CIRCULAR MOTION

JACQUI RAMAGGE AND BRAILEY SIMS

1. INTRODUCTION

The aim of this lecture is to

e present an overview of circular motion (perhaps with a new slant),
¢ remind you of what you should know,

~e help diagnose what you need to work on,

o illustrate the interplay between seemingly unrelated HSC topics.

We will look at the mechanics of motion with an emphasis on cireular motion.
Mechanics is the study of motion and consists of

¢ kinematics — the study of abstract motion without reference to matter or force,
and

e dynamics — the study of the relationship between motion and force.

Circular motion has many applications and is historically of great importance. It
was the first motion analyzed by Newton in his Principia Matematica; almost all of
the first book is devoted to circular motion.

Most of you will be familiar with motion along a line. When looking at motion
in a plane you may have tackled the problem by breaking the motion down into
vertical and horizontal components. This approach allows you to use the results you
know about motion in a line to deduce results about motion in the plane. We show
how to use complex numbers to model circular motion and discuss the benefits (and
drawbacks!) this has over the more traditional approach.

These notes were prepared by Jacqui Ramagge to be delivered as part of an HSC study day held
at the University of Newcastle. They were based on a set of notes written for a similar purpoese by
{ Brailey Sims.
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2. MOTION IN THE PLANE

Suppose we want to describe the path of an object in the plane such as that depicted

below. /A

We could

e use Cartesian coordinates,

e locate a point P by giving its horizontal and vertical distance from the origin O,
o resolve the motion (the velocity, acceleration, or whatever) into horizontal and

vertical components.
Y /

vertical

i
horizontal
P

X

O

Alternatively we could

e choose an origin O and a fixed direction £ (corresponding to a half-line from ),
e specify the position P by giving

r = “length” O P = radial distance from the origin to P

and
f = angle OP makes with £ measured a,nticlockwiseo,

o resolve motion into radial and tangential components.

tangential

Note that with this model the directions of the components change with P. The radial
direction is in line with OF and directed outwards (unless the component is negative
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in which case it is directed inwards). The tangential direction is perpendicular to the
radial direction and is positive in the anticlockwise direction

To help analyze the motion we use complex numbers to represent points on the
plane (positions) as illustrated.

P 2 =144y =r(cosf + isinf)
1

polar form of z

|
I
|
0 T

It will also be useful to recall that multiplying a complex number z by the imaginary
number 4 (where ¢* = —1) rotates z through a right angle about O in an anticlockwise
direction.

—y +ir =1z

_r
slope =

We can now analyze motion where P is a function of time ¢ (and hence so0 are r
and ).

P z=1z+iy=r(cosd +isind)

velocity = rate of change of P with respect to ¢
dz
-z = = derivative of z with respect to time ¢
= = (r{cos @ + isin §))
= 7{cosf +isinf) +r(—sind +icosd)d (using product and chain rules
= 7(cosf +isind) + ir(cosd + isin §)f
complex number complex number
parallel to z perpendicular to z
__ radial component tangential component
- of velocity of velocity

Thus the components of velocity are

T directed radially away from O

and

: T
76 at an angle 5 (anticlockwise) to the radial direction OP.

=
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P z =r(cosf - isinf)

> (
)
Acceleration may be analyzed similarly to obtain
. y d :
acceleration « 2 = —C—f-—( velocity)
= [ (F—rf) +i (20 + rﬁ)) (cos @ -+ i sin 6)

S—— Nee——
radial tangential

component component

O

Any motion in the plane can be analyzed this way, but in general the resulting
equations will be difficult to “solve”.
We now specialize to motion around a circle.
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3. KINEMATICS OF CIRCULAR MOTION

Even in this case the equations are messy without a judicious choice of origin O.
Two good choices are

e () on the perimeter of the circle,
e O at the centre of the circular motion.

3.1. O on the perimeter.

Since P is constrained to move on the circle, R doesn’t change with time so R = 0.
The variables ¢, ¢ and r all change with time. Now

and 7 =9Rcosé.
So we have

9=§ and 7= —2Rsing .

This makes the radial velocity

F=-—2Rsinffd = —2R sin(d)/Q)%)- = —Rsin(¢/2) ¢
and the tangential velocity
r = 2Rcos 66 = 2R cos(pp/2) gi = Rcos(¢/2) ¢.
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We summarize these facts in the following diagram.

Rcos(g/2) ¢

Ezercise 3.1. Find the acceleration of P in terms of ¢ and R.

3.2. O at the center of circular motion.

~P

In this case r doesn't change because the motion is constrained to the circle so the
radial velocity is 7 = 0.
The
tangential velocity is 6.
The _
radial acceleration is  — ré°,

the negative sign indicating that radial acceleration is towards the centre. The
tangential acceleration is 6.
In the special case of uniform circular motion where the

angular velocity § = w, a constant
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we have
tangential velocity v = rw,
and the only acceleration is inward radial acceleration

g _ U
a=rw =—,
T
Note: the constant angular velocity w corresponds to
2
w = — where 7 is the period of one revolution

= 2nf where f is the frquency; the number of revolutions per unit of time.

