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Preliminaries

X ≡ (X, ‖ · ‖) is Banach space with norm ‖ · ‖ : X → R+.

X∗ is the dual space of continuous linear functionals f : X → R,
with dual norm ‖f‖∗ = sup {|f(x)| : ‖x‖ = 1}.

X∗∗ is the second dual of X, the set of all continuous linear
functionals F : X∗ → R.

J : X → X∗∗ is the natural embedding given by J(x)(f) = f(x)
for each x ∈ X.
X is reflexive if J is a bijection, that is, if X is isometric to X∗∗

under the natural embedding.
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Two norms, ‖ · ‖ and ||| · ||| on X are equivalent if there exists
m,M ∈ R such that 0 < m ≤M and m‖x‖ ≤ |||x||| ≤M‖x‖ for
all x ∈ X.

P(X) is the set of all equivalent norms on X.

P(X) forms a Banach space equipped with the norm
‖p‖ = sup{p(x) : ‖x‖ = 1}.
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(en) is a (Schauder) basis for X if for each x ∈ X there exists a
unique sequence of real numbers (x(n)) such that

x =
∞∑
n=1

x(n)en.

(en) is a basic sequence if it forms a basis for its closed linear span.
The sequence (en) is normalised if ‖en‖ = 1 for every n ∈ N.

(un) is a block basic sequence if

un =
pj+1∑

n=pj+1

anen

for {en} a basic sequence, {an} a sequence of real numbers and
p1 < p2 < ... a sequence of integers.
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For (en) a basis and k ∈ N, we define the k-th natural projection
by,

Pk(Σ∞i=1x(i)ei) = Σk
i=1x(i)ei.

The basis is monotone if ‖Pk‖ = 1 for all k.
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A space X is said to be asymptotically isometric to `1 if there is a
real sequence (ρn) decreasing to 0 and a basis {en} such that,

∞∑
n=1

|an|(1− ρn) ≤ ‖
∞∑
n=1

anen‖ ≤
∞∑
n=1

|an|,

for all a = (an) ∈ `1.
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For C and D two nonempty bounded subsets ofX, the Hausdorff
distance between them is,

H(C,D) := max

{
sup
x∈C

inf
y∈D
‖x− y‖, sup

y∈D
inf
x∈C
‖y − x‖

}
.

For X and Y two Banach spaces, their Banach-Mazur distance is
given by,

d(X,Y ) = inf
{
‖S‖‖S−1‖ : S is an isomorphism from X onto Y

}
.
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Background

For C a nonempty subset of a Banach space X, a mapping
T : C → C is nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for every
x, y ∈ C.

A nonempty subset C of a Banach space X has the fixed point
property (FPP) if every nonexpansive self mapping T of C has a
fixed point, that is, an x ∈ C such that T (x) = x.

C has the hereditary fixed point property if every closed convex
nonempty subset of C has the FPP.

A Banach space X has the fixed point property (FPP) if every
closed bounded convex nonempty subset has the FPP.
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X has the weak fixed point property ( w-FPP) if every weak -
compact convex nonempty subset of X has the FPP.
Note in reflexive spaces, the w-FPP and the FPP are equivalent.

Similarly, the dual of X, X∗, has the weak* fixed point property
(w*-FPP if every weak* (that is σ(X∗, X)) - compact convex
nonempty subset of X∗ has the FPP.

A sequence (xn) is an approximate fixed point sequence ( afps) for
T if limn ‖xn − Txn‖ = 0.
It follows from the Banach contraction mapping principle that
every nonexpansive self mapping of a closed bounded convex
subset of a Banach space has an afps.
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Examples

c0 (and hence c and `∞) fails to have the FPP: the mapping
T (x) = (1, x(1), x(2), ...) is a fixed point free nonexpansive
self-mapping of the unit ball of c0 [Kakutani, 1943].

However, Maurey [1981] showed that both c0 (and c) have the
w-FPP.

Indeed Dowling, Lennard, and Turret [2004] proved a nonempty
closed convex subset of c0 has the FPP if and only if it is weak
compact.

As a Schur space `1 enjoys the w-FPP.
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Whether a dual space has the w*-FPP depends on the
choice of pre-dual and hence of w* topology.
For instance:

`1 as c∗0 has the w*-FPP [It has the w*-Opial property and hence
w*-normal structure],

On the other hand,

`1 as c∗ fails to have the w*-FPP (and hence the FPP).
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Lennard’s example

Take the dual action of (f(n)) ∈ l1 on (x(n)) ∈ c to be

(f(n))(x(n)) = f(1)x(1) + f(2) lim
n
x(n) + f(3)x(2) + · · · ).

