= Surface Area of cylinder h
= 2 x (Area of circular end) +
(Area of "side")
7T
= § = 2mr? + 2mrh , )
v {
and \\*~___—///
{(2) Fixed Volume = V = wrZh Figure 1

Our problem is to find r and h so as to minimize the expression (1) for
§ subject to the constraint (2). This is a problem of optimization subject
to congtraints. Such problems arise frequently from the application of
mathematics to "practical" situations and are usually difficult to solve.

In our case, however, the constraint may be absorbed by substituting (2)
into (1) and the problem is readily solved.

Making the substitution we obtain

S = 2Trr2 +_§!__
r

Since §+®@ as r+0 or r-+ = agnd S is a differentiable function of

r for r > 0, the desired value of r will occur when E% = 0. Now,

Qs_.z 4mr - v

ar Z
and so equating this to zero we have

2med = v [or r = Sle .
27
Using (2) we have
213 = 122h or E-= 2 [so h=23 2 .
r 271
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Thus, the optimum shaped can (at least so far as minimizing the area of
sheet metal used) is obtained by choosing r and h =0 as to give the
required volume and also satisfy the relationship h/r = 2; that is, the

can must have its diameter and height equal.

Figqure 2

K4 Optimal shape for minimizing area of sheet metal used

The above represents a crude model for minimizing the production cost
of a tin can, however, the production cost involves other factors besides
the cost of the sheet metal in the can. In order to more nearly minimize
the cost, a more realistic model for the cost of production must be used.
We will develop one such model which accounts for some of the other factors

involved.

FACTORS CONTRIBUTING TO THE COST
Cost of sheet metal used in production.

To simplify matters we will assume that the metal for the cans is cut
from an infinitely exﬁansive sheet (that is, Qastage at the edges of the
sheet are being neglected). Since it is possible to tessellate the plane
with rectangles it is clearly possible to cut the sides of the cans without
any wastage of metal, however the plane cannot be tessellated by circular
disks and so when producing the circular tops and bottoms a certain amount
of wastage is inevitable.

The most "efficient" way of packing circular disks in the plane is
illustrated in Figure 3(a) and since the plane is covered by triangles of

the form ABC we see from Figure 3(b) that the area of waste metal to that of

metal used is

Area of triangle ABC - 3 X (Area of %-of a disk)

3 x (Area of %'of a disk)

Y3r? - ur2  2/3

hrr2 =5 - 1=0.1




(b)

Figure 3

Thus on the average the cost of sheet metal needed to produce each circular

can end is approximately 1.1 times greater than the cost of the metal in the

can end itself.

From this we see that the effective cost of the metal in the can is
(3) cm(2ﬂrh + 2.2ﬂr2)
where S equals the cost of sheet metal per unit area.

Cost of cutting (stamping) the sheet metal to shape

Here it is reasonable to assume that the cost will be proportional to

the length of the cut. Thus the cost to cut one circular can end will be

2ﬂcer, where . is the cost per unit length for a circular cut.

In producing the rectangular side for the can it is usual to use two

different cutting operations. First the sheet is "slit" into long strips of

appropriate width (h, say) and then each of these strips is guilloﬁined

into suitable lengths (27r, say). There is no reason to expect the cost

of these two operations to be the same per length of cut. Thus the total

cost of cutting is

+
(4) 4ﬂcer chh + 2wcrr

where L and c,. are appropriate costs per unit length of cut. (Note,
the last two terms are not doubled since each of these cuts is effectively

shared by the components for two cans.)
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Cost of seaming

Having cut the correct shaped pieces of sheet metal it is now necessary
to join them together. This involves a side seam, of length h, and two
circular seams at tHe top and bottom of the can of total length 4wr (see

figure 4).

The cost of these two different types

of seaming operations will, in general,
side seam be different, however it is reascnable
to assume each is proportional to the
length of the seam. The cost of

$_/- end seam .
seaming will therefore be given by

(3) 41rcbr + csh,

where cﬁ and g are the respective costs per unit length of an end seam

and a side sean.