4. DyNAMICS OF UNIFORM CIRCULAR MOTION

Newton’s second law of motion says that
Force = mass X acceleration.

Using polar coordinates and putting O at the centre of the circular motion we see
that a particle of mass m will execute uniform circular motion if and only if it is
subjected to a centripetal (centrally directed) force of magnitude
2
F=mrd? ="
T
For non-uniform circular motion a tangential force must also operate.
The identification of these forces is the key to the analysis of circular motion.
Applications of the dynamics of circular motion include the following examples.

Ezamples 4.1. 1. Conical pendulums — the action of governors in steam engines.

S

Forces on a vehicle rounding a curve — analysis of skidding.
3. Circular motion under inverse square laws for a central force - various applica-
tions including
e pravitation; satellites, Kepler’s third law,
e electrostatic attraction; Bohr model of the hydrogen atom.
4. Change in gravity due to latitude.
. Centrifuge — fun parks.
6. Tides — Roche’s limit.

on

combined centre of mass

earthg@}l’( () ~—moon

_{

tidal bilges
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We analyze some of these in detail.

4.1. Conical Pendulumn.

‘light’ inelastic string

I 4 vertical component, of T

haorizontal component of T <-

myg

In the above diagram, T is the tension in the string. Its vertical component bal-

ances myg to maintain the motion in a plane, its horizontal component supplies the
centripetal force. Thus

Tcos¢p = mg and
Tsing = mdsin guw?
since 7 = {sin ¢. So
mg 5
= E =
COS ¢ n
and hence
Wl = g
Lcos ¢

So, as w increases cos ¢ decreases, and hence ¢ tends towards 7/2. This means that
the faster you spin the object, the more the mass rises. The period of oscillation is

T = or, [ 2952 QW\@ for small ¢.
Vg
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4.2. Skidding,

circular race track or corner

We assume there is no friction in the direction of motion, only towards the centre.
This is an oversimplification, but it is sufficient for our purposes.
Here the centripetal force is due to friction and we have

2
mu~

= pmyg
where p is the friction coefficient and p < pmgq. So v = ,/ugr,

v

small change in speed |_

|
| 1
| I
1

|
big increase in friction

needs L

and skidding occurs if g = % > Umaz-

4.3. Banked Tracks and Fun Parks.
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The vertical forces are
mg = Rsin¢ — uR cos ¢.
The horizontal forces are
mu*
Recos¢+ pRsing = mrw? = ——,
T

So

ro? — v cosqb—i—,usingf).
S & sing — pcos ¢
The extreme cases correspond to
® ¢ = m/2; corresponds to a flat track and we get v® = ugr as before.
© ¢ = 0; corresponds to spinning in a cylinder and we get v = ,\/% and
increase in v «+ decrease in p.
2

v
e frictionless case, pt = 0; corresponds to — = gcot ¢. So
T

increase in 7 ++ increase in cot ¢ «» decrease in ¢.

Note that these resuits are indépendent of how far up the incline the mass is!

This explains why velodrome tracks get steeper towards the outside. You position
yourseli on the track where the incline is appropriate to your speed. The faster you
go, the further up the track you position yourself.
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QUESTION 5 Use a SEPARATE Writing Bookle,t./ Marks
(@) The roots of x> +5x* + 11 = 0 4t «, Band 7. 3
() Find the polynprmiial equation whose roots are a2, B?% and ¥
(ii) y value of o® + B2 + 92
(b) 4

A conical pendulum consists of a bob P of mass m kg and a string of length
£ metres. The bob rotates in a horizontal circle of radius a and centre O at a
constant angular velocity of @ radians per second. The angle OAP is 8 and

OA = I metres. The bob is subject to a gravitational force of mg newtons and a
tension in the string of T newtons.

(i) Write down the magnitude, in terms of @, of the force acting on P
towards centre (.

(i) By resolving forces, show that @> mf‘E .
1

Question 5 continues on page 7
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QUESTION 4. Use a SEPARATE Writing Booklet. . Marks

(a) (i) Suppose that & is a double root of the
Show that f'(k}=0.

Iynomial equation f(x)=0. 7

(11) What feature does the gr.
multiplicity 27

of a polynomial have at a root of

(iii) ial P(x)=ax’ +bx +1 is divisible by (x—1)°. Find the

2 .3 4
(iv) E(x)=1+x +% +% +;—4—. Prove E(x)=0 has no double roots.

(b)

A planet P of mass m kilograms moves in a circular orbit of radius R metres
around a star S. Coordinate axes are taken in the plane of the motion, centred
at S. The position of the planet at time ¢ seconds is given by the equations

2wt . 2wt
x=Rcos% and 3’=R51“T,

where T is a constant.

(i) Show that the planet is subject to a force of constant magnitude,
F newtons.

(i) It is known that the magnitude of the gravitational force pulling the
planet towards the star is given by

_ GMm
o

F

where G is a constant and M is the mass of the star § in kilograms. Find
an expression for T in terms of R, M and G.

Question-4-continmues v page 66—
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