For δ ∈ (0, 1] and (εk) ⊂ [0, 1) a sequence such that
∑∞

k=1 εk <∞
and Π∞k=1(1− εk) > 0, the mapping

T (x) := (δ(1−x(1))+
∞∑
k=1

(1−εk)x(k+1), δ(1−x(1)), (1−ε1)x(2), (1−ε2)x(3), ...),

is a fixed point free affine contractive self mapping of the
w*-closed convex set

C =

{
f : f(1) ≥ 0, f(1) =

∞∑
i=2

f(i) ≤ 1,

}
.
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Since W.A. Kirk [1965] effectively proved Banach spaces with
normal structure have the w-FPP, an important aspect of metric
fixed point theory has been to find easily verified widely
applicable sufficient conditions for a space to have the
w-FPP.

In 1981, Alspach gave the first and essentially only known example
of a space failing the w-FPP. He showed that in L1[0, 1] a
modification of the baker transform is a fixed point free isometry
on the order interval [0, 1].
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Note that the closure of the span of the order interval [0, 1], the
smallest Banach space into which Alspach’s example embeds, is a
non-reflexive separable subspace of L1[0, 1].

Since every separable space embeds isometrically into `∞ and
C[0, 1], this shows that both these spaces fail the w-FPP. However,
there is no known intrinsic example showing this in either space ?.

Complementary to Lin’s result, Maurey [1980] used ultrapower
techniques to prove that every reflexive subspace of L1[0, 1] has
the FPP.
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Many sufficient conditions for a Banach spaces to have the w-FPP
have been discovered. Leaving as the major unresolved question in
this direction: Do all reflexive spaces have the FPP?

The less ambitious question of whether all super-reflexive spaces
have the FPP also remains open.
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In 1997, Dowling and Lennard exploited the earlier example of
`1 = c∗ failing the FPP to show that every Banach space
containing an asymptotically isometric copy of `1 (or c0) fails
the FPP.

And, gave several examples of such spaces including all
non-reflexive subspaces of L1[0, 1].

This combined with Maurey’s 1980 result shows that a subspace of
L1[0, 1] has the FPP if and only if it is reflexive.
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Dowling Lennard and Turett [1996] also showed that not all
non-reflexive Banach spaces can be equivalently renormed to have
the FPP;

They showed that under any equivalent norm, `∞ or `1(Γ), where
Γ is uncountable, admits an asymptotically isometric copy of `1
and any equivalent norm on c0(Γ) admits an asymptotically
isometric copy of c0.
Hence, `∞, `1(Γ) and c0(Γ) all fail to have the FPP in any
equivalent norm.

All of these results led to the conjecture: A Banach space with
the FPP is necessarily reflexive.
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In the other direction, there are non-reflexive spaces that fail to
contain an asymptotically isometric copy of `1 or c0.

Indeed, Dowling, Johnson, Lennard and Turett [1967] showed that
for (γk) ⊂ (0, 1) a non-decreasing sequence converging to 1,

|||x||| = sup
k
γk

∞∑
n=k

|x(n)|

is an equivalent norm on `1 and (ell1, ||| · |||) does not contain an
asymptotically isometric copy of `1.

Similarly, the pre-dual, (c0, ||| · |||) does not contain an
asymptotically isometric copy of c0, where
|||x||| = supk γk sup∞n=k |x(n)|.
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Then surprisingly, Pei-Kee Lin [2008] showed that when γk = 8k

1+8k ,
(`1, ||| · |||) has the FPP.

This was the first example of a non-reflexive space with the FPP,
showing the previous conjecture to be false, and so initiating a new
line of research to determine which (non-reflexive) Banach spaces
can be equivalently renormed to have the FPP.
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Almost all proofs that a space has the w-FPP rely on
w-compactness ensuring nonexpansive maps have minimal
invariant sets and the existence and properties of diameterizing
sequences for such sets.

This technique is not available for the FPP in non-reflexive spaces.
In its place Lin used the following lemma, which should should
have wider applications.

Lemma

Let (X, ‖ · ‖) be a Banach space with a linear topology τ such that
every bounded sequence has a τ -convergent subsequence. Let C
be a closed convex bounded subset of X and T : C → C a
nonexpansive mapping. If T is fixed point free, then there exists a
closed convex T -invariant subset D of C such that

inf
{

lim sup
n
‖xn − x‖ : (xn) ⊂ D, (xn) an afpt, & xn

τ→ x

}
> 0.

The proof relies on Cantor’s intersection theorem.
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renormings to gain the FPP

Since Lin’s initial example, a number of extensions and
generalizations have been made. We list some of them.

In what follows ||| · ||| denotes the equivalent norm on `1 defined by,

|||x||| := sup
k
γk

∞∑
n=k

|x(n)|,

where (γk) is a given non-decreasing sequence in (0, 1) which
converges to 1.
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One of the most general results on renorming `1 to have the FPP
is due to Linares, Japn and Llorens-Fuster [2012].