[T

TOTAL COST OF A CAN

The costs discussed above depend on the particular size and shape of
can under production, besides these various fixed costs (labour costs,
- maintenance costs on the machinery, etc.) are involved. We will take these
> to be represented by an amount F per can. Adding this to the variable
A costs given in (3), (4} and (5) we obtain as a reasonable model for the

total production cost of a can
(6) C = c_(2nrh + 2.27r?) + 2mar + bh + F,

where

a=2c +c + 2c
e r
and

= 4- -
b ch cS

Since the volume of the can V is known, our problem is to minimize
subject to the constraint (2). We may reduce C to a function of one

variable r by substituting (2) into (6)}:




C=c [3!-+ 2.2wr2] + 2war + —Eg-+ F.
m{ r T

As before, the minimum of C occurs for a positive value of r at which

g%-z 0. That is, we require r to satisfy

. 2V 2bv
- + 4. + 2ma - =
{7} Cm[ P 4 411'1‘] Ta - 0
or, multiplying throughout by r3
(8) 4.4 c_wr® + 2max® - 2c vr - 222-: 0.
m m ™

This fourth degree polynomial for r is more complicated than the corresponding
relationship from our first model and cannot be solved so easily. Nonetheless,

for given values of V, cm, a and b an approximate value for r could be
cbtained numerically, using Newton's method, for example.

An alternative analysis is to rearrange (7) as

4.4 ¢ r + 27a
m

v =
2cm + 2b
r2 = wr3
or
2rrd (1.1 c, T + a)
{9) v =

b
cr+ =
m T

Graphing V against r from (9) allows us to determine for any given value

of r the volume V for which that value of r is optimal. By reading the

graph "backwards" the optimal r for any given volume V may also be

estimated. VAN
[Note: for large values of r
v ~ 2.2 123.]
vO ———————
|
: lr—af,f optimal r corresponding to vy
0 if » r

Figure 5

A typical V versus r graph, where V and r
are related by an expression of the form 9




e R o

St

g s

From (9) and (2) we also have

h =“2{1.1 cm r + a]
r c T+ b/% |

Az r {and hence, also. V) “becomes large we see that

E-v- 2.2,
r .

l_'-.
This is 1.1 times the constant value suggested by our first crude mode and

so the limiting shape for large cans is similar to that obtained previously
with a height 10% greater than the diameter.

crude model

. The departure from our first
is greater for small cans - see figure 6.
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Figure 6

THE NEW BREED OF CANS

A number of soft-drinks and beers come in cans with the bottom and
sides extruded from a single piece of metal.

seam (see Fi- e 7.

Such cans involve only a top

An analysis similar to that used
above suggests the following cost

of production for such a can

Figqure 7

= ! 2 2
(1) c cm(ZHrh + =) + 1.1 ¢, Tr + 21r(ce + cb)r + F,




here cs;x equals the cost per unit area for extruding the bottom and side.
The other coefficients have been introduced previously.

Proceeding as before we have

2c'V
C=mw(l.1c_+c"r? + 2ndr + —=—+ F,
m ™ r
wheres d=c¢c + ¢, .
e b
2c'V
dc _ \ m
ar - 21 (1.1 cm + cm)r + 2md -~ )

and so the optimal radius r satisfies

m{l.L ¢ +c')rd + 1dr? -~ ¢'V = O
m m m

or
2 '
Tr ((1.1 e, + cm)r + d]
vV = T
m
and
L
h (1.1 e + cm) a
LLR - +—_—.
r c c'r
m m

The author researching for the
current article

{Sketch by N. Talbot)
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As r + =, By E¥ + 1 and so for large volumes such cans are again of

r

m
approximately the same height as diameter. For small volumes the behaviour
is markedly different from that of our other models. In this case, as r + 0,

%-+ = and so as the volume is decreased the optimal shaped can becomes

progressively taller and thinner - the situation is illustrated in Figure 8.

Figure 8

The dotted curves represent previous models, the heavy
curve corresponds to cans with only a top seam

From these analyses we see that large cans should be of approximately the
same height as diameter while smaller cans should be taller than they are
wide, with beer cans (without a bottom seam) even taller and thinner than the
corresponding ordinary can. You might like to inspect a number of different
sized cans to see if these trends are present.

It may be salutory to note that, if an analysis of this kind led to a
reduction in production cost of 1 cent per can, then on the cans discarded
at the Sydney Cricket Grounds during a season of play a saving of some
$50,000 would have been made.
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What relation do the numbers 17, 19, 37 and 4§ have?

(See p. 19)
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