Theorem

Let p(·) be an equivalent norm on `1such that

lim sup
n

p(xn + x) = lim sup
n

p(xn) + p(x),

for every w*-null sequence (xn) and for all x ∈ `1.
Then for every λ > 0 the norm

|x|p,λ = p(x) + λ|||x|||

has the FPP.
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In 2010, Dowling Lin and Turret proved:

Theorem

For m ∈ N,
⊕mi=1(`1, ||| · |||)

has the FPP.
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A basis {en} is premonotone if for every n ≤ k ≤ m and (ai) ⊂ R

‖
m∑
i=k

aiei‖ ≤ ‖
m∑
i=n

aiei‖

A space Y is said to be asymptotically isometric to `1 if it has a
basis {en} such for some sequence (ρn) decreasing to 0 and every
x = (x(n)) ∈ `1,

∞∑
n=1

|x(n)|(1− ρn) ≤ ‖
∞∑
n=1

x(n)en‖ ≤
∞∑
n=1

|x(n)|,

In 2009, Fetter and Buen proved:

Theorem

Suppose (X, ‖ · ‖) is a Banach space with a premonotone basis
{en}, and every infinite dimensional subspace of X has a subspace
that is asymptotically isometric to `1. Then provided γ1 >

4
5 , every

subspace of (X, ||| · |||) contains an infinite dimensional subspace
that has the FPP.

Brailey Sims renorming for fpp



We mention that extensions of Lin’s result to the non-commutative
L1-spaces associated with infinite dimensional finite von Neumann
algebras have been made by Linares and Japon [2011].
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Density of norms with the fixed point property

Thus far we have considered the existence of renormings that have
have the FPP. We now consider whether such renormings are
common amongst the set of equivalent renormings, P(X).

An equivalent norm ||| · ||| on a Space (X, ‖ · ‖) is said to be
distorted if (X, ||| · |||) does not contain an almost isometric copy
of (X, ‖ · ‖).
X is emphnon-distortable if no equivalent norm is distorted.

James’ Distortion Theorem [1964] states that `1 and c0 are
non-distortable. In 1981, Partington proved that `∞ is also
non-distortable.
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In 2012, Benavides used these results to prove

Theorem

Let X be a Banach space which contains an isomorphic copy of a
non-distortable space Y which fails the (w-)FPP. Then, the subset
of P(X) failing the (w-)FPP is dense in P(X).

In particular, the set of norms on c0 or `1 failing the FPP are dense
in the set of all equivalent norms.
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What about norms with the (w-) FPP?

In 2009 Benavides also proved the following result.

Theorem

Let X be a Banach space such that for some set Γ there is a
one-to-one linear continuous mapping J : X → c0(Γ). Define the
equivalent norm |||x|||2 = ‖x‖2 + ‖Jx‖20, the space (X, ||| · |||) has
the w-FPP.

Since J can be replaced with λJ for any λ ∈ (0, 1), we see that
the equivalent norm |||x||| can be made arbitrarily close to the
original norm.

Since every reflexive space admits such a mapping, we deduce the
following, which solves a long standing question in metric fixed
point theory.

Corollary

For every reflexive space X the set of norms with the w-FPP is
dense in P(X).
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Stability of the (w-) FPP

A space X has the stable (w-) fixed point property (stable (w-)
FPP) if every Banach space isomorphic to X with a Banach-Mazur
distance to X less than some constant M has the (w-) FPP.

For example, the Hilbert space `2 has the stable w-FPP, with the

best known stability constant M =
√

5+
√

13
2 being obtained by Lin

[1999].
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In 2012, Benavides proved the following result.

Theorem

Let X be a Banach space with a monotone basis , {en}. For
a ∈ (−1, 0) such that 1− a8 < 1/28, consider the equivalent norm
‖x‖a =
sup

{
‖
∑∞

n=1 a
p(n)tnen : (pn) is a nondecreasing bounded sequence ⊂ Z

}
where x =

∑∞
n=1 tnen. If Y is a Banach space isomporphic to X

with Banach Mazur distance to (X, ‖ · ‖a) less than
2/
√

3 + 28(1− a8) then Y has the w-FPP.

This theorem resolves a major question in metric fixed point theory:

Corollary

Every separable Banach space X can be renormed to have the
stable w-FPP.

Proof.

Since X is separable, it can be embedded isometrically in C[0, 1].
C[0, 1] has a monotone basis so there is a renorming ||| · ||| on
C[0, 1] with the stable w-FPP. Therefore, (X, ||| · |||) must also
have the stable w-FPP.
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Some important open questions:

Is the set of renormings of `1 with the FPP dense in P(`1)? There
is currently no known non-reflexive space X such that equivalent
renormings with the FPP are dense in P(X).

It is unknown whether there are any equivalent renormings of `1
which do not contain an asymptotically isometric copy of `1 but
fail to have the FPP. (Discovering that there are no such
renormings would lead to a characterisation of the renormings of `1
with the FPP.)

Can c0 be renormed to have the FPP?

Benavides proved that every reflexive space has an arbitrarily close
renorming with the w-FPP, but it remains unclear whether every
reflexive space or even every super-reflexive space has the FPP.

What is the upper bound for the stability constant of a Hilbert
space? (If all superreflexive spaces had the FPP the upper bound
would be infinite.)

Brailey Sims renorming for fpp


